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Abstract Research is continually expanding
the empirical and theoretical picture of em-
bodiment and dynamics in language. To date,
however, a formalized neural dynamic frame-
work for embodied linguistic processes has yet
to emerge. To advance embodied theories of
language, the present work develops a formal-
ized neural dynamic framework of spatial lan-
guage that explicitly integrates linguistic pro-
cesses and dynamic sensory-motor systems. We
then implement and test our spatial language
architecture on a robotic platform continuously
linked to real-time camera input. In a suite of
tasks using everyday objects we demonstrate
the framework’s capacity for both contextually-
dependent behavioral flexibility and the seam-
less integration of spatial, non-spatial, and sym-
bolic representations. To our knowledge this
is the first unified, neurally-grounded architec-
ture integrating these processes and behaviors.
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1 Introduction

Theories of cognition are often dissociated from
the real-time generation of behaviors. This is
particularly true in the domain of language,
where theoretical treatments tend to empha-
size highly abstracted concepts and symbolic
representations (e.g. [47]).

Recently, however, attention has shifted to
how language is produced and experienced by
real bodies in the real world[19]. Work from
beim Graben and colleagues [41,40], for ex-
ample, shows that non-linear dynamical sys-
tems approaches can enhance our understand-
ing of syntactic processing within neural sys-
tems. A recent review by Elman [25] further
highlights how dynamical models (e.g. simple
recurrent networks) can shed light on language
processing, particularly contextual dependen-
cies in grammar and word learning. The role
of context is also increasingly prominent in re-
cent models of language development, reveal-
ing how language processing dynamics shape
infant categorization [37], lexical organization
[54] and task-specific noun generalization be-
haviors [70].

This attention to the contextually rich, co-
ordinated dynamics of language is part of a
growing view that linguistic processes are em-
bedded within a broader embodied, dynamic



system intimately linked to the physical world
[34,5,81]. The evidence supporting the role for
the body and real-time dynamics in language
is broad and includes motion-dependent action
word processing [35], the activation of motor
circuits when listening to action-related sen-
tences [88], signatures of continuous dynamic
processes in spoken word recognition and se-
mantic categorization [82], and the synchro-
nization of speech and gesture [61,62]. Yet,
despite this expanding empirical and theoreti-
cal picture, a formalized theoretical framework
for embodied linguistic processes has yet to
emerge.

Spatial language provides a useful entry po-
int for developing such a framework because it
is an elementary link between integrative lin-
guistic processes and the embodied, dynamic
sensory-motor systems that fluidly operate in
the spatial world. Given these embodied roots,
a viable spatial language framework must spec-
ify how differing behaviors (e.g. language pro-
duction and language-guided action) can emer-
ge from the same system, how non-spatial ob-
ject features (e.g. color) can be integrated with
spatial information, and how linguistic sym-
bols can be tied to the continuous sensory-
motor representations.

Some spatial language theories to date have
touched on related embodiment issues. Recent
modeling work, for example [21,13], accounts
for empirical results showing that functional
relations between objects influence spatial lan-
guage behavior. Regier and Carlson [69] have
also provided important insights into the com-
plex contributions of attention and landmark
shape. However, these models do not gener-
ate flexible behaviors in real-time nor do they
provide transparent accounts of the represen-
tational integration supporting this flexibility.
This represents a substantial theoretical gap.
We contend that a process-based account of
spatial scene representations and behaviors de-
rived from these representations is required to
address this gap.

Recent work suggests that a systems-level
neural-dynamic approach to human cognition

can provide the conceptual foundation for such
a process-based account. At the broadest level,
this perspective argues that behaviors unfold
in real-time from the continuously coupled in-
terplay between neural-dynamic decision pro-
cesses, the sensory-motor system, and the feature-
rich environment in which bodies are embed-
ded [84,91,9,90,75]. These approaches have es-
tablished strong contact with observable hu-
man behaviors across a variety of contexts,
including saccadic eye movements [94], visual
discrimination and visual working memory [78,
48,49], spatial working memory development
[77,76], and infant reaching errors [89]. These
empirical ties suggest that complex, integra-
tive spatial language behaviors may be sim-
ilarly described in neural dynamic terms. To
advance embodied theories of language, the
present work therefore seeks to develop and
test a formalized neural-dynamic architecture
of spatial language.

To this end, we first discuss three key char-
acteristics of embodied spatial language, na-
mely behavioral flexibility, the integration of
spatial and non-spatial features, and the inte-
gration of symbolic and continuous represen-
tations. Next, we briefly outline three princi-
ples of a neural dynamic system that collec-
tively address these aspects: gradedness, au-
tonomy, and stability. With this conceptual
background we introduce the Dynamic Field
Theory (DFT), a neurally-based theoretical lan-
guage that incorporates activation profiles de-
fined over continuous dimensions and empha-
sizes attractor states and their instabilities [75,
79]. The DFT is the foundation of our neural-
dynamic architecture.

The gradedness, stability and autonomy of
the DFT framework allow one to couple the
cognitive architecture to the sensory-motor sys-
tem. To demonstrate this capacity we imple-
ment and test our spatial language architec-
ture on a robotic platform. Importantly, we
use the low-level sensory input provided by the
robot’s camera. Thus, our model deals with the
problem of extracting the categorical, cogni-
tive information from the low-level sensory in-



put through the system dynamics, not through
the preprocessing of the visual input in an un-
grounded, neurally implausible way. Models
which do not directly link cognitive behavior
to lower-level perceptual dynamics risk side-
stepping this difficult issue. Our explicit con-
nection to behavior through the robot provides
a key demonstration of sufficiency of our neural-
dynamic approach and a heuristic for under-
standing how spatial communication emerges
from lower-level sensory dynamics.

