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Abstract
Continuous bump attractor networks (CANs) have been widely used in the past to explain the phenomenology of working

memory (WM) tasks in which continuous-valued information has to be maintained to guide future behavior. Standard CAN

models suffer from two major limitations: the stereotyped shape of the bump attractor does not reflect differences in the

representational quality of WM items and the recurrent connections within the network require a biologically unrealistic

level of fine tuning. We address both challenges in a two-dimensional (2D) network model formalized by two coupled

neural field equations of Amari type. It combines the lateral-inhibition-type connectivity of classical CANs with a locally

balanced excitatory and inhibitory feedback loop. We first use a radially symmetric connectivity to analyze the existence,

stability and bifurcation structure of 2D bumps representing the conjunctive WM of two input dimensions. To address the

quality of WM content, we show in model simulations that the bump amplitude reflects the temporal integration of bottom-

up and top-down evidence for a specific combination of input features. This includes the network capacity to transform a

stable subthreshold memory trace of a weak input into a high fidelity memory representation by an unspecific cue given

retrospectively during WM maintenance. To address the fine-tuning problem, we test numerically different perturbations of

the assumed radial symmetry of the connectivity function including random spatial fluctuations in the connection strength.

Different to the behavior of standard CAN models, the bump does not drift in representational space but remains stationary

at the input position.
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Guimarães, Portugal

2 Research Centre Algoritmi, University of Minho, Guimarães,
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Introduction

Working memory (WM) is defined as the capacity to

maintain and manipulate over shorter time spans informa-

tion that is no longer present to the senses. It is crucial for

many higher cognitive functions such as planning, decision

making or learning. Stimulus-tuned persistent neural pop-

ulation activity is widely believed to represent a neural

correlate of WM. It has been observed in many cortical

areas in tasks in which a transient stimulus has to be

memorized in order to perform a delayed behavioral

response (Zylberberg and Strowbridge 2017). A class of

neural circuits called continuous attractor networks (CAN,

(Amari 1977; Wu et al. 2008; Brody et al. 2003)) has been

widely used in the past to explain neural and behavioral

findings in WM tasks ((Johnson et al. 2009; Wimmer et al.

2014), for overviews and discussion see (Schöner and

Spencer 2016; Khona and Fiete 2021)), and to implement a

working memory capacity in artificial agents (e.g., robots,

(Erlhagen and Bicho 2006)). These circuits are character-

ized by recurrent excitatory and inhibitory connections

between neurons tuned to continuous input features such as

for instance the direction of heading during navigation or

the position of an object in space. The recurrent network

dynamics may settle in response to a transient input into a

self-sustained activity pattern localized in feature space,

also known as a ‘‘bump attractor’’. Moreover, since the

interaction strength between neurons depends on their

distance only, the network structure is translation invariant.

As a consequence, the network can hold a continuous

family of bumps, each representing the memory of a

specific input value. Particularly compelling neurophysio-

logical evidence in line with predictions of CAN models

has been found in prefrontal cortex (PFC) of monkey in a

WM task with movement direction as continuous dimen-

sion (Wimmer et al. 2014). Extrinsic noise in the direction

of the attractor manifold causes a drift of the bump away

from the initial state, with the characteristics of a diffusion

process (Kilpatrick and Ermentrout 2013; Camperi and

Wang 1998). Such a diffusing bump representation has

been indeed observed in PFC during the delay period of the

spatial WM task, and the read-out of the encoded move-

ment direction predicted subsequent behavioral errors.

While successful in describing the phenomenology of

many WM tasks, classical CAN models suffer from

essential limitations. Firstly, the attractor state has a

stereotyped shape exclusively determined by the recurrent

interactions within the network. It is thus not possible to

model the quality of WM representations which may

depend on stimulus features (e.g., strength or duration) or

may reflect an up-date to changing tasks demands

(Wildegger et al. 2016). Secondly, the biologically

unrealistic assumption of a perfect translational symmetry

of the synaptic weights renders the network mechanism of

memory formation structurally unstable. Any heterogeneity

in the synaptic weight distribution destroys the continuity

of the attractor, allowing only a few possible stationary

activity profiles to which stimulus-induced neural popula-

tion activity drifts (Zhang 1996; Itskov et al. 2011). Several

additional mechanisms have been proposed over the last

couple of years to gain the functionality of a neural inte-

grator and/or to approximately restore the continuous

attractor in the face of synaptic heterogeneity (e.g., bi-

stable neurons (Koulakov et al. 2002), short-term synaptic

facilitation (Itskov et al. 2011), homeostatic synaptic

scaling (Renart et al. 2003), negative derivative feedback

(Lim and Goldman 2013), for a review see (Barak and

Tsodyks 2014)).

In this paper, we address both challenges in a model

with a recurrent network architecture which combines a

lateral-inhibition-type connectivity of classical CANs with

locally balanced excitatory and inhibitory feedback loops.

In previous work, we have shown that this architecture in a

network representing a single dimension may stabilize a

continuum of bump amplitudes (Wojtak et al. 2021a). Here

we extend our investigation of a neural integrator capacity

to two spatial dimensions (2D), representing neural popu-

lations tuned to two stimulus axes (e.g., spatial position and

orientation, (Drucker et al. 2009)). We show how the

integration of bottom-up and top-down information shapes

WM representations. The model is formalized in the con-

tinuum limit of dynamic neural field (DNF) equations

(Amari 1977). This allows us to analyze the existence,

stability and bifurcation structure of radially symmetric 2D

bumps. We then investigate numerically different pertur-

bations of the radially symmetric connectivity function

including systematic directional biases and noise-induced

heterogeneities. The results show that the creation and

maintenance of input-induced bumps is robust against

these perturbations.

The paper is organized as follows. First, in section ‘‘The

two-dimensional CAN model’’, we introduce the two-field

model with two spatial dimensions, discuss the network

architecture and explain some assumption we make for the

modeling work. In section ‘‘Existence and stability of

radially symmetric bump solutions’’, we present the main

mathematical results about the existence, linear stability

and bifurcation structure of radially symmetric bump

solutions. In section ‘‘Input-induced bumps’’, we show

model simulations with transient external inputs. We dis-

cuss the impact of the results on modeling WM and

highlight the differences to standard CAN models. The

numerical investigation of the network with different per-

turbations of the radially symmetric weight function is

presented in section ‘‘Non-radially symmetric connectivity
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functions’’. We finish with a critical discussion of our

results in relation to other modeling approaches to WM and

highlight some topics for future work. Details of the

mathematical analysis are presented in three appendixes.

