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Abstract
Because cognitive competences emerge in evolution and development from the sensory-motor domain, we seek a neural

process account for higher cognition in which all representations are necessarily grounded in perception and action. The

challenge is to understand how hallmarks of higher cognition, productivity, systematicity, and compositionality, may

emerge from such a bottom-up approach. To address this challenge, we present key ideas from Dynamic Field Theory

which postulates that neural populations are organized by recurrent connectivity to create stable localist representations.

Dynamic instabilities enable the autonomous generation of sequences of mental states. The capacity to apply neural

circuitry across broad sets of inputs that emulates the function call postulated in symbolic computation emerges through

coordinate transforms implemented in neural gain fields. We show how binding localist neural representations through a

shared index dimension enables conceptual structure, in which the interdependence among components of a representation

is flexibly expressed. We demonstrate these principles in a neural dynamic architecture that represents and perceptually

grounds nested relational and action phrases. Sequences of neural processing steps are generated autonomously to

attentionally select the referenced objects and events in a manner that is sensitive to their interdependencies. This solves the

problem of 2 and the massive binding problem in expressions such as ‘‘the small tree that is to the left of the lake which is

to the left of the large tree’’. We extend earlier work by incorporating new types of grammatical constructions and a larger

vocabulary. We discuss the DFT framework relative to other neural process accounts of higher cognition and assess the

scope and challenges of such neural theories.

Keywords Neural process model � Embodied cognition � Higher cognition � Language grounding � Dynamic field theory �
Concepts � Conceptual structure

Introduction

How humans achieve higher cognition continues to fasci-

nate cognitive scientists, neuroscientists, psychologists,

computer scientists, and other scholars with an interest in

the human condition. The neural basis for mental capacities

such as using language to generate and understand narra-

tives, thinking to reason, plan, or solve problems, using

analogy to transfer knowledge to new domains, remains

largely unknown. One hallmark of higher cognition is that

it seems to abstract from the concrete sensory or motor

manifestations of the objects or events that cognition is

about. That abstraction is captured when higher cognition

is described as a form of symbol manipulation (Newell and

Simon 1972). The symbols are the abstract representations

of objects or events, and their flexible manipulation cap-

tures productivity, the capacity to generate ever new chains

of thoughts or actions, and compositionality, the capacity

to create new thoughts or ideas from a given set of symbols

(Fodor and Pylyshyn 1988). Systematicity describes the

hypothesis that the way symbols are used and combined is
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constrained by certain patterns of regularity, described as

rules.

Cognition as symbol manipulation aligns with the notion

of (digital) computation. Computers operate in a rule-based

way on internal states that can be thought of as physical

instantiations of symbols. Algorithms systematically

organize sequences of such operations to produce an out-

put. How such algorithms may describe or emulate human

thought has been a major topic of research on cognitive

architectures of the human mind (e.g., Laird 2019;

Anderson 2013).

Clearly, the human brain does not look like a digital

computer. There is no obvious way how neural states are

stored and accessed by a central processor, how algorithms

are stored or implemented in the brain. Nor is there an

obvious way how neural states come to stand for the

objects or events that the algorithm is making computations

about. So the computer metaphor, and, more generally, the

notion of cognition as symbol manipulation, do not by

themselves explain how the human brain achieves

cognition.

There are two different ways in which researchers

approach the challenge of understanding the neural foun-

dations of human cognition. These mirror longstanding

debates in cognitive linguistics between the view of lan-

guage as an innate, special module of the human mind

(Pinker 2003) versus a view of language as emerging from

sensory-motor competences in development and evolution

(Elman et al. 1997). This special issue will likely contain

contributions aligned with either approach. The first

approach seeks a general neural mechanism, a ‘‘neural

Turing machine’’, that enables neural networks to manip-

ulate symbols productively and systematically (Zylberberg

et al. 2013; beim Graben and Potthast 2014; Carmantini

et al. 2017; Lake et al. 2017). This would be a neural im-

plementation of symbol manipulation (Marr 1982; Fodor

and Pylyshyn 1988). Linking symbols to their referent

through sensory-motor processes (Harnad 1990; Barsalou

1999), is considered a separate problem in this view.

The other approach addresses the sensory-motor

grounding of cognition head on and asks instead, how

grounded processes may achieve the seeming flexibility

and capacity for abstraction described by the notions of

productivity, systematicity, and compositionality. This

view postulates that higher cognitive competences emerge

from the dynamics of the neural networks that are coupled

to the world through the sensory-motor systems, consistent

with the evolutionary (Tomasello 2014) and developmental

(Thelen and Smith 1994; McClelland et al. 2010;

Samuelson et al. 2011) primacy of sensory-motor behav-

iors. Empirical support comes from a range ‘‘embodiment

effects’’ (Newen et al. 2018).

The goal of this paper is to propose a concrete theo-

retical framework to develop this second approach toward

a neural account for higher cognition. Embodiment and

grounding plays a central role in this approach. Because

sensory-motor processes unfold in closed loop with the

environment, their theoretical understanding invokes

dynamical systems ideas including stability (Schöner

2008). Dynamic Field Theory (DFT; Schöner and Spencer

2015) extends this dynamical systems perspective to cog-

nition postulating that cognitive processes inherit stability

properties from the sensory-motor domain (Van Gelder

1998). The related notion of neural dynamics goes back at

least to Stephen Grossberg’s pioneering work (Grossberg

1978), and is implied in connectionist modeling of recur-

rent neural networks (Usher and McClelland 2001). The

DFT approach originated from work on the developmental

foundation of cognition including accounts for persevera-

tive reaching in infants (Thelen 2001), the development of

working memory (Simmering et al. 2008; Johnson et al.

2014), visual categories (Perone and Spencer 2014), cog-

nitive control (Buss and Spencer 2014), among many other

forms of early cognition (Schöner and Spencer 2015).

In the classical conception of cognition as symbol

manipulation, the capacity to generalize and operate at an

abstract level of representation is formalized through the

notion of mathematical functions. For instance, relations

such as ‘‘to the left of’’ or ‘‘contained in’’ are framed as

functions that take two arguments, the reference and the

target object, and return a truth value. This makes explicit

the abstraction and generality of these cognitive operations

that depend only on the information passed to the func-

tions, the objects’ locations, not on the sensory-motor

details of the representation of each object. How would a

neural dynamic account grounded in the sensory-motor

domain provide this level of generality and abstraction?

Such issues were debated early in the connectionist chal-

lenge to classical information processing, then around the

question of how the past tense of verbs may be formed:

How may rules be applied to a pseudo-word for which a

suitable neural representation has not yet been built (Pinker

2006)? The radical variant of the proposed solution is

implemented in deep convolutional neural networks: Pie-

ces of neural circuitry are copied through weight sharing

across an entire layer of the network. The operation

encoded in this circuitry can be then applied anywhere in

an image (Santoro et al. 2017). That solution is neither

neurally plausible, nor does it scale reasonably. In DFT,

coordinate transforms provide the solution (Richter et al.

2021) to this ‘‘neural pointer problem’’ (Ballard et al.

1997). Neural circuitry implementing the relation ‘‘to the

left of’’, for instance, may be specific to the reference

object being positioned at its center. To apply that circuitry
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to a reference object anywhere in the visual array, the array

is transformed into a coordinate frame centered on the

candidate reference object via a steerable neural map

(Deneve and Pouget 1998).