In a suite of varying spatial-language tasks
using everyday objects we demonstrate the fra-
mework’s capacity for both contextually-de-
pendent behavioral flexibility and the seamless
integration of spatial, non-spatial, and cate-
gorical representations. In doing so, we draw
particular attention to the time course of these
behaviors, thereby revealing the neuro-dyna-
mic roots of representational integration and
behavioral flexibility within our spatial lan-
guage system. To our knowledge, this is the
first unified neurally-grounded architecture that
integrates these processes and behaviors. As
such, our system represents a step towards the
development of a more comprehensive, neural-
dynamic model of human spatial language and
embodied language processes more generally.

1.1 Flexibility and Integration in Spatial
Language

The neural dynamics of any language behav-
ior are immensely complex and multifaceted.
To develop a conceptually manageable frame-
work, we focus on three core aspects of spatial
language that arise from its embodied roots,
namely behavioral flexibility, the integration
of spatial and non-spatial representations, and
the integration of categorical and continuous
representations. The present section considers
each in turn.

The power of the spatial language system
is revealed in its broad behavioral range, from
following directions [24] and creating mental
models [87] to telling stories [53] and coor-
dinating joint attention and action [4,50,74].

Even within a single, highly constrained envi-
ronment such as a shared tabletop workspace,
spatial language exhibits an impressive degree
of flexibility.

Consider, for example, a cluttered office desk

in which a cup of coffee sits to the right of a
laptop computer. Given this context, the hu-
man spatial language system can freely gener-
ate descriptions of object-centered relations in
the scene (i.e. spatial descriptions that select
another object as a reference point). Thus, if
one asks “Where is the green coffee cup in rela-
tion to the laptop?” then a person with knowl-
edge of the scene can easily answer “To the
right.” On the other hand, if one asks “What
is to the right of the laptop?” one viewing or
remembering the scene could instead respond
“The green coffee cup.” The production be-
havior in both these instances, of course, also
assumes the complementary capacity to com-
prehend the questions. Moreover, both spatial
language production and comprehension flexi-
bly process different reference objects and spa-
tial terms across highly variable visual scenes
— people can use spatial language to describe
just about anything. Behavioral flexibility is
thus part and parcel of functional spatial com-
munication.

Our second critical aspect is the integration
of the fine-grained, metric sensory-motor rep-
resentations [48,39] with the categorical, lin-
guistic representations rooted in the language
faculty [44,66]. To successfully index items in
the world one must map the symbols of lan-
guage to the dynamic representational states
of perception. Referring to the coffee cup, for
example, assumes the ability to link informa-
tion in the visual system to words like “green”,
“cup”, “laptop”, and “right”. This link is of
course functionally bidirectional, enabling us
to produce language about the visible world
and map the words we hear onto a visual scene.
Moreover, because spatial language can be used
to guide others’ behaviors, this representational
integration also extends into the motor pro-
cesses controlling behavior. Considered toge-
ther, these aspects highlight the need to ground



language in the neural dynamics underlying  cesses supporting scene representation shape
scene representations in a manner that permits ~ the time course of spatial language behaviors?
flexible manipulation of the symbolic units (for ~ How do context-specific inputs like spatial terms
related discussion see also [36,5,65,34,11,43]).  and visible objects dynamically structure the
Our third point of focus is the integration  integration of the multiple components sup-
of spatial and non-spatial features. Consider = porting behavioral flexibility? Developing a neu-
again our description of the green coffee cup  rally grounded, formalized framework is a key

that sits to the right of the laptop. In this case,  step to answering such questions.

the individual must process both the explicit What are the concepts underlying such a
spatial term “right” and the non-spatial de-  peural framework? The first such concept is
scriptor “green” to identify and use the land-  autonomy. Autonomy means that neural pro-
mark. This link between categorical spatial re-  cegses unfold continuously in time on the basis

lations (e.g. right) grounded in metric space  of both past and present neural states and past
and non-spatial perceptual features (e.g. green)  and present sensory information. As a result,
enables one to reference landmarks within the  the autonomous cognitive systems are sensi-
visible (or remembered) environment using non-  tive to input, but not purely input-driven [71].
spatial object characteristics such as color, tex-
ture, or size. The ability to integrate different
features is thus central to generating and com-
prehending spatial descriptions.

Autonomy is critical for a cognitive sys-
tem because it provides the basis for structur-
ing behavior in a context-dependent manner.
To be effectively adaptive, cognitive systems
must be able to smoothly flow from decision
to decision and action to action in accord with
both the current environment and the behav-
ioral context [75]. Autonomy makes this flex-
To this point, we have identified three criti-  ible and continuous integration of goals, de-
cal aspects of spatial language that a viable  cisions, and actions within an embodied sys-
neural-dynamic approach must address. As we  tem possible. Without autonomy, a neural dy-

1.2 Embodied Cognition: Supporting Neural
Dynamic Concepts

previously noted, extant spatial language mod- ~ namic system would not be able to modulate
els have addressed a number of important di- ~ the multi-dimensional integration supporting
mensions that speak to the embodiment of spa-  this flexibility and would instead more closely
tial language including attention, landmark sha- ~approximate input-compute-output processes
pe, and functional features (e.g. [21,13,69]).  or stimulus-response associations.

Nonetheless, no model to date has brought the Representational gradedness is the second

detailed aspects of behavioral flexibility and  neural concept central to describing cognitive
representational integration together within a  processes grounded in the sensory-motor sys-

single framework. tem. A graded representation of a behavior

The limits of current spatial language theo-  or percept is defined over one or several con-
ries arise from the failure to provide a neurally-  tinuous feature dimensions which constitute
grounded account of real-time spatial language  the behavior or percept linked to the motors
behaviors and their roots in spatial scene rep-  or sensors. Within an autonomous neural dy-

resentations. Consequently, current theories ty-  namic system, the computations taking place
pically overlook some questions fundamental  over these graded representations may be de-

to understanding representationally complex,  scribed using concepts from non-linear dynam-
embodied spatial communication. For exam-  ical systems [27]. The neural dynamics of move-
ple, how do neurally-grounded scene represen-  ment preparation, for example, may be charac-
tations develop over time on the basis of sen-  terized according to non-linear signatures emerg-

sory information? How do the dynamic pro-  ing over the continuous dimensions of reach-



ing amplitude. Low-level visual processing, on
the other hand, may be described by the neu-
ral dynamics of spatial and non-spatial met-
ric features (e.g. color) available in the visible
scene. Importantly, metric features have also
been shown to shape spatial language behav-
iors [56,69]. As a result, such graded, metric
features, which are critical to sensory-motor
dynamics [7,8,27] and non-linguistic decision
processes [48,49], may also be used to probe
the neural dynamics of spatial language.