The two-dimensional CAN model

We study the extension of the CAN model presented in

(Wojtak et al. 2021a) to two spatial dimensions. It is for-

malized by two coupled field equations of Amari type

(Amari 1977) describing the activity (e.g., membrane

potential) of two neural populations, u and v, at time t at a

position r � X � R2:

su
ouðr; tÞ

ot
¼ �uðr; tÞ þ vðr; tÞ

þ
Z
X
wðjr� r0jÞf ðuðr0; tÞ � hÞdr0 þ Iðr; tÞ;

ð1aÞ

sv
ovðr; tÞ

ot
¼ �vðr; tÞ þ uðr; tÞ

�
Z
X
wðjr� r0jÞf ðuðr0; tÞ � hÞdr0:

ð1bÞ

The nonlinearity f denotes the firing rate function which is

assumed to be bounded and positive monotonic. A typical

choice is a sigmoid with threshold h and gain parameter g

f ðuÞ ¼ 1

1þ e�gðu�hÞ :

For g ! 1, f approximates the Heaviside function

HhðuÞ ¼ 1 for u[ h and HhðuÞ ¼ 0 otherwise. Following

Amari’s original analysis, we use Hh to show the existence

and linear stability of 2D bumps, and a sigmoid with high

gain for the numerical bifurcation analysis which requires

the nonlinearity to be differentiable. The qualitative model

behavior is robust to changes in the neural gain. The

radially symmetric Mexican hat coupling function wðrÞ is
given by the difference of two Gaussians

wmexðx; yÞ ¼ Aexe

�
x2

2r2exx
þ y2

2r2exy

 ! !

� Aine

�
x2

2r2inx
þ y2

2r2iny

 ! !

� winh

ð2Þ

where Aex [Ain [ 0 and r2inx ¼ r2iny [ r2exx ¼ r2exy and

winh [ 0. As shown by Amari (1977), it describes the

effective interactions of two separate excitatory and inhi-

bitory populations when inhibition is assumed to act

instantaneously. More recent experimental studies investi-

gating the neural circuits supporting spatial WM have

described the existence of diverse types of inhibitory

interneurons (Constantinidis and Wang 2004). They

receive input from nearby excitatory neurons and also

show spatially tuned persistent activity. Synaptic interac-

tions between a specific class of interneurons are thought to

implement a disinhibition mechanism which effectively

unmasks more excitatory input to excitatory neurons.

Interestingly, it has been shown that a dynamic field model

featuring a connectivity function with local recurrent

inhibition and surround excitation can support sustained,

spatially patterned solutions (Rubin and Troy 2004). In our

mechanistic two-field model, a neuron of the v-population

integrates the activity from the u-population with the

inverted Mexican hat profile and projects its activity back

locally. The linear feedback loop between the two popu-

lations guarantees a tight balance of local excitation and

inhibition. It supports the capacity of the network to sta-

bilize input-induced bumps with a continuum of ampli-

tudes (Wojtak et al. 2021a). Note that introducing

nonlinearities in the feedback loop (e.g., using a piecewise

linear transfer function) would introduce a saturation limit

for a range of possible bump amplitudes.

The time-dependent external input Iðr; tÞ to the u-pop-

ulation is modeled as one or more Gaussians centered at

positions rcj :

Iðr; tÞ ¼ ðHt0ðtÞ � HteðtÞÞ
Xn
j¼1

AIje
�ðr�rcj Þ

2=2r2Ij

� �
; ð3Þ

where AIj [ 0 controls the input strength and Ht0ðtÞ rep-

resents the Heaviside step function with threshold t0 � 0

controlling the start and the end of the input at times t0 and

te, respectively. In the following we use for the input

duration the notation dI ¼ te � t0.

Existence and stability of radially symmetric
bump solutions

We first derive the necessary conditions for the existence of

radially symmetric 2D bumps of the two field model (1)

and analyze their stability using Fourier methods and

properties of Bessel functions. Following the approach

presented in (Bressloff 2012; Bressloff and Coombes

2013), we consider a wizard hat weight distribution given

by a combination of modified Bessel functions of the

second kind

wðrÞ ¼ 2

3p
ðK0ðrÞ � K0ð2rÞ � AðK0ðr=rÞ

� K0ð2r=rÞÞÞ:
ð4Þ

An example of function (4) is depicted in Fig. 1.
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Existence of bumps

We study the model (1) with initial condition

uðr; 0Þ þ vðr; 0Þ ¼ K, where K[ 0 is a constant. We

consider a circularly symmetric bump of radius R such that

uðr; tÞ ¼ UðrÞ with UðRÞ ¼ h, UðrÞ[ h for r\R, UðrÞ\h
for r[R and UðrÞ ! 0 as r ! 1. A stationary solution

of system (1) then gives

UðrÞ ¼ VðrÞ þ
Z 2p

0

Z R

0

wð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos/

p
Þr0dr0d/;

ð5aÞ

VðrÞ ¼ UðrÞ �
Z 2p

0

Z R

0

wð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos/

p
Þr0dr0d/:

ð5bÞ

In Appendix A, we show that the double integral in (5) can

be calculated using the Fourier transforms and Bessel

function identities to obtain

UðrÞ ¼ VðrÞ þ 2pR
Z 1

0

bwðqÞJ0ðqrÞJ1ðqRÞdq; ð6aÞ

VðrÞ ¼ UðrÞ � 2pR
Z 1

0

bwðqÞJ0ðqrÞJ1ðqRÞdq; ð6bÞ

where bwðqÞ is the Fourier transform of w.
Knowing that UðRÞ ¼ h and UðrÞ þ VðrÞ ¼ K, we

obtain the following necessary condition for the existence

of a bump with radius R

h ¼ K

2
þ pR

Z 1

0

bwðqÞJ0ðqrÞJ1ðqRÞdq: ð7Þ

Like for the 2D Amari model, with the wizard hat coupling

function there exist a maximum of two bump solutions for

a given value of threshold h, as shown in Fig. 2.

Stability of bumps

In the following we determine the linear stability of radi-

ally symmetric solutions of (1) with respect to different

possible perturbations of the circular boundary exhibiting

Dn symmetry.