This paper continues the expansion of DFT as a neural

account of higher cognition beyond initial forays into

relational thinking (Lipinski et al. 2012; Richter et al.

2014), mental mapping (Kounatidou et al. 2018), and word

learning (Bhat et al. 2022) (for review, see Schöner

(2023)). The critical open question is, if and how DFT can

provide a neural account for the flexibility of higher cog-

nition described by productivity, systematicity, and com-

positionality. We will address this question around the

exemplary problem of how nested phrases can be repre-

sented and perceptually grounded. Such phrases join

‘‘atomic’’ linguistic units into ‘‘molecular’’ linguistic units

at several layers of recursion. We show how structured

representations (Jackendoff 2002) may be neurally realized

by flexibly binding separate neural representations of lin-

guistic units through an index dimension in order to rep-

resent their interdependencies within the nested phrase. We

show how the perceptual grounding of such structured

representations is autonomously generated in sequences of

neural processing steps that take these interdependencies

into account.

In the next section, we review the neural principles of

DFT including the three key neural mechanisms of binding,

coordinate transformation, and sequence generation. Then

we present a neural dynamic architecture that perceptually

grounds nested phrases. For example, the sentence ‘‘the

blue ball approaches the big tree, which is to the left of the

lake and to the right of the house’’ is perceptually grounded

by attentionally selecting the designated objects in a visual

scene. We relegate the analysis of how this approach

relates to alternative neural accounts of higher cognition to

the Discussion, where we also point to limitations and

future challenges.

Dynamic field theory

Dynamic Field Theory (DFT; Schöner and Spencer 2015)

is a theoretical framework to understand the neural basis of

embodied cognition. The neural accounts provided within

DFT are not primarily concerned with mapping processes

onto specific brain regions, although such mappings are

possible (Buss et al. 2021). Instead, DFT postulates a set of

principles that capture constraints of the brain networks

from which cognitive function emerges. Most of these

principles are consistent with connectionism (Thomas and

McClelland 2008), neuroconstructivism (Mareschal et al.

2007), or neural networks modeling in general, but some

are more specific and thus more constraining than recog-

nized in this broader literature. This first section reviews

the principles of DFT.

Neural dynamics, fields and peaks

Like most neural network models, DFT uses an activation

concept to describe the state of neural networks by con-

tinuous variables. The spiking mechanism of real neurons

is replaced by a sigmoidal threshold function. The resulting

population level description (Schöner 2019) can be derived

under some conditions as a mean field approximation of

neural activity (Gerstner et al. 2014, Part 3).

Also shared with all neural network models is the pos-

tulate that the functional meaning of neural activation

patterns derives exclusively from the connectivity to and

from a given neural population. Neural populations cannot

exchange ‘‘messages’’ or ‘‘call functions’’, they are merely

coupled to other neural populations. That pattern of con-

nectivity ultimately links any neural population to sensory

surfaces and to motor systems, so that neural representa-

tions within DFT always possess sensory-motor grounding

(Barsalou 2008).

Less universally shared is the assumption of DFT that

neural activation, u(t), evolves continuously in time, t.

Although many neural network models use discrete time

steps at which the state of the network is updated, that is

primarily a conceptual simplification rather than a princi-

pled position. Because neural spiking is a priori asyn-

chronous across neurons, the discrete times of spiking

events can best be viewed as a sampling of continuous

time, not as clocked computation. Continuous time is also

appropriate to understand the link of neural to sensory-

motor processes and actual movement generation. Finally,

thinking of neural activation as evolving in time is critical

to understanding recurrent neural networks. In the mathe-

matical formalization of neural dynamics (Grossberg

1978):

s _u ¼ �uþ hþ inputs; ð1Þ

the ‘‘�u’’ term is inherited from the dynamics of neural

membranes (as in integrate-and-fire neural models (Gerst-

ner et al. 2014)). This term creates stability: The fixed

point, u ¼ hþ inputs (for constant input), of this neural

dynamics is an attractor to which any initial activation

level converges on the time scale, s � 10 ms, inherited

from membrane properties. In the absence of input, acti-

vation converges to the resting state, h\0. By convention,

zero is chosen as the threshold for transmission of activa-

tion through a sigmoidal threshold function,
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rðuÞ ¼ 1

1þ expð�buÞ ; ð2Þ

whose steepness is fixed by b[ 0 (Fig. 1). Input shifts the

sub-threshold attractor, hþ input, as long as this activation

level remains below zero.

Stability is a critical property of all functional activation

states in DFT, clearly relevant when activation patterns

steer behavior in closed sensory-motor loops, but also

critical when activation patterns drive purely mental pro-

cesses. In particular, decisions must be maintained and

stabilized against competing neural states. Endowing

supra-threshold activation with stability requires recurrent

neural connectivity that is organized to protect activation

patterns from decay and from competing states. The

mathematics of this are well understood in a localist picture

in which neural activation variables are organized topo-

logically. Using a continuous representation of the under-

lying topology, such neural activation variables form

neural fields, u(x), defined over low-dimensional spaces, x

(more on these spaces below). A neural dynamics sup-

porting localized stable states is then (Amari 1977;

Coombes 2005) (extensive review in Coombes et al.

(2014))

s _uðx; tÞ ¼�uðx; tÞþ hþ sðx; tÞþ
Z

wðx� x0Þgðuðx0; tÞÞdx0

þqnðx; tÞ
ð3Þ

where s denotes external input, and w is a pattern of

recurrent connectivity that excites locally and inhibits

globally across the field:

wðx� x0Þ ¼ �winhib þ wexc exp �ðx� x0Þ2

2rkernel

 !
ð4Þ

(illustrated in Fig. 1, right). Similar patterns of neural

connectivity are common in the brain (Jancke et al. 1999),

often in the form illustrated in Fig. 1, middle (see chap-

ter 7.5 of Dayan and Abbott (2001) for review). Neural

fluctuations are modelled by additive Gaussian white noise,

nðx; tÞ, of strength, q.
The recurrent neural interaction stabilizes supra-thresh-

old peaks of activation, the elementary forms of localist

representations central to DFT (Fig. 2a). Such peaks may

co-exist bi-stably with sub-threshold hills of activation for

weak localized input patterns. A sub-threshold activation

pattern loses stability for sufficiently strong localized input

in the detection instability, leading to a switch to the supra-

threshold peak of activation. Once such a peak has been

created, it persists even when the inducing input is weak-

ened, a form of self-stabilization of the detection decision.

The peak decays only when localized input becomes so

weak that local excitatory interaction is no longer sufficient

to stabilize it in the reverse detection instability. For strong

excitatory interaction or high levels of background acti-

vation (due to an elevated resting level or a homogeneous

boost input, for instance), this reverse instability may not

be reached even when localized input is removed entirely,

leading to sustained activation, a standard model of

working memory.

Inhibitory recurrent connectivity enables selection in

which only one localized peak of supra-threshold activa-

tion is generated in response to input with multiple local

maxima (Fig. 2b, c). Selection may be biased by input

Fig. 1 The sigmoid threshold function, rðuÞ, and two typical forms of the interaction kernel, wðx� x0Þ

Fig. 2 Detection and selection decisions enabled by recurrent

connectivity (interaction) within neural dynamic fields. a Localized

input (green) may induce a sub-threshold hill of activation (orange) or

a supra-threshold peak of activation (blue) depending on the prior

state of the field. b In response to bi-modal input (green), a single

supra-threshold activation peak (blue) on the left is generated due to

global inhibition. c Same as center panel, but the right-most location

is selected, potentially due to prior activation or noise. (Color

figure online)
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strength, but also the prior activation state, leading to the

stabilization of selection decisions.