The successful integration of graded sensory-
motor representations with the spatial language
system depends on the notion of stability, a
core principle of dynamical systems thinking
and the third neural concept we emphasize.
Stability is the capacity of a dynamical system
to resist change. It thus plays a central role
in the neural dynamics of cognition because it
provides for consistent behavior in the face of
neural or environmental noise. In the absence
of stability, graded representations grounded
in the sensory-motor system would be sub-
ject to continual shifts arising from inherently
noisy neural states. Stability is therefore a pre-
requisite for the grounding of sustained cogni-
tive behavior on neural-dynamic states linked
to sensory data [75].

Observe, however, that to be adaptive, au-
tonomous dynamical systems must also be able
to destabilize and form new stable states as
the contexts and behaviors demand. This bal-
ance between stability and instability is fun-
damental to behavioral flexibility and is the
prime challenge for formalized theories of au-
tonomous embodied cognition.

The Dynamic Field Theory incorporates
each of these concepts and therefore provides
the representational foundation of our proposed
framework. We introduce this theory in the fol-
lowing section.

2 Methods

2.1 Dynamical Field Theory (DFT)

Dynamical Field Theory is a neural-dynamic
approach to embodied cognition in which cog-
nitive states are represented as distributions
of neural activity defined over metric dimen-
sions. These dimensions may represent percep-
tual features (e.g., retinal location, color, ori-
entation), movement parameters (e.g., heading
direction, end-effector velocity) or more ab-
stract parameters (e.g., location relative to an
object, visual attributes of objects like shape
or size). These metric spaces are continuous,
representing the space of possible percepts, ac-
tions, or objects and scenes. They are endowed
with a natural metric which represents percep-
tual or motor similarity.

Spatially continuous neural networks, or neu-
ral fields, were originally introduced as approx-
imate descriptions of cortical and thalamic neu-
roanatomy based on the spatial homogeneity
of cortex along its surface [96]. The principle
of topographic mapping of feature spaces onto
cortical surfaces [51] has been evoked to ex-
tend the notion of neural fields to dimensions
beyond the neuroanatomical ones [93] (see [6]
for critical discussion). More recently, however,
the notion of Distributions of Population Ac-
tivation shows how neural fields may describe
neural representations of metric dimensions in-
dependently of neuroanatomy [26,8,18]. Each
neuron contributes its tuning curve to the rep-
resentation of a feature dimension, weighted
with its current firing rate. As a result, neu-
rons are not localized within the neural fields,
but distributed according to the specificity of
their response. A single, localized peak in such
a Distribution of Population Activation repre-
sents a specific value of the metric dimension,
but potentially involves broad populations of
neurons that may be spatially distributed. The
population vector reflects both the specified
metric value and the total amount of activa-
tion [33].



Neural fields are recurrent neural networks
whose temporal evolution is described by itera-
tion equations. In continuous form, these take
the form of dynamical systems. The mathe-
matics of dynamical neural fields was first an-
alyzed by Amari [2] and much modeling has
since built on the original Amari framework
[73] which we briefly review here. The activity
distribution of a neural field wu(z,t), defined
over a continuous metrical space X, =z € X,
evolves in time according to

= —u(z,t)+h+I(z,t)
/f 2 t))w(x — 2)dx'.

The rate of change, u(z,t), of the field’s
activation at a time, ¢, and a field site, z, is
proportional to the negative of the current ac-
tivation level, u(x,t). This provides the fun-
damental stabilization mechanism. Added to
this are a negative resting level h < 0, inputs
from sources outside the field, I(z,t), and in-
puts from other sites, 2/, of the same neural
field. This last term represents neural inter-
action and is characterized by excitatory cou-
pling among field sites that are close to each
other and inhibitory coupling across larger dis-
tances:

Tu(x,t)

(1)
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(where Az = 2 — 2’ and 0eze < Tinn)-

Only sites with sufficient activation con-
tribute to this lateral interaction as described
by the sigmoidal non-linearity:

flula 1) = ——

Thus, while activation stays below the thre-
shold of this sigmoid (defined as the zero level
of activation), interaction plays a minor role in
the evolution of the field, which is dominated
by input. This is true for sufficiently weak ex-
ternal inputs I(x,t) < h. With increasing ex-
ternal input, activation of the field, u(z, t), sur-
passes the threshold and interaction begins to

p>1 (3)

engage at locations at which f(u(x,t)) > 0.
This induces a bifurcation in the field dynam-
ics, the so-called detection instability [75]. Be-
yond this instability, localized peaks of acti-
vation are self-stabilized: activation is stabi-
lized against decay by local excitatory inter-
action and stabilized against diffusive spread
by global inhibitory interaction. The resulting
localized peak of activation is a unit of rep-
resentation in the Dynamic Field Theory ap-
proach to cognition. When multiple fields are
coupled, as will be the case in the model de-
veloped here, the detection instability is criti-
cal also for the propagation of activation from
one field to another. The extent to which such
peaks are sensitive to further changes of input
depends on the strength of interaction. Fields
with strong interaction support self-sustaining
peaks which maintain activation after the com-
plete removal of the external input that ini-
tially induced them. Such peaks are robust to
new distractor input and comprise a form of
working memory (see e.g. [76,49,78,80]).