In order to determine the linear stability of a stationary

bump U(r), we substitute uðr; tÞ ¼ UðrÞ þ wðrÞekt and

vðr; tÞ ¼ VðrÞ þ fðrÞekt into (1) and expand to first order in

w and f using (5). This leads to the system of eigenvalue

equations

kwðrÞ ¼ �wðrÞ þ fðrÞ

þ
Z
X
wðjr� r0jÞdðUðr0Þ � hÞwðr0Þdr0;

ð8aÞ

kfðrÞ ¼ �fðrÞ þ wðrÞ

�
Z
X
wðjr� r0jÞdðUðr0Þ � hÞwðr0Þdr0:

ð8bÞ

In Appendix B, we show that solving (8) gives the fol-

lowing eigenvalues

k�1 ¼ 0; ð9Þ

kn ¼ �2þ 2

R1
0
bwðqÞJnðqRÞJnðqRÞqdqR1

0
bwðqÞJ1ðqRÞJ1ðqRÞqdq ; ð10Þ

where index n corresponds to the number of modes of the

boundary perturbation exhibiting Dn symmetry. Similar to

the 2D Amari model, we have k1 ¼ 0, the bump of radius R

is thus linearly stable if kn\0 for all n 6¼ 1. Figure 2a

depicts the branches of stable (solid line) and unstable

(dashed line) bump solutions with radius R as a function of

threshold h. For n ¼ 2; . . .; 7, we also plot the points of

azimuthal instability to planar perturbations with Dn sym-

metry determined by the condition kn ¼ 0. Examples of a

stable (P1) and an unstable (P2) bump are shown in Fig. 2b.

Note that in the real biological system, an excitation pattern

with the smaller radius will not persist. Any perturbation of

the circular boundary due to noise in the network will

destroy it.

Bumps with initial condition
u(r; 0Þ+ v(r; 0Þ= K(rÞ

Figure 3 shows examples of bump solutions for the initial

conditions

uðr; 0Þ ¼ KðrÞ; vðr; 0Þ ¼ 0; KðrÞ ¼ AKe
�r2=2r2Kð Þ;

ð11Þ

which represent a homogeneous initial state for the v-

population and a spatially structured state for the u-popu-

lation. As can be clearly seen when comparing the

Fig. 1 Weight distribution given by a combination of modified Bessel

functions of the second kind as defined in (4). Weight parameters are

A ¼ 1=4 and r ¼ 2
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activation patterns in the two panels, the bump shape

correlates perfectly with the shape of the initial activation

profile of the u-population.

Numerical continuation is a powerful tool that has been

widely used to track specific solutions of neural field

equations as model parameters vary (Rankin et al. 2014).

We extend here the numerical scheme developed to track

bump solutions of the scalar two-field model (Wojtak et al.

2021a) to the 2D case. Figure 4a and c compares bifurca-

tion curves for the bumps created with the narrower and the

wider initial condition of Fig. 3 with threshold h as con-

tinuation parameter. Independent of the initial condition,

the bifurcation curves maintain the same qualitative

behavior. Stable and unstable bumps coexist in a certain

range of threshold values. Importantly, and different to the

Amari model, there exists also a branch of stable sub-

threshold solutions defined by the balanced local interac-

tions between the two populations. Figure 4b and d depicts

for both initial conditions top views of stable, localized

activity patterns above and below threshold. The pairs (P1,

P2) respectively (P3, P4) are obtained with the same

threshold value.

Input-induced bumps

In classical CAN models, memory encoding and mainte-

nance is modeled as an ‘‘all-or-none’’ phenomenon

regardless of the input strength above threshold. The

stereotyped bump shape is exclusively determined by the

Fig. 2 a Bump radius R of stable (solid line) and unstable (dashed

line) solutions as a function of h for the two-field model (1) with

K ¼ 0:5 and a wizard hat weight distribution (4) with A ¼ 1=4 and

r ¼ 2. Dots show points along the stable branch where bumps

become unstable to planar perturbations with D2; . . .;D7 symmetry. b
Top view of a stable bump with radius R ¼ 3:49 (P1) and an

unstable bump with radius R ¼ 0:83 (P2) for h ¼ 0:3

Fig. 3 One-bump solutions at

time t ¼ 50 of the two-field

model (1) for two different

initial profiles (11) with AK ¼ 1,

rK ¼ 1 (a and c) and AK ¼ 3,

rK ¼ 3 (b and d). Solid grey

lines represent initial profiles of

the u-population. The kernel w
is given by (2) with Aex ¼ 2,

Ain ¼ 1, rex ¼ 1, rin ¼ 1:5 and

winh ¼ 0:1. Threshold h ¼ 0
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recurrent interactions within the network. Converging lines

of evidence from behavioral and neurophysiological

experiments suggests that not only the content of stimuli

but also their quality or fidelity is represented in WM (Ma

et al. 2014). Input characteristics such as stimulus contrast/

strength and stimulus duration are known to affect WM

performance. A possible neural substrate of stimulus sal-

iency is the level of neural activity in a population repre-

senting a memorized item (Brody et al. 2003;

Constantinidis et al. 2001). Figure 5 illustrates the capacity

of the two-field model to continuously integrate inputs over

time. The bumps represent the population response to a

briefly presented stimulus (a, b) for which the strength (c,

d) or the duration (e, f) has been changed. Since in this

example the manipulation of strength and duration results

in the same total input applied, the bumps in (c) and (e)

have equal amplitude. In recent works, we have used this

integrator property to model WM for serial order of sen-

sory events represented by a multi-bump pattern with an

activation gradient (Wojtak et al. 2021b) and to elucidate

the neural underpinning of interval timing (Wojtak et al.

2019). The latter study models findings of an experiment in

which monkeys were trained to measure different sample

intervals and immediately afterwards reproduce it by a

proactive saccade to a predefined target. In line with the

model predictions, longer sample intervals resulted in

higher firing rates at the end of the measuring period. The

observed monotonic increase of population activity to a

fixed threshold associated with saccade onset during the

production phase can be explained by the continuous

integration of an input with a strength inversely propor-

tional to the bump amplitude at the end of the measuring

period.

Although there is broad agreement that persistent

activity is central to maintenance in WM, there is a debate

regarding how many items can be simultaneously repre-

sented in an active state. Recent neuroimaging data has

been interpreted as evidence that only a single item in the

‘‘focus of attention’’ is held in a prioritized active state at a

time (Lewis-Peacock et al. 2012; Rose et al. 2016). The

concept of ‘‘activity-silent’’ WM (Stokes 2015) assumes

that additional items are stored by a stimulus-specific pat-

tern of synaptic facilitation in the recurrent connections.