Dimensions

What are these dimensions, x, in terms of which localized

representations can be organized? Ultimately, the dimen-

sions originate in the forward connectivity from a sensory

surface to a neural field, or from a neural field to the motor

system. Such forward projections enable feature extraction

and movement parameter encoding, respectively. Neurons

sampling the fields are effectively ‘‘tuned to’’ a set of

feature dimensions that they ‘‘encode’’. It is this forward

connectivity that enables the sensory-motor grounding of

cognitive processes.

DFTmakes two specific postulates about the dimensions of

these feature/parameter spaces. First, the number of dimen-

sions represented by a given population is strongly limited,

typically three to five.This comes froma scaling argument:As

the number of feature dimensions increases, the number of

neurons needed to sample a feature space increases combi-

natorially. Second, two dimensions are shared amongmanyof

thefields: a two-dimensional representationofvisual space for

perceptual representations or a corresponding representation

of the hand’s movement direction in space for motor repre-

sentations. This enables binding through space in which

localized activation in one low-dimensional field can be

linked to localized activation in another low-dimensional field

by exciting a hyper-cylinder localized within the shared spa-

tial dimensions and extending along the other dimensions

(Schneegans et al. 2016, see Sect. 2.3).

How may representations of concepts or categories fit

into this framework? Categorical representations may not

carry along any feature dimensions, but may still be

embedded in a space within which selection takes place. In

DFT, neural nodes provide the substrate for such

categorical representations. These are neural activation

variables, u(t), whose dynamics

s _uðtÞ¼�uðtÞþhþsðtÞþwsegðuðtÞÞ�competitionþwnnðtÞ
ð5Þ

is analogous to that of fields. Excitatory interaction takes

the form of self-excitation with strength wse. This enables

the detection and reverse detection instabilities, endowing

nodes with the fundamental bistability between an on-state

(output close to 1) and off-state (output close to 0).

Selection results from reciprocal inhibitory coupling to

other neural nodes.

Architectures

The output of a field or node may provide input to other

fields or nodes, and receive input from those other fields or

nodes (Fig. 3). Such coupling can bring about different

kinds of mappings. In one-to-one coupling (a), the

dimensions and their meaning are preserved. Contraction

coupling (c) reduces the dimensionality by summing over

one or more dimensions. Expansion coupling (d, e)

increases the dimensionality by providing input that is

constant along the extra dimensions (‘‘ridge’’ or ‘‘slice’’

input). In this way, nodes may provide homogeneous

boosts across all dimensions of a field, in effect controlling

the resting level of the field. Finally, patterned coupling

(b) from a node to a field may pre-activate particular

regions in the field.

Neural dynamic architectures are built by coupling fields

and nodes. The capacity of a field to make detection and

selections decisions, or to build working memories, is

realized by its dynamic regime, which attractors and which

instabilities may occur as input is varied. As long as it is

sufficiently weak, coupling preserves the dynamic regime

of a field, a key property of DFT. The different forms of

Fig. 3 Different forms of coupling between neural fields
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coupling illustrated above also preserve the meaning of the

field dimensions.

Sequences

Central to DFT is the postulate that functionally significant

states are attractors of the neural dynamics. This raises the

question of how the sequences of states may emerge that

underlie sequential cognitive processing or motor acts

(Sandamirskaya and Schöner 2010; Sandamirskaya 2016;

Tekülve et al. 2019). DFT addresses this question in two

steps. First, to terminate any current activation state, the

corresponding attractor must be made unstable, ultimately

leading to the decay of the underlying activation peak in a

reverse detection instability. Second, as the current acti-

vation state decays, the system may move to a new acti-

vation state that may have already existed as an attractor

(through multistability) or that becomes stable as inhibition

from the current activation state is removed.

The first element is organized in DFT through the con-

cept of the condition of satisfaction, illustrated in Fig. 4.

Inspired by the notion of intentionality in the philosophy of

mind (Searle 1983), an intentional state is a neural acti-

vation pattern that drives whatever down-stream motor or

cognitive acts are needed to achieve an intended outcome.

This outcome is the condition of satisfaction, represented in

a neural field which receives pre-activating input from the

intentional state that predicts the outcome as well as

internal or sensory input that reflects the outcome. When

the field detects a match of predicted and observed out-

come, it builds a peak in a detection instability. Its inhi-

bitory projection onto the intentional field pushes that field

through the reverse detection instability, deactivating the

intentional state. As a result, the pre-activating input to the

condition of satisfaction field falls away, inducing another

reverse detection instability. In effect, the neural repre-

sentations of the intentional state and its condition of sat-

isfaction are reset.

A new activation peak may now arise in the neural

architecture. Which peak arises where in the architecture

may depend on different factors including inputs and

working memories. This may entail selection from a

number of possible local inputs (as in the gradient based

approach to serial order; Henson and Burgess (1997)).

Selection may be biased by directional coupling that

implements what is known as ‘‘chaining’’ or ‘‘positional

encoding’’ of serial order (Henson and Burgess 1997).

Coordinate transforms

Coordinate transforms play an important role across many

sensory-motor and cognitive tasks. The transformation

from retinal to body-centered coordinates, for instance, lies

at the core of visual cognition (for instance, Schneegans

Fig. 4 The coupling structure of

the condition of satisfaction on

which sequence generation is

based in DFT. Arrows mark

excitatory projections, the filled

circle marks an inhibitory

projection

Fig. 5 Steerable neural mapping to transform target objects into a

coordinate frame centered on a reference object. The target field

(upper left) contains peaks at the locations of two target objects (light

blue). The reference field (upper right) contains a peak at the location

of a reference object (green). The transformation (or gain) field is a

joint representation of these two dimension. Either field provides sub-

threshold ridge input to the transformation field. Peaks form where

these ridges overlap. Projection from the transformation field along

the diagonal creates a representation of the target objects centered on

the location of the reference object (relational field). (Color

figure online)
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2016). In neural networks, coordinate transforms amount to

steerable neural mappings, projections from the original to

the transformed representation that are steered by a

parameter such as the direction of gaze relative to the body

(Schneegans and Schöner 2012). Such mappings may be

neurally implemented in what is known as gain fields

(Pouget and Sejnowski 1997), essentially joint representa-

tions of the original and the steering dimension (Fig. 5).

Peaks in the gain field form where input from the two

sources overlaps. Any function of the two inputs to the gain

field can then be computed by projecting out from the gain

field to a transformed field using an appropriate pattern of

connectivity. In the Figure, summing along the diagonal

achieves the transformation to the desired coordinate

frame.

Grounding nested phrases

The representation and perceptual grounding of nested

relational phrases, considered by some the backbone of

grounded cognition (Barsalou 2008), is used in an exem-

plary case study to show how DFT may approach the

cognitive competences idealized in the notions of produc-

tivity, compositionality, and systematicity. Building on

earlier work (Lipinski et al. 2009, 2012; Richter et al.