From spatially continuous fields, categori-
cal states may emerge. This is based on the
same mechanism as the detection instability
which may amplify small inhomogeneities in
the field into macroscopic peak states [75]. As-
sume, for instance, that a few locations in a
field are frequently activated. Generic learn-
ing mechanisms may change the neural dy-
namics such that these field locations are more
excitable than other, less frequently activated
locations. If a broad input is now applied to
the field, one of the more excitable field loca-
tions may be the first to be pushed through
the threshold at which interaction engages. A
full-fledged self-stabilized peak will develop at
that location, which then prevents additional
peaks from being generated at other locations
through inhibitory interaction. This peak re-
flects categorical behavior, because the field lo-
cation depends on the learned inhomogeneities
in the field, not on the spatial structure of the
inducing input.

In this paper, we will not address the learn-
ing mechanisms through which learned inho-



mogeneities in the field arise. Instead, we will
use an effective dynamical description of such
categorical behavior by introducing discrete dy-
namical neurons with self-excitatory interac-
tion, which represent the activation at excitable
field sites. Given sufficient input to such neu-
rons, a detection decision is made at which
the neuron switches to an activated state. This
state can stabilize itself against weaker input
in a bistable regime. Conversely, a discrete neu-
ron may provide localized input to an activa-
tion field exactly like a localized peak of acti-
vation in a field does. Dynamical Field The-
ory thus provides a framework for integrating
metrically continuous and metrically discrete
categorical representations.

2.2 The spatial language architecture

Spatial language is a complex behavior that
draws on numerous cognitive processes includ-
ing vision, spatial cognition, and language. Spa-
tial language behaviors therefore depend on
numerous cortical and subcortical regions. Com-
prehending or producing spatial language about
a visual scene, for example, not only involves a
neural scene representation that emerges from
the retinal image but also the integration of
long-term memory about objects and their fea-
tures and the neural representation of spatial
semantic terms (e.g. right, above, etc). Criti-
cally, these semantics must be applied to the
current scene and they are often aligned with
a reference object [52]. Not surprisingly, the
neural populations accomplishing these vari-
ous functions are widely distributed over the
cortex with VI-MT processing visual features
[42], the parietal cortex supporting spatial rep-
resentation and reference frame transformations
[3,20,22], and the frontal, inferotemporal, and
the temporal-occipital-parietal junction regions
supporting spatial language [23,92].

Our model is similarly distributed and con-
tains several interconnected modules each main-
taining a unique functionality that affects the
dynamics of the other modules. The Feature-
space fields (Fig. 1A) are driven by the visual

input and represent the locations and features
of objects. The Reference field (Fig. 1B) rep-
resents the reference object location, the point
relative to which spatial terms are defined. The
Spatial semantic templates (Fig. 1C) express
the semantics of the spatial terms. These tem-
plates are aligned with the location of the ref-
erence object by the “shift” mechanism (Fig. 1D)
and then integrated with the visual, feature-
based object representations in the Spatial se-
mantic neural fields (Fig. 1E). The language
terms specifying features (“red”, “green”, “blue”)
or spatial terms (“left”, “right”, “above”, “be-
low”) are represented by bi-stable dynamical
nodes, which are interconnected with the neu-
ral fields of the model. These connections ex-
press the semantic meaning of the particular
term.

Although our network is distributed, each
functional component is based on the same dy-
namical neural field principles. This creates a
functionally and theoretically coherent spatial
language architecture that not only respects
core neural principles but which can also be
linked to real-world sensory information and
behavior.

To provide the most rigorous test of our
embodied approach, we implement the model
on a robot that is equipped with a vision sys-
tem. In doing so, we directly link the sensory
and motor properties of the robot to the in-
ternal neural dynamics of the system, bringing
this robotic implementation in line with known
principles of the human nervous system.

The sections below detail these functional
modules and the robotic implementation.

2.2.1 Representing locations and colors

When using spatial language, people often re-
fer to spatial relations between objects. In “The
toaster is to the right of the sink”, for ex-
ample, the toaster’s location is defined rela-
tive to the sink. To either produce or act on
this spatial information, both the target ob-
ject (the toaster) and the reference object (the
sink) must be identified in the visual scene.
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Fig. 1 Overview of the neural-dynamic spatial language architecture

The image of the visual scene on our retina is
first processed by the early visual regions of
cortex, where the perceptual features are ex-
tracted and retinotopic feature maps are built
[30,42]. In the DFT, these feature maps are
modeled as a set of feature-space fields. Each
site of these dynamical fields is sensitive to a
particular value of a visual feature at a certain
retinotopic location.

In the present work we focus on color as
the visual feature. Color — as with other lo-
cal features such as orientation and texture —
is known to contribute to representations in
early visual processing [31] (see also [28] for a
comprehensive DFT approach to multi-dimen-
sional object representation). As a low-level
feature with an underlying metric, color can
be also easily mapped onto a continuous di-
mension of a neural field.

The color-space neural field is a three-di-
mensional dynamical field F'(z, y, ¢; t), each site
of which responds to a color, ¢, at a certain
location on the retina, (x,y). The activity dis-

tribution in this field thus represents the color
distribution in the visual scene. A localized
blob of a certain color in the scene can po-
tentially give rise to an activation peak in the
color-space field. Such a peak is a dynamic
object representation grounded in the object’s
graded location and color distribution.

In our implementation, the color dimen-
sion is resolved sparsely, because we require
only a few colors to represent the objects used
in our demonstrations. The three-dimensional
dynamical field is therefore implemented as a
stack of six two-dimensional dynamical fields.
Each of these color-space fields is a two-di-
mensional field whose sites respond to the spa-
tial position of a particular color. These fields
are globally inhibitory such that an activation
peak within one field leads to a uniform inhi-
bition of the remaining color-space fields.