Other experimental studies, however, report evidence for a

concurrent storage of multiple active neural representations

in WM (Sutterer et al. 2019; Scotti et al. 2021).

It is well known that classical CANs with lateral inhi-

bition kernel have difficulties generating and maintaining

input-induced multi-bump patterns. The mutually inhibi-

tory interactions between neural representations of indi-

vidual items lead to memory drift or complete memory loss

(Amari 1977; Mégardon et al. 2015). Figure 6a–d shows an

example of the Amari model with three identical inputs

presented sequentially at three different positions. Only the

Fig. 4 a and c Bifurcation curves showing single bump solutions of

(1) with the initial condition (11) with AK ¼ 1:5, rK ¼ 1:5 (a) and
AK ¼ 3, rK ¼ 3 (c) as the parameter h is varied. Examples of

solutions at the points P1 - P4 for a narrower and a wider profile of

KðrÞ are shown in panels (b) and (d), respectively. Parameters of the

kernel: Aex ¼ 2, Ain ¼ 1, rex ¼ 1, rin ¼ 1:5 and winh ¼ 0:1
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first transient input is able to trigger the evolution of a

bump since it causes a significant suppression of neural

activity at the positions of the two successive stimuli. As a

consequence, their neural representation remains sub-

threshold and quickly falls back to resting state. The loss of

input information is irreversible since it cannot be recov-

ered with any type of additional processing. The suppres-

sive effect of lateral inhibition appears to be mitigated to

some extent in the two-field model due to the spread of

excitation mediated by the inverted Mexican hat connec-

tivity of the v-population. Fig. 6e–h shows that in response

to the identical series of transient inputs, the local feedback

mechanisms are able to stabilize a three-bump solution.

It is important to stress however that bump competition

is still visible in the reduced bump amplitudes compared to

a single item memory. This can be directly seen when

applying a series of inputs with reduced strength (Fig. 7a –

c). Now, only the neural representations of the first and the

second stimulus reach a suprathreshold level, the repre-

sentations of the third remains subthreshold (a). However,

different to the Amari model, the input information is not

completely lost since the activation patterns are self-sus-

tained. The integrator capacity of the network can be tested

by applying a second subthreshold input (‘‘post-cue’’) at

the pre-activated site long after the first is gone (b). The

peak position of the evolving bump again faithfully rep-

resents a memory of the two input dimensions (c). This

Fig. 5 Left column: Bump

solutions at time t ¼ 50 of the

model (1) created with transient

inputs Iðr; tÞ given by (3) with

variation of (c) input strength
AI , and (e) input duration dI .
Right column: Cross sections of

the bump solutions in x-
direction at y ¼ 0. Solid and

dashed black lines represent

u(x) and v(x), respectively.
Parameters of the inputs: (a and

b) AI1 ¼ 3;rI1 ¼ 1; dI ¼ 1 (c
and d) AI1 ¼ 12; rI1 ¼ 1; dI ¼ 1

(e and f) AI1 ¼ 3; rI1 ¼ 1;
dI ¼ 4. The kernel w is given by

(2) with Aex ¼ 3, Ain ¼ 1,

rex ¼ 1:2, rin ¼ 1:6 and

winh ¼ 0:2. Threshold h ¼ 0,

K ¼ �0:5
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Fig. 6 Solutions of the Amari model (a–d) and the two-field model

(e–h) created with sequential inputs. Inputs Iðr; tÞ are applied at times

t1 ¼ 1, t2 ¼ 11 and t3 ¼ 21. Snapshots taken at times: t ¼ 3 (a and e),
t ¼ 13 (b and f), t ¼ 23 (c and g), t ¼ 50 (d and h). Parameters of the

inputs are AI ¼ 4, rI ¼ 1, dI ¼ 2. The kernel w is given by (2) with

Aex ¼ 2, Ain ¼ 1, rex ¼ 1:6, rin ¼ 2 and winh ¼ 0:1. Threshold h ¼ 0,

K ¼ 0

Fig. 7 Recovery of a subthreshold memories with specific (a–c) and
unspecific input (d–f). Inputs Iðr; tÞ with AI ¼ 1:6 are applied at times

t1 ¼ 1, t2 ¼ 11 and t3 ¼ 21. (b) At time t4 ¼ 40, an additional input

with AI ¼ 1 and dI ¼ 1 is applied at one of the positions. (e) At time

t4 ¼ 40, a ridge input along the y-dimension with AI ¼ 0:5 and dI ¼ 1

is applied. Snapshots taken at times: t ¼ 30 (a and d), t ¼ 40 (b and e)
and t ¼ 50 (c and f). The remaining parameters of the inputs are

rI ¼ 1 and dI ¼ 2. The kernel w is given by (2) with Aex ¼ 2,

Ain ¼ 1, rex ¼ 1:6, rin ¼ 2 and winh ¼ 0:1. Threshold h ¼ 0, K ¼ 0
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model behavior is conceptually in line with experimental

findings showing that a long-lasting visual memory trace

(� 16s) of a briefly presented subthreshold signal facili-

tates the detection of a target signal (Tanaka and Sagi

1998).

Current research not only investigates the impact of

stimulus characteristics on the quality of WM representa-

tions but also addresses the active role for a top-down

modulation during WM maintenance. Findings in so-called

‘‘retro-cuing’’ paradigms show that top down signals may

prioritize items being held in WM even after encoding to

cope with changing task demands (for review see (Gaz-

zaley and Nobre 2012)). Retro-cues differ from post-cues

in that they do not prompt the retrieval of a specific item

but instead direct attention to a given object category in

visual WM. A particularly interesting result comes from a

study investigating retro-cues directing attention to the

position of a near-threshold stimulus which otherwise

would pass unseen. Spatial attention greatly improved the

viewers’ capacity to discriminate stimulus orientation,

along with a drastic increase in subjective visibility (Ser-

gent et al. 2013). Figure 7d–f shows model simulation with

the two stimulus dimensions representing horizontal posi-

tion (x-axis) and orientation (y-axis) of a stimulus array.