2014, 2017; Kounatidou et al. 2018; Sabinasz et al. 2020;

Richter et al. 2021; Sabinasz and Schöner 2022a, b), we

first show how property and object concepts can be com-

bined, then how spatial and movement relations can be

grounded, and finally how conceptual structures can be

represented and grounded.

Perceptually grounding combined property
and object concepts

The grounding of simple property concepts, e.g. the color

concept ‘‘red’’, makes use of neural nodes that have bi-

directional connections to a feature attention field that are

patterned as a Gaussian centered on a prototypical feature

value (Fig. 6). Thus, a feature concept may become acti-

vated by a peak in the feature attention field and, con-

versely, the activated feature concept may induce a peak in

the feature attention field.

Object concepts may directly project bi-directionally

onto multiple such feature fields (Fig. 7) in a highly

simplified neural dynamic implementation of prototype-

based basic level concepts. This is sufficient for the per-

ceptual grounding of object concepts, while the converse

task of classifying an attended object would be expected to

make use of more complex features as described in deep

neural networks (Grieben and Schöner 2022).

The perceptual grounding of property or object concepts

consists of visually attending to an object in the visual

array that matches the prototypical feature description.

This makes use of feature/space perception fields, that each

combine a representation of visual space with the repre-

sentation of one or more feature dimensions (Fig. 8). Thus,

supra-threshold activation localized at (x, y, v) represents

an object at the location, (x, y), within the visual array that

has feature value, v. Sharing the spatial dimensions across

all feature/space fields, enables binding the different object

properties across the different fields through space (Treis-

man and Gelade 1980; Schneegans et al. 2016).

Selective attention to an object is represented by a

supra-threshold activation peak in a target field that is

driven from feature/space attention fields (Fig. 9). This

selection results from visual search cued by a feature

attention field for each feature dimension which is homo-

geneous across space and localized along the feature

dimension (‘‘slices’’ of input). The feature cues derive from

activated property and object concept nodes. Summing

along each feature dimension, these feature/space attention

fields project onto a two-dimensional spatial attention field.

Inhibitory inputs in proportion to the number of repre-

sented feature values (not shown) ensure that the spatial

attention field only forms peaks on locations at which all

cued feature dimensions match. The target field selects a

single location among these, the outcome of the perceptual

grounding process. A fuller account of visual search

addresses how distractor objects are sequentially attended

and discarded (Grieben et al. 2020), a complication

neglected here.

Perceptual grounding of spatial and movement
relations

Spatial relation concepts are represented in DFT by neural

nodes that are reciprocally coupled to a spatial relation

field through patterned connectivity that encodes the spatial

relation (Fig. 10). The spatial relation field represents tar-

get objects in a coordinate frame that is centered on

Fig. 6 Color concepts are represented by neural nodes that are bi-directionally coupled to a color attention field. (Color figure online)
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reference objects through a coordinate transform. That field

forms a peak if the relative spatial location of the target

matches the active spatial relation concept. Movement

relations are represented similarly (Fig. 11) based on a

coordinate transform that rotates the relational field to align

it to the movement direction of targets (Richter et al.

2021).

Relational concepts can also be used to directly guide

visual search for target objects in the spatial attention field

given a reference object and an activated relational concept

(Sabinasz and Schöner (2022b); see also Grieben and

Schöner (2022) for a similar mechanism in the context of

guiding visual search based on relationships to anchor

objects). This is based on a relation guidance field (Fig. 12)

in which a spatial pattern encoding the prototype of a

relation is coordinate transformed into a frame centered in

a reference object and then projected onto the spatial

attention field, effectively biasing attention towards objects

that stand in the given spatial relation to the given refer-

ence object.

Conceptual structure

Given neural mechanisms for grounding object or property

concepts and simple relations between objects (e.g., ‘‘the

tree is to the right of the house’’ or ‘‘the ball approaches the

tree’’), how would DFT combine multiple such conceptual

units while expressing their interrelations, e.g., ‘‘the blue

ball approaches the big tree which is to the left of the lake

and to the right of the house’’? We adopt the position that

conceptual structure captures the way concepts are com-

bined in a way that expresses their interrelations

Fig. 7 Neural dynamic representations of property and object concepts are linked to feature fields through connectivity patterns that encode the

perceptual meanings of the concepts. Object concepts may project to multiple feature fields

Fig. 8 The visual scene (left) is represented by a set of feature/space perception fields. Localized activation peaks/blobs represent objects through

their features/attributes. Adapted from Sabinasz and Schöner (2022b)
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(Jackendoff 2002). In the example of Fig. 13, the concepts

BALL and BLUE are bound to the same object, representing

the combined concept BLUE BALL. The concepts TREE and BIG

are similarly bound to the same object, and that object

stands in two spatial relationships to two further objects.

The two bound objects BLUE BALL and BIG TREE are com-

bined with the APPROACH movement concept.

What would be a possible neural representation of such

conceptual structure in the language of DFT? Our

hypothesis is that the conceptual structure is represented

neurally as a working memory as the outcome of language

processing (Fig. 14). Here we propose an account for this

neural representation, but do not for the language pro-

cessing that brings about that representation. Given the

neural representation of conceptual structure, we then

address how it may guide the perceptual grounding process

of the objects in accordance with how they are arranged in

the structure (see below).

A neural account of conceptual structure must address

Jackendoff’s challenges (Jackendoff 2002; Sabinasz and

Schöner 2022b). The problem of 2 exemplified by the

phrase ‘‘the small tree to the left of the big tree’’ requires

that separate neural activation patterns represent the two

trees. The massiveness of the binding problem exemplified

by the phrase ‘‘the tree to the left of the lake which is to the

left of the house’’ requires that a neural activation pattern

encodes a single lake that is both the reference object of

one relationship (‘‘the tree to the left of the lake’’) and the

target object of another relationship (‘‘the lake to the left of

the house’’). This requires flexibly binding an object to two

different relationships in different relational roles.

Figure 15 illustrates the key idea of how such flexible

interrelationships may be represented in DFT (Sabinasz

and Schöner 2022b). Each concept node describing an

object (object concept or property concept) is assumed to

have an index dimension, so that it consists of a small

number of copies (here four; see the object/object concept

field).1 Similarly, each relation or action concept node

comes in four copies, spanned by a relation or action index

(see the relationship/relation concept field and the action/

action concept field). These indices make it possible to

express the interrelation between object, property and

Fig. 9 Feature/space attention fields receive input from the feature/

space perception fields. Peaks in feature attention fields act as feature

cues that boost activation in matching layers of the feature/space

attention fields. Projection onto a spatial attention field induces peaks

at locations where all features match. The target field selects a single

target that matches the cued feature description. Adapted from

Sabinasz and Schöner (2022b)

Fig. 10 Spatial relation concept nodes (bottom left) are reciprocally

coupled to a relation field through patterned connectivity that is

illustrated using a color code for coupling strength. The relation field

receives input from a spatial field representing target objects

transformed through a gain field (diamond) into a coordinate frame

centered on reference objects. Input to the target and reference field

ultimately comes from the visual array (top) filtered by the spatial

attention field

1 To make the language uniform, we talk about index dimensions and

fields although the index dimension is sampled discretely.
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relation/action concepts as mentioned in a phrase. The

same index is activated when the same object or relation is

referenced. Different indices are activated when different

objects or relations are referenced, even if these objects or

relations are described using the same word. We assume

this index resolution of the interrelations between objects

and relations/actions comes from language processing, but

do not account for exactly how that happens. Ultimately,

the sequential processing of different object descriptions

and relation/action descriptions would recruit new indices

as needed (possibly using neural processes underlying

sequence generation, see Sandamirskaya and Schöner

(2010)). In effect, the indices enable flexible binding

among concept nodes.