The visual input to the color-space fields
is provided by a robotic camera. The camera
image here plays a role similar to that of reti-
nal images in human cognition. The process



of extraction of feature maps from the retina
images is substituted by a color extraction al-
gorithm. The result is a distribution of col-
ors defined over the space of the image plane.
These distributions correspond roughly to the
retinotopic feature maps found in early visual
processing [30]. In particular, the color is ex-
tracted from the camera image as the hue of
each pixel in the hue-saturation-value (HSV)
color space. This hue value is binned accord-
ing to one of six equidistant hue ranges (rep-
resenting the basic colors red, orange, yellow,
green, blue, and violet) and provides input to
the corresponding color-space field. The input
into the color-space field location matches the
pixel’s image location. The pixel’s intensity (va-
lue) determines the strength of this input.
Fig. 2 illustrates this process. The visual
scene here consists of three objects: a green
tube, a blue wire-roll and a red plastic apple
(Fig. 2A). They provide inputs to the color-

space fields (mainly to “green”, “red”, and “blue”

fields respectively) at positions corresponding
to the locations of the objects in the image (see
Fig. 2B). These localized input activations to
the color-space fields are subthreshold. This
means that when the input is summed with
the negative resting levels, the activation at
the specified field sites remains negative. Thus,
the fields produce no output and no activa-
tion is propagated to other sites in the fields
or to other parts of the architecture. When a
localized activation surpasses threshold, how-
ever, output is produced that is then passed to
other field sites and other parts of the model.
This activation plays a key role in the dynamic
structuring of activity in these other elements
and, ultimately, the generation of task-specific
linguistic and motor behaviors (see below).

2.2.2 Representing color terms

When people refer to objects in the world, they
link discrete linguistic representations to the
graded, metric features of the visible world.
The exact nature of these connections in cor-
tex has yet to be identified, however (although
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Fig. 2 Panel A: The visual scene containing three
objects — green tube of creme, blue tape-roll and a red
plastic apple — provides input to the color-space fields
(Panel B; three fields shown here). Panel C: speci-
fication of the “blue” color term activates the “blue”
color-term node, raising the resting level of the “blue”
color-space field. The peak of positive activation in the
“blue” color-space field represents the location of the
blue object in the image.

for work in this direction see [60,38]). In our
model, we represent language terms by sim-
ple bi-stable dynamical nodes within a winner-
take-all network of competing nodes.

Each discrete node is reciprocally linked to
one of the color-space fields. The discretization
of the three-dimensional color-space field thus
provides the linguistic categorization along the
color dimension. Such linguistic mappings be-
tween the discrete linguistic and the underly-
ing continuous feature maps are hypothesized
to emerge from experience over development.
Because we are aware of the categorization prop-
erties of the neural fields [95] and emergence
of the color categories is not of interest for this
paper, we allow this simplification here.

Color-term nodes may become active through
external linguistic input. The color-term node’s
activation is further propagated along its link
to the color-space field. Fig. 2C illustrates the
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linguistic boost effect, in which the user-specified the image, is stabilized by the interactions in
linguistic input “blue” activates the “blue” color- the field. Nonetheless, it is also updatable if

term node, thus raising the resting level of the
“blue” color-space field and pushing the acti-
vation there beyond the detection threshold.
When this threshold is surpassed, the active
sites in the field engage in lateral interactions.
This induces a localized activation peak whose
location corresponds to that of the target ob-
ject in the camera image.

In addition to linguistic input, a peak in
a color-space field can also be driven by posi-
tive activation coming from other parts of the
cognitive architecture. Because the color-term
nodes are reciprocally linked to the color-space
field, such a peak would increase the activa-
tion of the linked color-term node and trig-
ger the generation of a descriptive color term.
The color-term nodes thus provide the means
of generating a specific color term description
as well as processing linguistic input from the
user.

2.2.83 Reference field

To describe a target object location by refer-
ence to another object (e.g. “The toaster is
to the right of the sink”), the reference object
location must also be represented in a feature-
dependent manner. The reference field (Fig. 1B)
serves this role in our framework. In our im-
plementation, the reference field is a two-di-
mensional neural field (Fig. 3C) that receives
visual input (Fig. 3A). This input is modu-
lated by the reference color-term node, which
specifies the color of the reference object. The
color information is then extracted from the
camera image in a manner similar to that of
the color-space fields (section 2.2.1); only those
pixels with the color specified by the reference
color-term node serve as input to the reference
field.

The reference field is always in the “de-
tection” mode. This means that an object of
the specified color always induces an activa-
tion peak in this field. This peak, which rep-
resents the location of the reference object in

the reference object moves.

2.2.4 Spatial semantic templates

Spatial language terms typically represent pro-
totypical regions ([45,58], although see also [21]).
Thus, saying “left” usually highlights the same
part of the visual scene for English speakers.
These semantically specified spatial regions, or
“templates” [58], may be described by weight
matrices in which regions corresponding to pro-
totypical instances of the term have higher we-
ight strengths. Regions which provide a poorer
fit with the spatial term, on the other hand,
have lower weights.