Like in the simulation shown in the upper row, a sequence

of three inputs is first presented (d). The retro-cue directing

attention to the position of the third input is modeled as a

transient input with the shape of a ridge along the orien-

tation dimension, that is, all conjunctive neurons encoding

the same location but different orientations receive the

identical input (e). Despite the lack of specification in the

input pattern, the transition from a subthreshold to an

active state represented by the evolving bump allows a

down-stream network to read-out the encoded orientation

information (f).

Non-radially symmetric connectivity
functions

In our analysis of rotationally invariant bump solutions of

the planar two-field model, we closely followed previous

work on stationary, localized activation patterns in field

models of Amari type. A crucial assumption in all these

studies is that the coupling function depends on the

Euclidian distance, jr� r0j, between interacting neurons at

positions r and r0. Any deviation from this perfect circular

symmetry can substantially perturb the continuous attrac-

tor, preventing the network from stabilizing stationary

bumps at any location of the plane. How the brain deals

with the problem of fine-tuning and maintenance of a

continuous symmetry across neurons remains unknown and

is a matter of considerable debate (Zylberberg and

Strowbridge 2017). Here we test in numerical model sim-

ulations to which extent the local feedback mechanisms

introduced in the two-field model allow us to relax the

biologically implausible symmetry assumption. We con-

sider three distinct perturbation of the radially symmetric

weight distribution: 1) a coupling function with elliptic

shape, 2) a systematic directional bias, and 3) a noise-

induced heterogeneity.

Elliptic connectivity function

Neurons with receptive fields conjointly tuned to two

stimulus features have been described (Drucker et al.

2009). This does not necessarily mean however that the

tuning width is the same, regardless of which dimension is

considered. Since narrow (broad) tuning curves imply that

a small (large) fraction of neurons is active for a given

stimulus parameter, the spatial spread of the neural popu-

lation activity in the 2D feature space will differ along the

two stimulus dimensions. Modeling such a distribution in

WM applications as a self-sustained activity pattern

requires a connectivity function with non-radially sym-

metric shape. Figure 8 depicts an example of a Mexican

hat connectivity (2) for which the spatial ranges of exci-

tation and inhibiton are larger for one dimension compared

to the other, that is, r2exx [ r2exy and r2inx [ r2iny . Figure 9

illustrates that the two-field model is able to stabilize a

localized activity pattern with an elliptic contour which

was initially triggered by a transient Gaussian input. In the

Amari case, this activation pattern appears to be destabi-

lized with a speed depending on the degree of the sym-

metry-breaking (not shown). Note that the bump shape not

only reflects the asymmetry in the coupling function but

may be also affected by input characteristics as shown in

Fig. 5.

Fig. 8 Mexican hat connectivity with elliptic shape. The parameters

are Aex ¼ 2, Ain ¼ 1:5, rexx ¼ 1:6, rexy ¼ 1:07, rinx ¼ 2, riny ¼ 1:34

and winh ¼ 0:05
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Directional bias in the connectivity function

A second type of perturbation is a coupling with a sys-

tematic directional bias. In 1D CAN models, it has been

shown that such a recurrent network architecture supports

bumps freely traveling in the biased direction. This

mechanism has been applied to model the direction

selectivity of cortical neurons (Xie and Giese 2002; Zhang

1996; Bressloff and Wilkerson 2012) and to track moving

objects through occlusion (Erlhagen and Bicho 2006). Here

we generalize the mechanism to the 2D case to compare it

with the behavior of the two-field model. The asymmetry

can be implemented by adding to the standard Mexican hat

kernel its directional derivative as an antisymmetric com-

ponent (Zhang 1996)

wasymðrÞ ¼ wðrÞ þ gDvwðrÞ; ð12Þ

where w is the weight function given by (2), Dvw is the

derivative of w in the direction v ¼ ðx; yÞ with a scaling

factor g[ 0 (compare Fig. 10). Alternatively, the Mexican

hat kernel can be simply shifted by an offset r0 (Xie and

Giese 2002), that is, wðr� r0Þ ¼ wð�ðr� r0ÞÞ. Figures 11
and 12 compare the pattern formation process of the Amari

model (top row) and the two-field model (bottom row) at

different times after the presentation of a transient input at

time t ¼ 0 at position r ¼ ð0; 0Þ. A bias in y-direction using

the derivative mechanism causes the Amari bump to travel

in this direction whereas the bump in the two-field model

remains stationary at the initial position (Fig. 11). With the

offset mechanism (r0 ¼ ð0:5; 0:5Þ), the two-field bump

again remains stationary whereas the Amari bump moves

in the biased direction (Fig. 12). The balance of excitation

and inhibition mediated by the additional local feedback

mechanism thus leads to a qualitatively different model

behavior.

Heterogeneous connectivity function

For a theory of working memory based on persistent

activity, weak random spatial fluctuations in the connection

strength are perhaps the most worrisome perturbation of

the assumed continuous symmetry. These fluctuations are

to be expected when learning the coupling function with

Hebbian plasticity (Zhang 1996; Zou et al. 2017). In the 1D

case, it is well known that the presence of such synaptic

heterogeneity causes a drift of an input-induced activity

pattern to one of a finite number of attractor positions

which are randomly spread over representational space.

Additional processing mechanisms have been proposed to

slow this memory drift and reduce the quantization error

(Itskov et al. 2011; Renart et al. 2003). Following (Itskov

et al. 2011), we add small noise to the weight profile which

breaks the radial symmetry

wpertðrÞ ¼ wðrÞ þ �1=2dYðr; tÞ; ð13Þ

where dYðr; tÞ is a spatially white noise process and � � 1

is the noise amplitude. Figure 13 shows cross sections in x-

direction (a) and y-direction (b) of the Mexican hat con-

nectivity with fluctuations in the connection strengths. The

simulation of the 2D Amari model essentially replicates the

findings for the 1D case. The activity pattern drifts from the

input location, r ¼ ð0; 0Þ, towards a position close to the

field boundary (c). The line indicates the center-of-mass

Fig. 9 Side view (a) and top

view (b) of the persistent

activity pattern created with the

connectivity function shown in

Fig. 8. Parameters of the input

are AI ¼ 1;rI ¼ 2; dI ¼ 1

Fig. 10 Plot of gDvwðrÞ from (12) with g ¼ 5
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trajectory of the activity profile. Panel (d) depicts these

center-out trajectories for 100 model simulations, each with

the same initialization but with different random fluctua-

tions of the Mexican hat coupling. The results can be

directly compared with the simulations of the two-field

model in panels (e) and (f). Here, the bump remains cen-

tered at the initial position. As can be seen in the top view

of the heat map, the spatial fluctuations in the connection

strengths cause a slight perturbation of the bump shape.