In Fig. 15, the object/object concept field binds ‘‘ball’’ to

object index ‘‘1’’, ‘‘tree’’ to object index ‘‘2’’, and so on.

The object/property concept field binds ‘‘blue’’ to object

index ‘‘1’’, and ‘‘big’’ to object index ‘‘2’’. Thus, ‘‘ball’’

and ‘‘blue’’ are bound to one object index, and ‘‘tree’’ and

‘‘big’’ to another object index. The relationship/relation

concept field binds ‘‘L’’ (for ‘‘left’’) to relation index ‘‘1’’,

and ‘‘R’’ (for ‘‘right’’) to relation index ‘‘2’’. Roles of

objects in relationships are then encoded entirely through

the two types of indices in the target/relationship and

reference/relationship fields. These encode, for example,

that object 2 is in the target role of relationships 1 and 2

(encoding that the big tree is to the left of the lake and to

the right of the house). Actions, their agents and patients,

are treated analogously. For example, object 2 is the patient

of action 1, encoding that the blue ball approaches object 2.

This set of neural fields makes it possible to represent the

different situations of Jackendoff’s problem of 2 and

massive binding problem correctly. Note that the overall

activation pattern in Fig. 15 encodes the conceptual

structure from Fig. 13, but the same set of fields could

encode any other conceptual structure as well.

Perceptually grounding conceptual structure

Perceptually grounding a nested phrase represented in the

conceptual structure is subject to the constraint that only

one object can be attended at a time, and only one rela-

tionship or action description can be processed at a time.

This constraint is inherent in the DFT approach to

grounding (Schneegans et al. 2016), and consistent with

empirical evidence (Logan 1994; Franconeri et al. 2012).

The neural architecture illustrated in Fig. 16 provides for

the neural substrate for such one-at-a-time processing: A

selective object production field (a) defined over the object

index dimension, a selective relationship production field

(b) defined over the relationship index dimension, and a

selective action production field (c) defined over the action

index dimension. Entities of a given type compete for

selection, controlled in each case by an inhibition-of-return

(IoR) field.

To illustrate how a selected subset of objects/relations is

projected out to the grounding system, we go through a few

cases. First, consider the case when an object index was

selected in the object production field (part (a) of Fig. 16).

The concepts bound to that object index will project onto

the scene representation to enable perceptual grounding.

The object concept is read out via the object/object concept

readout field (e), which receives subthreshold input from

the object/object concept field and is boosted by ridge input

at the selected index, effectively forming a peak where this

Fig. 11 Movement relation concepts (left) are reciprocally coupled to

a rotated relation field through patterned connectivity that is

illustrated using a color code for coupling strength. The relation field

is rotated (diamond) to align with the movement direction of target

objects (rotation field). Adapted from Richter et al. (2021)

Fig. 12 The spatial relation field is transformed (diamond) into a

coordinate frame centered in the reference object and projects onto

the spatial attention field
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Fig. 13 Exemplary conceptual structure for the sentence ‘‘the blue

ball approaches the big tree, which is to the left of the lake and to the

right of the house’’. It encodes that there is an action characterized by

the APPROACH concept, being performed by an agent on a patient,

where the agent is an object characterized by the BALL concept that

has a property characterized by the BLUE concept, and the patient is an

object characterized by the TREE concept that has a property

characterized by the BIG concept, and stands in a relationship

characterized by the LEFT OF concept to an object characterized by

the LAKE concept, and in a relationship characterized by the RIGHT OF

concept to an object characterized by the HOUSE concept (this is

slightly simplified from Jackendoff’s formalism)

Fig. 14 The neural representation of conceptual structure (center) is fed by language processing (left) not accounted for here, and guides the

grounding (right)

Fig. 15 Neural field representation of the conceptual structure from Fig. 13. See text for details
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ridge overlaps with the concept. This activates the current

concept in the object concept readout field (d). An analo-

gous mechanism enables reading out property concepts.

The relationships that contain the selected object as a

target are read out through the target/relationship readout

field (f) which receives input from the target/relationship

Fig. 16 Interface between the

conceptual structure and the

grounding system to ‘‘read out’’

the currently selected object and

relations/actions. Adapted from

Sabinasz and Schöner (2022b)
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field of the conceptual structure (not shown), and ridge

input from the object production field (a). It projects onto

the relationship production field (b), causing that field to

select a relationship that contains the selected object in its

target role. This enables that other information (relational

concept and reference object index) bound to that rela-

tionship is also being read out through an analogous

mechanism that culminates in a relational concept readout

field and a reference readout field. When a relationship has

been successfully grounded, the peak in the relationship

field gets destabilized by the grounding system, enabling

the selection of another relationship that has the currently

selected object in its target role. When no such relationship

exists anymore, the peak in the object production field gets

destabilized, enabling the selection of a new object.

Actions are handled analogously (c).

Once the target of an object description from the con-

ceptual structure (characterized by a set of property con-

cepts, object concepts, or relations) has been identified, its

location must be memorized for future use during the

perceptual grounding of the conceptual structure. This

happens in a working memory field defined over the two

spatial dimensions and the discrete object index dimension

(Fig. 17). A peak in this index map at some location

(x, y, o) represents that the object with index o has been

found at location (x, y). Perceptual grounding occurs as a

sequence of mental processing steps (to be explained

below) lead to sequential entry of objects into this map. For

example, while grounding the conceptual structure from

Fig. 13, the map incorporates the locations of objects 3 and

4 with which object 2 stands in relations (Fig. 18a, b). This

enables subsequent grounding of object 2.

An entry into the index map field occurs by combining

the spatial input from the target field that represents the

current target object with the currently activated object

index (left column of Fig. 17). (The commit field plays a

role in controlling the process.) To make use of an object

already grounded in an earlier step, it is selected in the

index map readout field based on input from the reference

readout field.

Complete neural dynamic architecture

Only two components of the complete neural dynamic

architecture (Fig. 19) for perceptually grounding nested

phrases remain to be specified.2

First, feature input from the visual array to the archi-

tecture must be provided (bottom right in the Figure). This

makes use of standard hierarchical forward neural networks

for feature extraction and a neural mechanism for move-

ment detection (the ‘‘counter-change’’ model, Berger et al.

(2012)).

Second, the different components of the architecture

need to be coordinated to autonomously generate the

sequence of cognitive processing steps that lead to the

grounding of the phrase (bottom left in the Figure). When

an object index is selected for search in the object pro-

duction field, four things have to happen in sequence: First,

a candidate for the object has to be selected in the target

field. Second, the relationships have to be checked. If one

of the relationships does not match, the first step has to be

repeated. An inhibition-of-return field biases selection to a

different target candidate than before. Third, the object that

matches all of the relationships has to be committed to the

index map. Fourth, a new object index has to be selected in

the object production field, and the first step starts again.