In the present architecture, the precise con-
nection weights between the four spatial term
nodes (“left”, “right”, “below”, and “above”)
and the spatial fields are based on a neurally-
inspired approach to English spatial semantic
representation [64]. These connection weights
are defined by Gaussian distributions in polar
coordinates (see Eq. (4) and parameter values
in Appendix). When viewed in Cartesian co-
ordinates as applied here, they take on a tear-
drop shape (see Fig. 3B):

M = exp {—M] exp [—w

2 2
20P 205
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2.2.5 Spatial semantics alignment

As previously mentioned, spatial terms are of-
ten used in conjunction with a reference ob-
ject (see Reference field in section 2.2.3). Con-
sequently, spatial semantic templates must be
aligned with the reference object location. How-
ever, objects are initially represented in the
retinotopic rather than object-centered refer-
ence frame. The spatial templates must thus
be dynamically coupled with the space of the
visual scene to permit the flexible use of spatial
descriptions that are anchored in the world.
Although the exact neural mechanism of
this reference frame transformation process has
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Fig. 3 Reference field and spatial semantics alignment. Panel A shows the camera image containing three
objects (green toothpaste tube, blue wire roll, red plastic apple). Panel B shows the spatial distribution of the
weight strengths for each of the four spatial semantic terms (lighter blue regions indicate greater weight). Panel
C shows activation in the two-dimensional reference field. The activation peak (yellow blob) corresponds to the
green object location identified as the referent in this example. Panel D depicts the spatial semantic fields with
input from the semantic templates (Panel B) aligned with the reference object location (i.e. the light blue region
in the “right” spatial semantic field represents region to the right of the green reference object).

vet to be identified, different solutions are pos-
sible [67,55]. In the present work we solve this

problem through a spatial template “shift” mech-

anism (Fig. 1D) which aligns the semantic tem-
plates with the position of the reference ob-
ject. The semantic templates are only allowed
to contribute to the spatial semantic field dy-
namics (see below) after this has occurred.

We implement this “shift” or “alignment”
of spatial semantics as a convolution of the
output of the reference field, which holds the
reference object position, with the semantic
template functions. Because the reference ob-
ject is represented by a localized activation

pattern, the convolution centers semantic weights

on the reference object location. The shift of
the semantic weights can thus be viewed as a
modulation of the synaptic connection strength
between a spatial term node and the spatial se-
mantic field according to the activation in the
reference field. Fig. 3D shows an example of
this spatial semantic alignment in which the
semantic weights are centered on the location
of the green reference object.

2.2.6 Spatial semantic fields

For the system to process spatial language about
the visual scene, spatial information about the
target object and the aligned spatial templates
must be integrated. In our model, the spatial
semantic fields provide this function (Fig. 1E)
Spatial semantic fields are neural arrays with
weak dynamical field interactions (see param-
eter values in the Attachment). Each spatial
semantic field is associated with one spatial
semantic template. Each spatial semantic field
therefore represents a single spatial relation
(“left”, “right”, “above”, or “below” in the
present implementation), Fig. 3D.

The spatial semantic fields each receive ac-
tivation from the color-space fields which spec-
ify the target location. By blending this tar-
get location information from the color-space
fields with the aligned semantic weights, the
spatial semantic fields integrate the target and
spatial term information, thereby linking spa-
tial term knowledge to the visual scene.

In addition, each spatial semantic field is
also reciprocally linked to a categorical spatial-
term node, analogous to the color-term nodes
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(“left”, “right”, “above”, or “below” node; see
Fig. 1G). If the activation within a spatial se-
mantic field is sufficient, it will trigger the ac-
tivation of the linked node, signaling the se-
lection of one of the four represented spatial
categories. In addition, this node can also re-
ceive external linguistic input. This linguistic
activation of a spatial term boosts the activa-
tion of the linked field and can thus contribute
to the dynamics of the system.

2.2.7 Linguistic input and motor output

To communicate with the robot, we use a graph-
ical user interface (GUI), not speech input.
Nevertheless, the implemented interface does
incorporate some properties of the real-world
communication. In particular, the order of the
linguistic inputs and the timing interval be-
tween them are arbitrary rather than fixed.
Moreover, the model integrates these GUI in-
puts continuously in time, just as the human
nervous system continuously integrates linguis-
tic inputs. The timing of the input and its con-
tribution to the internal dynamics are there-
fore flexibly determined by the user. For this
reason, sustaining this characteristic flexibility
of natural language is a non-trivial property of
the spatial language framework.

To generate a motor behavior, we imple-
mented a dynamics controlling the camera-head
configuration (pan and tilt; see Appendix). At-
tractor dynamics are known to be a viable
model for many human motor behaviors [27].
The dynamical system implemented here has
an attractor that is effectively set by the local-
ized activation peak at the target object loca-
tion (as represented in the color-space fields),
forcing the robot to turn the camera head and
center the attended object in the correspond-
ing field. This coupling of the spatial language
architecture to motor behavior further high-
lights the power of the neural dynamic frame-
work to integrate higher- and lower-level pro-
cesses within a single system.

In generating this motor behavior, it is im-
portant to note that such sensor movements

change the spatial relations between the ob-
jects out in the world and the robot’s sen-
sory surface (image plane). Yet, these very spa-
tial relations continuously structure the cam-
era movement dynamics. Consequently, mov-
ing the camera potentially disrupts the visual
inputs on which the contextually-adaptive cam-
era movements depend. For this reason, cam-
era movements in our dynamically integrated
system provide a rigorous test of the model’s
stability properties.

3 Results: Demonstrations on a Robotic
Platform

Our goal is to model the neural dynamic pro-
cesses supporting flexible spatial language be-
haviors within a unified system. Such behav-
iors include generating a spatial description of
an object location (e.g. “The apple is to the
right of the toaster”) from visual input and lo-
calizing objects in a scene based on a linguistic
description. Because our robotic implementa-
tion links a formalized neural-dynamic model
with visual input, we can test the real-time be-
havioral flexibility of our model through lin-
guistically and visually varied dialogues. We
here detail our model’s performance in five such
scenarios.

Each demonstration combines real-world vi-
sual input with user-specified linguistic input
provided through the GUI. The robot’s task is
to either (a) select a descriptive color or spatial
term that matches the described target object
or (b) build a peak at the described target lo-
cation. Thus, in Demonstration 1la, for exam-
ple, we ask “Where is the blue object relative
to the green one?” and the robot must choose
the correct spatial term. In Demonstration 4b,
on the other hand, we ask “Where is the red
object to the left of the blue object?” and the
robot must select the correct object by build-
ing a peak at the correct location and centering
that object in the visual image.