This explains why the center-of-mass trajectories show

Fig. 11 Solutions of the Amari model (a–c) and the two-field model (d–f) created with the connectivity function shown in Fig. 10. Input Iðr; tÞ
with AI ¼ 1, rI ¼ 1 and dI ¼ 1 is applied at time t ¼ 1 at position rc1 ¼ ð0; 0Þ

Fig. 12 Solutions of the Amari model (a–c) and the two-field model (d–f) created with the connectivity function centered at (0.5, 0.5). Input

Iðr; tÞ with AI ¼ 2, rI ¼ 1 and dI ¼ 1 is applied at time t ¼ 1 at position rc1 ¼ ð0; 0Þ
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small fluctuations around the input location. As an exam-

ple, panels (g) and (h) depict cross sections of a bump. Its

peak position appears to be slightly shifted in the y-

direction.

Discussion

In this work, we have analyzed and tested a bump attractor

network which is able to robustly maintain in self-sustained

activity not only the content but also the quality of con-

tinuous-valued information. The bump activity is stabilized

equally well at any location of the two-dimensional feature

space and the bump amplitude reflects a perfect temporal

integration of inputs. This WM functionality is based on

pure network mechanisms which in contrast to standard

CAN models do not require a biologically unrealistic

degree of fine-tuning of recurrent connections and nonlin-

earities. In previous modeling work, one approach to

address this fine tuning problem and to increase the

robustness of WM representations to extrinsic noise has

been to introduce discrete ‘‘wells’’ in the continuous

attractor manifold. This can be done for instance by using

bistable neurons with different thresholds for a neural

Fig. 13 a and b: Cross sections
of the connectivity function

given by (13) with � ¼ 0:05. c–
f: Bump drift in the Amari

model (c and d) and in the two-

field model (e and f). Input
Iðr; tÞ with AI ¼ 1:5, rI ¼ 1 and

dI ¼ 1 was applied at time t ¼ 1

at position rc1 ¼ ð0; 0Þ. Panels
(c) and (e) show single

realizations at time t ¼ 200,

with the green line tracking the

centroid of the bump. Panels

(d) and (f) show the trajectories

of the bump centroid over 100

trials. g and h: Cross sections of
the solution of the two-field

model from panel (e)
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integrator network (Koulakov et al. 2002) or a periodic

heterogeneous coupling function for a neural field model of

spatial WM (Kilpatrick and Ermentrout 2013). In both

cases, a discretisation error is introduced since the neural

integrator loses its sensitivity to weaker inputs and bumps

are pinned to a finite number of discrete positions in rep-

resentational space. The model simulations show that

despite different types of substantial perturbations of the

assumed coupling symmetry, a bump representing the

accumulated evidence remains stationary at the stimulated

site. Extrinsic noise is a second source affecting memory

precision in CAN models. It randomly displaces encoded

memories along the continuum of states. We have shown in

our previous work on the one-dimensional two-field model

that it also shows this diffusive drift pattern (Wojtak et al.

2021a). However, the variance of the displacement

decreases drastically with increasing bump amplitude,

suggesting that the fidelity of WM representations corre-

lates with their precision (Klyszejko et al. 2014). We plan

in future work to further explore this model prediction in

2D feature spaces.

The mathematical analysis of radially symmetric bump

solutions revealed that the two-field model shows qualita-

tively the same behavior as the 2D Amari model.

Stable and unstable bumps occur in pairs and non-radially

symmetric perturbations of the stationary bump may lead

to azimuthal instabilities. A major difference is the exis-

tence of persistent subthreshold activity patterns that only

depend on a balanced local interaction between the two

populations. As shown in the example of Fig. 7, the 2D

case offers new perspective for modeling WM storage

since it allows us to address binding information (e.g.,

which stimulus has been in which location, or in which

sequential position of a series of stimuli) represented by the

persistent activity of conjunctive neurons (Schneegans and

Bays 2017; Wojtak et al. 2021b). DNF models of multi-

item memory assume that feature binding is completely

linked to space (Johnson et al. 2008). Different non-spatial

features characterizing a single object (e.g., orientation,

color, size) are represented by stable activation patterns of

distinct populations of conjunctive feature-space neurons

bound to location. A separate working memory population

stores the locations of all items in the scene. During recall,

the location information is used to couple the various

features defining the specific object.

For the subthreshold memory trace of the third stimulus

in Fig. 7e and f, a transient ridge input which specifies the

location but not the orientation recovers a high fidelity

memory of the combined location and orientation infor-

mation. Without the content-specific pre-activation, the

same input would lead to a homogeneous increase of

activity. Any working-memory model thus needs to

accommodate a representational state where information

can be maintained without ever being inside the focus of

attention (Bergström and Eriksson 2018).

Our purely activation based account differs from ‘‘ac-

tivity silent’’ approaches postulating that WM storage may

be instead accomplished by weight-based changes in

synaptic connectivity even in the absence of sustained

activity (Stokes 2015). A popular example is synaptic

facilitation which is thought to temporarily amplify con-

nections between neurons that are activated by a stimulus

(Mongillo et al. 2008). The decaying synaptic memory

trace can be reignited into activity by an unspecific input.

Recent experimental evidence suggests that both mecha-

nism are not mutually exclusive but may play different

roles in specific WM tasks (Barbosa et al. 2020). Con-

cerning the example in Fig. 7e and f, it remains an open

question whether a stimulus that fails to cross the threshold

for active reverberation (and subjective visibility) would

still induce enough activity in the network to trigger a long

lasting synaptic memory trace (e.g., [ 16 s (Tanaka and

Sagi 1998), see also the discussion in (Bergström and

Eriksson 2018)).

The robustness of the two-field model to global changes

in the neural gain and perturbations of the coupling sym-

metry opens new perspectives for learning the weights

using Hebbian plasticity mechanisms (Zou et al. 2017;

Zhang 1996). Even when stimuli are drawn from a con-

tinuous family, irregular training will introduce hetero-

geneities and/or directional biases into the synaptic

connections. We plan to address the challenge of learning

WM representations in attractor networks in future work.