These four behaviors are implemented neurally making

use of the DFT concepts for sequence generation. The se-

lect target candidate process, the check relations process,

the commit process, and the proceed to next target process

are each controlled through two neural nodes. The ‘‘in-

tention node’’ represents that a process is active. Its con-

nections to the rest of the architecture determine how the

process achieves its predicted outcome. The ‘‘condition-of-

satisfaction (CoS) node’’ represents that the process has

successfully terminated. Connections from the architecture

to the node determine the conditions under which this node

becomes active. The serial organization of the processes is

Fig. 17 An index map may serve as a working memory of all the

identified objects

2 Relevant parameters of selected fields and nodes are contained in

Table 1. The full set of parameters of the model is available as a

human-readable JSON file at https://osf.io/s25ta. That file can be

imported into the software cedar (Lomp et al. 2013) for simulating the

model and reproducing simulation results.
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imposed through precondition nodes, which enable the

activation of the next step only when the previous step has

successfully terminated. More details about the individual

processes are laid out in Sabinasz and Schöner (2022b).

Figure 20 shows a time course of activation through

snapshots at discrete moments in time as the architecture

grounds the sentence ‘‘the blue ball approaches the big tree,

which is to the left of the lake and to the right of the house’’

in the scene shown in Fig. 18. Prior to the simulation, the

conceptual structure fields have already been filled, leading

to the activation pattern depicted in Fig. 15. Refer back to

Fig. 13 for looking up the object indices and relationship

indices assigned in this example phrase.

Grounding of object 3 (the lake). At time t2, the object

production field has selected object 3, reflecting a decision

to search for that object (the lake). The readout mechanism

has resulted in a peak on the LAKE concept in the object

concept readout field. By time t3, via the search mecha-

nism, the target field has formed a peak on the spatial

location of the lake in the target field. That peak reflects

that a candidate for object index 3 is present at that loca-

tion. It causes the CoS node of the select target candidate

Fig. 18 Grounding the phrase

‘‘the big tree which is to the left

of the lake and to the right of the

house’’ requires three grounding

processes, where the possibility

to ground the third (c) depends
on having grounded the first

(a) and the second (b) before,
and having remembered their

locations in a working memory

Fig. 19 The model architecture for sentence verification. Adapted from Sabinasz and Schöner (2022b)
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process to become active at t3. At t4, the commit process is

active and has boosted the index map field, which in effect

has formed a peak at the location of the target candidate

and at index 3. That peak serves as a working memory of

the location identified as the target of the object description

with index 3. It activates the CoS node of the commit

process. At t5, the proceed to next target process is active

and has provided transient inhibitory input to the object

production field, destabilizing the peak. At t6, a new peak

has formed on object index 4, and the CoS node of the

proceed to next target process has become active.

Grounding of object 4 (the house). Analogous mecha-

nisms as before lead the system to ground object 4 (the

house) and store it in the index map at t7.

Grounding of object 2 (the big tree to the left of 3 and to

the right of 4). By t8, object 2 has been selected for

grounding. The object concept readout field has formed a

peak on the TREE concept, which has highlighted the loca-

tions of trees in the spatial attention field. In addition, the

property concept readout field has formed a peak on the BIG

concept, which has highlighted the locations of big objects.

In effect, the spatial attention field has high activation on

big trees.

At the same time, the relationship production field has

formed a peak on relationship 2. This has caused the ref-

erence readout field to form a peak on object index 4,

which has provided ridge input into the index map readout

field (not plotted), thereby causing a peak to form on the

location of object 4, which has been transferred into the

reference field. The peak in the relationship production

field has also caused the relation concept readout field to

form a peak on RIGHT OF, which has caused the spatial

relation field to form a pattern corresponding to the RIGHT

OF concept. That pattern has been transformed into a

coordinate system centered on the reference object, effec-

tively highlighting the area to the right of the reference

object in the spatial attention field.

At t8 a candidate for such an object is selected in the

target field. Subsequently, the CoS node of the select target

candidate process is activated, followed by the activation

of the check relations process. At t9, the already active

relationship 2 is verified using the relational match detec-

tion mechanism, which compares the relative location of

the target candidate in a coordinate system centered on the

reference object to the activated spatial relation using the

spatial relation match field. The formation of a peak in that

field signals a match, which effectively results in the

destabilization of the peak in the relationship production

field and the formation of a new peak on relationship 1 by

t10. Analogous mechanisms as before lead the relational

match detection mechanism to check whether the target

candidate location is to the left of reference object 3. Since

this is the case, the spatial relation match field again forms

a peak, which results in the destabilization of the peak in

the relationship production field. Since there are no further

relationships that contain the currently active target object

with index 2 in their target role, the relationship production

field does not form a peak after t10, which results in the

activation of the CoS node of the check relations process.

At t11, the location of the target candidate is thus com-

mitted to the index map.

Verifying the sentence (the blue ball approaches 2).

At t12, analogous mechanisms as before have caused the

reference field to form a peak on the location of object 2,

and have caused the selection of a target candidate for the

blue ball. Subsequently, the relational match detection

mechanism may verify whether the APPROACH relation holds

between the target candidate and object 2 (as in Fig. 11).

The datasets generated during and/or analysed during

the current study are not publicly available but are avail-

able from the corresponding authors on reasonable request.

Discussion

We have outlined a neural theory of higher cognition that is

based on a small set of key principles: (1) Cognition is

based on localist representations that are endowed with

dynamic stability by recurrent connectivity and that are

grounded through their feed-forward connectivity from

sensory and to motor surfaces. (2) Sequences of neural

processing steps are generated autonomously through

dynamic instabilities of the localist representations. (3) The

neural operators implementing relations and actions can be

generalized across space through coordinate transforms

realized by steerable neural maps. (4) By binding the

neural nodes through shared index dimensions, interde-

pencies among concepts within nested relational and action

phrases can be neurally represented.

One might first think that localist representations do not

scale well when the number and complexity of feature

dimensions are increased (LeCun et al. 2015). Binding

multiple localist representations through a shared dimen-

sion dramatically improves this scaling behavior. The

capacity to dynamically control the creation of activation

peaks makes this form of binding effective as peaks can be

induced by input that is spatially homogeneous along some

of the encoded dimensions. This is also how dynamic

neural fields enable steerable neural maps: Ridges or slices

bFig. 20 Activation snapshots of relevant fields as the architecture

grounds the example phrase
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of input effectively select one out of a continuum of pos-

sible mappings from one space to another. The coordinate

transforms that are thus implemented endow neural net-

works with the power of function calls in that a neural

circuit that implements a particular cognitive operation can

be brought to bear on remote input.

Do these key principles enable a neural dynamic account

for productivity, systematicity, and compositionality? In

the exemplary case study we provided, productivity means

that new phrases with new combinations of concepts and

new dependencies among the concepts can be neurally

represented and perceptually grounded. The binding index

dimension, shared across all concepts, makes this possible.

At the same time, that dimension points to inherent limits

that might reflect actual limitations of human cognition.

The entire conceptual structure operates as a working

memory subject to capacity limits (Simmering and Perone

2012). The model set the depth of the index dimension to

four to align with work on visual working memory (Luck

and Vogel 1997), but realistic capacities may be larger,

although not by much. Because new contents can be linked

into the conceptual structure as grounding (or thinking)

unfolds, this does not limit productivity per se, but it limits

the depth of dependencies among phrases. And that limit

may be psychophysically real.