In providing the linguistic input through
the GUI, it is important to note that appro-
priate selection decisions do not in any way de-
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pend on the sequence or the timing intervals
in this input. Indeed, as we show below, the
autonomous neural dynamics of our system are
at once continuously sensitive to new linguis-
tic inputs but nonetheless behaviorally robust
with respect to the fine-grained timing details
— getting the right answer does not depend on
careful input timing. In this vein, we further
observe that the localist nodes activated by
these linguistic inputs can be used in different
ways in different tasks. In some instances, node
activation drives activity in a continuous field.
In others, node activation represents a deci-
sion driven by the internal neural dynamics.
Because these nodes can be flexibly operated
upon, they provide key symbolic functionality.

Importantly, the flexibility in timing of the
human-robot interaction is achieved by the at-
tractor dynamics. Being in an attractor state,
the system can sustain variable time intervals
between user actions. Keeping in mind that
the real-time behaviors and interaction with
the user are central in our work, we measure
time in our demonstrations in physical units
(seconds) rather than the more conventional
simulation time-steps. Because the system re-
laxes to an attractor state rapidly — as guar-
anteed by the choice of the time-constant of
the dynamics 7 ~ 2.5ms — the timing of the
relevant events in the system is more sensitive
to the real-world processes than to the com-
putational power of the computer hardware.
To maintain consistency across the demonstra-
tions, we kept this notation even when showing
the cascade of instabilities leading to a single
decision in the framework when the user input
and the perceptual input did not change.

3.1 Demonstrations la and 1b: The neural
dynamics of “Where” and “What”

One basic function of spatial language is to de-
scribe where an object is. Another basic func-
tion is to learn about what object occupies
some described space. Our architecture dynam-
ically integrates spatial and feature-specific lin-
guistic input through metric visual informa-

tion, giving rise to two basic interactive path-
ways: a “Where” pathway and a “What” path-
way. Our model therefore directly addresses
these two basic functions.

When probing the “Where” pathway in De-
monstration la, the user specifies the target
and reference objects and the robot provides a
descriptive spatial term response (i.e. a” Where”
response). For instance if the user specifies that
the target object is blue and the reference ob-
ject is green, this would be analogous to ask-
ing “Where is the blue object relative to the
green one?” and expecting a descriptive spatial
term in response. When probing the “What”
pathway in Demonstration 1b, on the other
hand, the user specifies the spatial term and
the reference object and the robot selects a
color term that describes the target object (i.e.
a "What” response). For example, if the user
specifies that the reference object is blue and
the target is to the right of this referent, this
would be analogous to asking “What is the
color of the object to the right of the blue
one?” and expecting a descriptive target color
response. Note that the specification of the ref-
erence object’s color is obligatory in these and
the following scenarios (although we could use
the default reference point in the center of the
working space otherwise).

We examine the dynamics of these two sce-
narios below by combining the linguistic in-
put with a visual scene of three objects — a
green tube, a blue wire-roll and a red stack
of blocks — approximately aligned horizontally
(see Fig. 4A and Fig. 6A). By integrating lin-
guistic input, visual input, and both spatial
and non-spatial feature values in two different
tasks, these demonstrations provide the con-
ceptual building blocks for the additional tests
that follow. To our knowledge, they also rep-
resent the first evidence of behavioral flexibil-
ity within a unified, neurally-grounded spatial
language model.
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Fig. 4 Demonstration la. Neural fields activity just before response generation. The robot answers the question
“Where is the blue object relative to the green one?” by selecting “right”. Panel A shows the camera image
(green toothpaste tube, a blue wire roll, and a red plastic apple). Panel B shows the reference field activation
corresponding to the green reference object selected by user. Panel C depicts the color-space field activations
induced by the current scene. The “blue” color-term node input specifying the target object uniformly raises the
activation of the entire “blue” color-space field, leading to an activation peak at the blue object location. Panel
D shows the spatial semantic field activation profiles after the shift of semantic templates to the reference object
location. The active regions in the color-space fields propagate activity to the spatial semantic fields. This leads
to a localized positive activation in the “right” field (red arrow) at the location of the blue target. This increases
activity of the linked node, triggering the robot’s answer “right”.

3.1.1 Demonstration 1a: The “Where”
pathway

In this demonstration, we ask “Where is the
blue object relative to the green one?”, by se-
lecting the color blue for the target object and
green for the reference in the user interface.
Fig. 4A shows the presented visual array. The
robot should select the spatial term “right”.
The plots in Fig. 4 show the neural fields acti-
vations just before this response.

The task input first activates the color-term
node “blue”. The activation of the “blue” color-
term node raises the resting level of the “blue”

color-space field. This uniform activation boost
coupled with the camera input from the blue
object induces an activation peak in the field
at the location of the blue object (see “blue”
Color-space field Fig. 4C ). Next, the task in-
put activates the “green” reference color-term
node. This causes the green camera input to
enter the reference field and induces an acti-
vation peak in the reference field representing
the green item location (see Reference field,
Fig. 4B). Given our emphasis on behavioral
flexibility, we reiterate that there are no re-
strictions on the serial ordering of reference
and target object color information in this sce-
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Fig. 5 Demonstration 1la time course. Panel A shows the color-term nodes activity over the trial (the horizontal
axis represents time, the vertical axis represents activation). The “blue” input indicates the time point of linguistic
input into the node. This increases activity of the “blue” color-term node (red line), causing a detection instability
(ellipse) and activity propagation from the “blue” node to the “blue” color-space field (downward arrow). Panel
B depicts the time course of the projection of the “blue” color-space field activity onto the horizontal axis over
the trial. Along the vertical axis of Panel B, the lower portion corresponds to the leftmost image region, upper
portion the rightmost image region. When activity in the “blue” color-space field reaches the detection instability
(ellipse), that field passes activation into the spatial semantic fields (downward arrow). Panel C depicts the time
course of the “right” spatial semantic field with activity projected onto the horizontal axis in the same manner
described for Panel B. Color-space field activity leads to a localized activation profile for the blue object location
(middle portion of field). Once activity surpasses the detection instability (ellipse) it propagates activation to the
linked “right” spatial-term node. Panel D depicts the activation profile for the spatial-term nodes. The “right”
spatial semantic field activity boosts the activity of the “right” node (red line), pushing it through the detection
instability (ellipse), triggering the response. Smaller arrows indicate activity flow in the direction opposite to that
of the dominant flow of the task. We measured time in seconds to maintain consistency across all plots in the
present work. Here,1s ~ 4 - 10% integration time-steps. Zsp is the horizontal axis of the image plane.