In this context it is important to notice that the performance

of the two-field model is sensitive to changes in the local

feedback loop. Introducing nonlinearities such as saturation

by using for instance a piecewise linear transfer function

will limit the continuous integrator capacity to a maximum

bump amplitude. Any change that severely perturbs the

local balance of excitation and inhibition will disrupt WM

performance.

A WM model based on persistent population activity

must necessarily include a forgetting mechanism. Since the

two-field model works as a perfect neural integrator, an

existing bump cannot be destabilized by simply applying a

strong inhibitory input. To address this forgetting problem,

we have proposed a plausible gating mechanism for the

local feedback loop controlling the continuous input inte-

gration (Wojtak et al. 2021a). Functionally, the gate can be

considered to be like a threshold that the input to a specific

location must exceed in order to start the accumulation of

bottom-up and top-down evidence for the specific feature

value(s). The application of a sufficiently strong inhibition

will drive any persistent activity in the u-field below this

threshold. The decoupled dynamics of the two populations

is then governed by the Amari field equation with a
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stable homogeneous resting state. In recent works, we have

used the capacity of attractor networks to stabilize multiple

bumps with a continuum of amplitudes to address the

problem of memorizing the temporal order and the relative

timing of sequential events (Ferreira et al. 2020; Wojtak

et al. 2021b). The information is stored in a gradient of

activation strength such that the neural representation of

each item is stronger than its successor. The event mem-

ories are autonomously recalled in the correct order and at

the expected time using a competitive dynamics of a

decision field which receives the activation gradient as

subthreshold input.

Persistent elevated firing rates of populations of neurons

may have also an oscillatory character. Indeed, the obser-

vation of stimulus-selective oscillatory dynamics in WM

tasks has led to the hypothesis that neural oscillations in

different frequency bands play an important role in the

maintenance of information (Roux and Uhlhaas 2014).

Computational studies investigating this hypothesis typi-

cally use neural mass models with no inherent spatial

structure (Ursino et al. 2023; Pina et al. 2018). Ensemble

activity of cortical microcircuits comprising distinct cell

types shows stable oscillations. Network architectures of

such microcircuits are then used to address salient attri-

butes of working memory such as maintaining multiple

items and their serial order or to establish feature binding

through synchronous relationships. While sharing many of

the basic research questions, the spatially structured, dis-

tance-dependent recurrent interactions implemented in

DNF models provide explanatory power for many experi-

mentally observed metric effects in WM and other cogni-

tive tasks (e.g., memory precision, feature misbinding

errors, for an overview of experimental and modeling

studies see (Schöner and Spencer 2016)). It will be inter-

esting to explore in future work the potentially comple-

mentary roles that persistent population activity with

stationary or oscillatory character might have. This

includes WM tasks for which the metric dimension is not

as clear or for which a spatial-binding model is not suffi-

cient since the stimuli are presented sequentially at a single

location.

Appendix A

The double integral in (5) can be calculated using the

Fourier transforms and Bessel function identities (Bressloff

2012). We start with expressing w(r) as a 2D Fourier

transform using polar coordinates

wðrÞ ¼ 1

2p

Z
R2

eir�k bwðkÞdk

¼ 1

2p

Z 1

0

Z 2p

0

eirq cos/ bwðqÞd/
� �

qdq;

ð14Þ

where bw denotes the Fourier transform of w and

k ¼ ðq;/Þ. Using the integral representation

1

2p

Z 2p

0

eirq cos/d/ ¼ J0ðqrÞ; ð15Þ

where J0 is the Bessel function of the first kind, we express

w in terms of its Hankel transform of order zero

wðrÞ ¼
Z 1

0

bwðqÞJ0ðqrÞqdq; ð16Þ

which, when substituted into (5), gives

UðrÞ ¼ VðrÞ

þ
Z 2p

0

Z R

0

Z 1

0

ŵðqÞJ0ðqjr� r0jÞqdq
� �

r0dr0df0;

ð17aÞ

VðrÞ ¼ UðrÞ

�
Z 2p

0

Z R

0

Z 1

0

ŵðqÞJ0ðqjr� r0jÞqdq
� �

r0dr0df0:

ð17bÞ

We reverse the order of integration and use the addition

theorem

J0ðq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos f0

p
Þ

¼
X1
m¼0

�mJmðqrÞJmðqr0Þ cosmf0;
ð18Þ

where �0 ¼ 1 and �n ¼ 2 for n� 1. Then using the identity

J1ðqRÞR ¼ q
R R
0
J0ðqr0Þr0dr0, we obtain (6). Note that the

Fourier transform of (4) is easily calculated using the result

that the Fourier transform of K0

r

r

� �
¼ 2p

r2 þ r2
.

Appendix B

Using polar coordinates we can rewrite system (8) as

kwðr;/Þ ¼ �wðr;/Þ þ fðr;/Þ

þ
Z 2p

0

d/0
Z 1

0

r0dr0

wð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos/

p
ÞdðUðr0Þ � hÞwðr0;/� /0Þ;

ð19aÞ
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kfðr;/Þ ¼ �fðr;/Þ þ wðr;/Þ

�
Z 2p

0

d/0
Z 1

0

r0dr0

wð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos/

p
ÞdðUðr0Þ � hÞwðr0;/� /0Þ:

ð19bÞ

We look for solutions of the form

ðwðr;/Þ; fðr;/ÞÞ ¼ ein/ðwðrÞ; fðrÞÞ; ð20Þ

where n is the number of modes of the boundary pertur-

bation. System (19) then takes the form

kwðrÞein/ ¼ �wðrÞein/ þ fðrÞein/

þ
Z 2p

0

d/0
Z 1

0

r0dr0

wð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cosð/� /0Þ

q
ÞdðUðr0Þ � hÞwðr0Þeinð/�/0Þ;

ð21aÞ

kfðrÞein/ ¼ �fðrÞein/ þ wðrÞein/

�
Z 2p

0

d/0
Z 1

0

r0dr0

wð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cosð/� /0Þ

q
ÞdðUðr0Þ � hÞwðr0Þeinð/�/0Þ:

ð21bÞ

We set r ¼ R and after dividing both sides by ein/ we get

kwðRÞ ¼ �wðRÞ þ fðRÞ

þ
Z 2p

0

d/RwðR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos/

p
ÞÞwðRÞe

�in/

jU0ðRÞj ;