The conceptual structure also imposes systematicity: the

way in which dependencies among elements of sequences

of phrases are organized is fixed by the dynamical structure

of the representation. We made a proposal for the limited

scenario we treated here. So the claim is not that this is the

definite set of dynamic rules that govern conceptual

structure. But the structure implies rules and that is the

source of systematicity. Interestingly, the constraints on

how the conceptual structure can be organized largely

come from the requirements of grounding phrases. So in a

certain sense, we could think of systematicity as arising

ultimately from the sensory-motor grounding of cognition.

Finally, the capacity to express relationships among ele-

ments of phrases and across phrases provides some form of

compositionality: Grounding an element of a phrase may

be based on the outcome of grounding another element of a

phrase. So overall, a phrase is grounded by grounding its

components in accordance with how these are arranged.

Comparison to related theoretical approaches

Identifying the neural basis of higher cognition is a long-

standing and broad challenge, with room for considerable

debate, so we must be selective in discussing the relation of

our proposal to the literature. We focus on neural process

accounts and organize the discussion around the four key

principles summarized above.

The LISA architecture (Hummel and Holyoak 2003;

Doumas and Hummel 2012) is perhaps conceptually clos-

est to our approach in that it too invokes localist repre-

sentations of conceptual structure and of the associated

semantic features (see also Doumas et al. (2008, 2022)).

Structure is represented through a hierarchy of neural

populations. At one layer of the hierarchy, neural popula-

tions encode symbols like BILL, and at a lower level of the

hierarchy symbols like MALE, ADULT, or HUMAN. Symbols

may also include roles like LOVER defined in terms of

symbols like HAS-EMOTION or EMOTION-POSITIVE. The con-

nections between symbols at different levels encode the

semantics of the symbols. Role-filler bindings like

BILL?LOVER are represented by neural populations that are

connected to the symbols for the role and the filler, BILL and

LOVER. Finally, propositions like ‘‘Bill loves Mary’’ are

represented by a neural population that has connections

with the populations for role-filler bindings BILL?LOVER and

MARY?BELOVED. Nested propositions like ‘‘Tom knows that

Bill loves Mary’’ are encoded by neural populations with

connections to populations for component role-filler bind-

ings and propositions, and so on.

The notion of ‘‘binding’’ in LISA and related models

differs from the notion as used in DFT. In DFT, we would

speak about a joint representation of the role and the filler,

so that a neuron would be tuned to both BILL and LOVER.

This is analogous to how activation within a feature/space

field is tuned to both the feature and the spatial dimensions.

The DFT notion of binding through space or index refers,

instead, to a unique binding dimension shared across all

neurons. For instance, if small neuronal populations tuned

to BILL or to LOVER were also tuned to an index dimension,

the binding of BILL to LOVER would be represented by

activation for both populations being localized in the same

place along the index dimension. This difference in how

binding is achieved has important implications for how the

representations scale with the number of concepts and

combinations. In DFT, all ‘‘bindable’’ concept neurons

must have that added dimension, which multiplies the size

of the neural population by a constant factor (four in the

model presented here). This enables representation of

possible combinations. In LISA and related models, the

number of units scales combinatorially with all possible

bindings. As a consequence, the neural machinery that

represents conceptual structure in DFT involves only a

small set of populations tuned entirely to index dimensions.

In LISA and related models, that machinery involves

connections to any possible concept node, implying much
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more specific connectivity throughout the population of

concept nodes (a criticism articulated earlier in Eliasmith

(2013), Chapter 9).

A second point of contrast to LISA is that the actual

sequence of processing steps within conceptual represen-

tations is not modelled neurally, but controlled by an

algorithm. In that sense, LISA is not neurally autonomous

as a process account. Finally, perceptual grounding in the

sense of linking the conceptual representation to actual

sensory inputs and performing attentional selection is not

part of the LISA framework. The particular way DFT uses

coordinate transforms to generalize neural circuitry

required to perceptually ground relational and movement

concepts is not, therefore, part of the LISA framework.

Vector-symbolic architectures (VSAs) (Smolensky

1990; Gayler 2023; Plate 1995; Levy and Gayler 2008)

form a second major class of neural approaches to higher

cognition. They are based on a quite different principle of

neural representation, that is, in a sense, orthogonal to the

assumptions of DFT. Here, vectors of neural activation

built from the activation levels of a large set of neurons are

the units of representation. Symbolic processing occurs by

combining such vectors through binding and bundling

operators that can take different mathematical forms

(Schlegel et al. 2022). The original proposal for the bind-

ing operation (Smolensky 1990) expanded the dimension-

ality of the representation with each binding step,

essentially by creating a joint representation of the com-

ponents (see above). A critical innovation was the com-

pression of these bound representations to the same

dimensionality as the component vectors (Plate 1995; Levy

and Gayler 2008). Together with a ‘‘clean-up’’ operation,

this made it possible to use the vectors as symbols that may

be combined to arbitrary depth. While the original for-

mulation could be applied to both localist and distributed

representations (Smolensky 1990), this more powerful

form of VSA requires high-dimensional distributed repre-

sentations in which vector-symbols are close to orthogonal

to each other.

VSAs of this kind do not address how neural activation

is autonomously generated and grounded. In fact, the

encoding and decoding of the vector-symbols is a separate

issue addressed outside the VSA proper, so perceptual

grounding in our sense is not included in this framework.

To autonomously generate neural activation vectors of the

required form would require connectivity specific to each

vector (for instance, of the Hopfield kind). That is not

compatible with the very notion of freely combining such

vectors. So the processing within VSAs of this classical

form is not neurally plausible nor autonomous.

The neural engineering framework (NEF; Eliasmith and

Anderson 2003) provides an alternative route toward neural

implementation of VSAs (Stewart and Eliasmith 2012;

Gosmann and Eliasmith 2019). In NEF, populations of

integrate-and-fire neurons are tuned to represent the vector

symbols. The vectors returned by binding or bundling

operations are represented by new populations. Any given

VSA can be mapped onto a network of such populations.

The connectivity in that network is determined to ensure

that the encoded vectors are ‘‘handed down’’ as symbolic

operations are performed. SPAUN is a collection of models

of higher cognition implemented in NEF (Eliasmith 2013;

Choo 2018) which could be viewed as alternatives to the

DFT framework laid out here.

NEF is theoretically neutral in that it could implement

any neural network model in the form of integrate and fire

neurons. Thus, NEF can also be used to implement DFT

models (Turon et al. 2020). NEF may, in principle, link to

sensory and motor representations (Eliasmith 2013). NEF/

SPAUN could thus provide autonomous neural processing

and a route toward perceptual grounding building on dis-

tributed representations. We argue, however, that NEF/

SPAUN is not compatible with neural principles. In par-

ticular, the connectivity required to preserve the vector

symbols violates the locality principle. This is because

connections anywhere within a NEF implementation of a

VSA must be ‘‘informed’’ by what vectors were originally

encoded in the architecture. In summary, the NEF variant

of VSAs remains orthogonal to the DFT based approach to

higher cognition.

In fact, the spirit of NEF and VSA may be closer to the

other fundamental approach toward a neural theory of

higher cognition through something like a neural Turing

machine. In that other perspective, neural mechanisms are

sought that implement the abstract computational functions

required to achieve symbol manipulation irrespective of

how the symbols are linked to the sensory-motor domains.