ð22aÞ

kfðRÞ ¼ �fðRÞ þ wðRÞ

�
Z 2p

0

d/RwðR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos/

p
ÞÞwðRÞe

�in/

jU0ðRÞj :

ð22bÞ

The system (22) can be written as

A
wðRÞ
fðRÞ

� �
¼

0

0

� �
;

where the matrix A is given by

A ¼
kþ 1� Sn � 1

�1þ Sn kþ 1

� �
;

with

Sn ¼
R

jU0ðRÞj

Z 2p

0

wðR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos/

p
Þe�in/d/: ð23Þ

Then, we find that

ðkþ 1þ SnÞðkþ 1Þ � ð�1þ SnÞð�1þ SnÞ ¼ 0: ð24Þ

Hence the eigenvalues of A are

k�1 ¼ 0; ð25Þ

kn ¼ �2þ Sn: ð26Þ

Note that kn is real, since after setting
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos/

p
¼

2 sin /
2

� �
and rescaling / we have

Imfkng ¼ � 2R

jU0ðRÞj

Z p

0

wð2R sinð/ÞÞ sinð2n/Þd/ ¼ 0;

ð27Þ

i.e., the integrand is odd-symmetric about p
2
. Hence,

kn ¼ Refkng ¼ �2þ R

jU0ðRÞjZ 2p

0

wð2R sinð/=2ÞÞ cosðn/Þd/;
ð28Þ

with the integrand even-symmetric about p
2
.

We then evaluate the integral in (28) using Bessel

functionsZ 2p

0

wð2R sinð/0=2ÞÞ cosðn/0Þd/0

¼
Z 2p

0

Z 1

0

ŵðqÞJ0ðqð2R sinð/0=2ÞÞÞqdq
� �

cos/0d/0

¼ 2p
Z 1

0

ŵðqÞJnðqRÞJnðqRÞqdq:

ð29Þ

We differentiate (6a) with respect to r, and, knowing that

UðrÞ þ VðrÞ ¼ K we have

U0ðRÞ ¼ �pR
Z 1

0

bwðqÞJ1ðqRÞJ1ðqRÞqdq: ð30Þ

We can now write the eigenvalues of A as (9) and (10).

Appendix C

Numerical simulations of the model were done in

MATLAB using a forward Euler method with uniform

spatial mesh with dx ¼ 0:05 and time step dt ¼ 0:01. To

compute the two-dimensional spatial convolution of w and

f we employ a two-dimensional fast Fourier transform (2D

FFT), using MATLAB’s in-built functions fft2 and

ifft2 to perform the Fourier transform and the inverse

Fourier transform, respectively. Periodic boundary condi-

tions are used. By choosing a sufficiently large domain

size, we make sure that the localized patterns evolve suf-

ficiently far from the boundaries.
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For performing numerical continuation, we use the

method described in (Rankin et al. 2014) and adapt

MATLAB code available in (Avitabile 2016). The main

advantage of this method is that it can be applied directly to

the full integral model. This is possible due to the usage of

Newton-GMRES solvers combined with a fast Fourier

transform (FFT) employed for computing the convolution

term (Rankin et al. 2014).

Acknowledgments The work received financial support from FCT

through the PhD fellowship PD/BD/128183/2016, the project ‘‘Neu-

rofield’’ (PTDC/MAT-APL/31393/2017), the Project I-CATER:

Intelligent robotic Coworker Assistant for industrial Tasks with an

Ergonomics Rationale (Refa PTDC/EEI-ROB/3488/20211), R&D

Units Project Scope: UIDB/00319/2020’’ - ALGORITMI Research

Centre and the Research Centre CMAT within the project UID/MAT/

00013/2020.

Data Availability Data sharing not applicable to this article as no

datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

Amari S (1977) Dynamics of pattern formation in lateral-inhibition

type neural fields. Biol Cybern 27(2):77–87

Avitabile D (2016) Numerical computation of coherent structures in

spatially-extended systems. Second International Conference on

Mathematical Neuroscience, Antibes Juan-les-Pins, 2016

Barak O, Tsodyks M (2014) Working models of working memory.

Curr Opin Neurobiol 25:20–24

Barbosa J, Stein H, Martinez RL et al. (2020) Interplay between

persistent activity and activity-silent dynamics in the prefrontal

cortex underlies serial biases in working memory. Nat Neurosci

23(8):1016–1024

Bergström F, Eriksson J (2018) Neural evidence for non-conscious

working memory. Cereb Cortex 28(9):3217–3228

Bressloff PC (2012) Spatiotemporal dynamics of continuum neural

fields. J Phys A Math Theor 45(3):033001

Bressloff PC, Coombes S (2013) Neural bubble dynamics revisited.

Cognit Comput 5(3):281–294

Bressloff PC, Wilkerson J (2012) Traveling pulses in a stochastic

neural field model of direction selectivity. Front Comput

Neurosci 6:90

Brody CD, Romo R, Kepecs A (2003) Basic mechanisms for graded

persistent activity: discrete attractors, continuous attractors, and

dynamic representations. Curr Opin Neurobiol 13(2):204–211

Camperi M, Wang XJ (1998) A model of visuospatial working

memory in prefrontal cortex: recurrent network and cellular

bistability. J Comput Neurosci 5(4):383–405

Constantinidis C, Wang XJ (2004) A neural circuit basis for spatial

working memory. Neuroscientist 10(6):553–565

Constantinidis C, Franowicz MN, Goldman-Rakic PS (2001) The

sensory nature of mnemonic representation in the primate

prefrontal cortex. Nat Neurosci 4(3):311–316

Drucker DM, Kerr WT, Aguirre GK (2009) Distinguishing conjoint

and independent neural tuning for stimulus features with FMRI

adaptation. J Neurophysiol 101(6):3310–3324

Erlhagen W, Bicho E (2006) The dynamic neural field approach to

cognitive robotics. J Neural Eng 3(3):R36

Ferreira F, Wojtak W, Sousa E et al. (2020) Rapid learning of

complex sequences with time constraints: a dynamic neural field

model. IEEE Trans Cogn Develop Syst 13(4):853–864

Gazzaley A, Nobre AC (2012) Top-down modulation: bridging

selective attention and working memory. Trends Cogn Sci

16(2):129–135

Itskov V, Hansel D, Tsodyks M (2011) Short-term facilitation may

stabilize parametric working memory trace. Front Comput

Neurosci 5:40
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