There is work along that line that literally uses the same

mathematics as DFT does (beim Graben et al. 2008). Here,

neural fields are used to neurally implement some of the

machinery of VSAs in order to represent and parse nested

phrases. Perceptual grounding and the linkage to the sen-

sory-motor domain are left as separate issues. Thus, the

dynamic properties of dynamic fields, including stability,

do not play the same role in this account as it does in DFT.

Sequence generation (beim Graben and Potthast 2014) is

not based on release from stability. More recent work has

impressively scaled the reach of these methods and begun

to include ideas about sensory-motor grounding (Carman-

tini et al. 2017). Perhaps a path of convergence between
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these two different routes toward a neural theory of higher

cognition is possible.

Scope of the DFT framework for higher cognition

The DFT framework connects many different processes

that may contribute to higher cognition. Many of the pro-

cessing components have been tested against both neuro-

physiological and psychophysical data across different

domains (as reviewed in Schöner and Spencer (2015)). For

the specific architecture presented here, visual search

(Grieben et al. 2020), and visuo-spatial working memory

(Johnson et al. 2014) are empirically grounded compo-

nents. The neural dynamics for the perceptual grounding of

relations has been directly compared to human rating data

earlier (Lipinski et al. 2012). Experimental signatures of

the postulated mechanisms of grounding were uncovered in

an experimental study using the mouse tracking paradigm

(Lins and Schöner 2019). The mental map at the core of the

neural machinery for grounding conceptual structure has

been used earlier (Kounatidou et al. 2018) to account for

experimental observations on spatial reasoning (Ragni and

Knauff 2013). Somewhat more indirect support for the

ordinal index system as a neural dimension comes from the

observation of neurons in prefrontal cortex that are tuned to

spatial location and ordinal rank (Xie et al. 2022).

Given the lack of quantitative psychophysics for the

grounding of nested phrases, assessment of the account

may be best framed in theoretical arguments. We illus-

trated that the model solves the ‘‘problem of 2’’ and the

‘‘massive binding problem’’ (Jackendoff 2002), for

instance, and provides an explanation for role-filler inde-

pendence in structured representations (Martin and Dou-

mas 2020). The mechanism for grounding nested phrases

was argued in an earlier variant of the model Sabinasz and

Schöner (2022b) to be qualitatively in agreement with

attentional studies during spoken language comprehension,

as well as grammaticality judgment and eye-tracking

studies during sentence parsing. The present model goes

beyond this earlier version by including additional gram-

matical constructions (adjective-noun combinations, sen-

tences with a verb) and extending the vocabulary that can

be grounded.

Scaling

Clearly, the neural architecture presented here only pro-

vides first steps toward higher cognition. How would the

neural dynamic principles of conceptual structure scale as

number and variety of concepts that must be linked into the

neural machinery increases? Perceptual grounding by itself

not a critical issue as the number of relevant feature

dimensions is expected to by quite limited (DiCarlo and

Cox 2007). The number of concepts, estimated in the

hundreds of thousands (Brysbaert et al. 2016), is not a

principle problem even for the postulated localist repre-

sentations as these estimated numbers of concepts do not

tax the neural resources of cortex. The capacity for com-

position boosts the reach of this form of representation.

The key potential bottleneck for this form of neural

theory is the requirement that neural projections, realized

by appropriate synaptic connectivity, would be extensive

enough to link concepts into the conceptual structure.

Recall that such connectivity must preserve the index

dimension. Clearly, hundreds of thousands of neural pop-

ulation cannot be consistently connected in this way. One

possibility is that multiple instances of a neural represen-

tation of conceptual structure exist, each linked only to a

subset of concept nodes. These might be organized in

semantic domains, with interesting implications for

expressing dependencies among semantically very remote

items. Perhaps analogical structure mapping may overcome

some such limitations (Hesse et al. 2022).

Learning

Although we have not addressed learning in this paper,

DFT models are open to learning from experience (Part 3

of Schöner and Spencer 2015). Because peaks are largely

generated by recurrent interaction, their instantiation in the

detection instability may, in effect, amplify small differ-

ences in input or resting state. This fact lowers the demands

on learning processes which only need to induce enough

bias to nudge selection toward particular patterns. This

mechanism has been used in DFT models to account for the

effects of prior experience (Thelen 2001; Perone and

Spencer 2013; Bhat et al. 2022).

Regular synaptic learning rules are a natural part of the

DFT framework (Sandamirskaya 2014) and can be used to

understand how the patterned connectivity arises that gives

nodes their sensory-motor meaning (Sandamirskaya and

Schöner 2010; Tekülve and Schöner 2020). When suc-

cessful, such accounts explain how learning unfolds

autonomously as a neural dynamic architecture generates

mental and behavioral states.

Appendix: Parameters

See Table 1.
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Table 1 Relevant parameters of

selected fields and nodes. The

local excitation column contains

the amplitude and the sigmas for

each dimension in brackets. The

lateral inhibition column

contains the same for mid-range

inhibition and global inhibition

behind the slash. Default s: 100,
default sigmoid b: 100

Conceptual structure

Field Resting level Local excitation Lateral inhibition

Obj. prod �8 7 –

Obj. prod. IoR �5 8 –

Obj./object conc. readout �5 1 –

Obj./property conc. readout �5 1 –

Object conc. readout �5 1 –

Prop. conc. readout �5 1 -

Relationship prod �6.5 1 –

Relationship prod. IoR �5 8 –

Reference readout �5 5 –

Rel. conc. readout �5 1 –

Target/rel. readout �12 1 –

Reference./rel. readout �10 1 –

Rel./rel. conc. readout �10 1 –

Act. prod �6.5 1 –

Act. prod. IoR �5 8 –

Patient readout �5 5 –

Act. conc. readout �5 1 –

Agent/act. readout �12 1 –

Patient/act. readout �10 1 –

Act./act. conc. readout �10 1 –

Act. conc. readout �5 1 –

Perception/Attention/relations

Color attention �0.4 1. (3.) 0./�0.01

Shape attention �0.4 1. (3.) 0./�0.01

Size attention �0.4 1. (3) 0./�0.01

Color/space attention �5 5. (2., 2., 1.) 0./0

Shape/space attention �5 8. (2., 2., 0.1) �8: (4.,4.,0.2)/0

Size/space attention �5 8. (2.,2., 0.1) �8: (4.,4.,0.2)/0

Spatial attention �5 1. (3.) 0./0

Target �6.3 30. (3.) 0./�0.14

Reference �5 1. (3.) 0./0

Spatial relation �5 1. (3., 3.) 0./0

Spatial relation match � 6.9 1. (3.,3.) 0./0

Index map �4 21.(2., 2., 0.) -18.(4.,4.,0.)/0

Index map readout �5 1. (3.,3.,0.) 0./0

Process organization

Select target cand. int �4.5 1 –

Select target cand. CoS -5 2 –

Check relations int �5 1 –

Check relations CoS �5 6 –

Check relation int �5 1 –

Check relation CoS �5 1 –

Proc. to next rel. int �5 12 –

Proc. to next rel. CoS �5 1 –

Commit int �5 1 –

Commit CoS �5 6 –

Proc. to next target int �5 12 –

Proc. to next target CoS �5 1 –
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Richter M, Lins J, Schöner G (2017) A neural dynamic model

generates descriptions of object-oriented actions. Top Cognit Sci

91:35–47
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Schneegans S, Spencer J, Schöner G (2016) Integrating ‘‘what’’ and

‘‘where’’: visual working memory for objects in a scene. In:
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