nario nor are there any constraints on the tim-
ing interval between these linguistic task in-
puts: our framework is completely flexible in
this regard (see also Demonstrations 3a and
3b for probes of linguistic sequencing).

Once the target activation peak is estab-
lished, the localized target activity is then trans-

fered to the four spatial semantic fields (Fig. 4D).

In addition to this vision-based input, the spa-
tial semantic fields also receive input from the
spatial semantic templates. Critically, these spa-
tial patterns are shifted to align with the posi-
tion of the reference object. Consequently, the

target location activation overlaps within the
“right” spatial semantic field with the seman-
tic template (see large arrow in the “right”
Spatial semantic field, Fig. 4D). This overlap
ultimately leads to the activation of the asso-
ciated “right” spatial-term node and thus the
selection of the correct answer, “right”, in the
user interface.

Fig. 5 makes the time course of this task in
the relevant dynamic fields more transparent.
Fig. 5A presents the time course of the color-
term node activation. The ellipse denotes the
time of the detection instability after which
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the node activity is propagated to the “blue”
color-space field (approx. time=1.9s; see down-
ward arrow). Fig. 5B shows the time course of
the “blue” color-space field’s activation pro-
jected onto the horizontal axes of the image
plane. When the field receives the uniform ac-
tivation boost from the active “blue” node (ap-
prox. time=1.9s), the activation in the field
passes through a detection instability (ellipse)
and begins passing input into the spatial se-
mantic fields (see downward arrow). Within
the “right” semantic field (see Fig. 5C), this
input combines with the “right” spatial se-
mantic profile which pushes activity through
the detection-instability (see ellipse, Fig. 5C).
Consequently, the ”right” spatial semantic field

then increases the activation of the “right” spatial-

term node (red line, Fig. 5D), eventually mov-
ing it through the detection instability and
triggering generation of the term “right” in the
user interface.

3.1.2 Demonstration 1b: The “What” pathway

In this demonstration, we ask “What is the
color of the object to the right of the blue
one?” by selecting the spatial term “right” and
the “blue” reference object color in the user
interface. Fig. 6A shows the presented visual
array. The robot should select the color term
“red”. The plots in Fig. 6 show the activation
profiles just before the response.

The task input first activates the spatial-
term node “right” and then the reference ob-
ject color “blue”. The reference object specifi-
cation “blue” causes the blue camera input to
enter into the reference field and induces an ac-

tivation peak at the blue item location(Fig. 6B).

The activation of the “right” spatial-term
node raises the resting level of the “right” spa-
tial semantic field. This homogeneous boost
creates a positive activation in this field to the
right of the blue reference object once the ref-
erence information is given (see “right” Spa-
tial semantic field, Fig. 6C). This spatially-
specific activation is then input into all color-
space fields. This raises activation at all those

color-space field locations that lie to the right
of the reference object (see lighter blue regions,
Fig. 6D). Critically, this spatially-specific ac-
tivation boost overlaps with the localized in-
put from the red object in the visible scene.
This overlap leads to the development of an
activation peak in the “red” color-space field
(see large arrow in the “red” color-space field,
Fig. 6D). This stabilized peak subsequently ac-
tivates the associated color-term node, trigger-
ing the correct description of the target object,
“red”.

Fig. 7 details the time course of this task. In
Fig. 7D the time course of the “right” spatial-
term node (red line) shows increased activation
from the user input and the subsequent move-
ment through the detection instability (ellipse,
Fig. 7D). At this point the node begins to
pass activation to the “right” spatial seman-
tic field (upward arrow, Fig. 7D) thereby uni-
formly boosting the entire field. This spatial
semantic field then passes through the detection-
instability bifurcation (ellipse, Fig. 7C) and
begins to pass activation to the color-space
fields (see upward arrow into “red” color-space
field, Fig. 7 B). The spatially-specific activa-
tion coming into the “red” color-space field
then sums up with the localized red object ac-
tivation to produce a positive activation. The
field’s activity thus moves through the detec-
tion instability (ellipse, Fig. 7B) to drive the
activation and ultimate selection of the “red”
color-term node (approx. time= 2.6s, Fig. TA).

3.2 Demonstrations 2a and 2b: Prototypical
and non-prototypical spatial relations

Demonstrations 1a and 1b illustrated the basic
model behaviors, selecting either a descriptive
spatial term or a color term according to the
combined visual and linguistic input. This is
the first demonstration of behavioral flexibilty
within a single, neurally-grounded spatial lan-
guage model. In both cases, however, the tar-
get object locations corresponded to perfect
examples of the selected spatial terms. Em-
pirical spatial language research, however, in-
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Fig. 6 Demonstration 1b neural fields activity just before response generation. The robot answers “What is the

object is to the right of the blue one?” by selecting “red”.

Panel A shows the camera image (green toothpaste tube,

blue wire roll, and red plastic apple). Panel B shows the reference field activation for the blue reference object.
Panel C shows the spatial semantic field activation following the semantic shift to the reference object location.
The “right” linguistic input boosts the entire “right” spatial semantic field. This leads to positive activation that
propagates into those color-space field regions to the right of the reference object (lighter blue regions, Panel
D). This region overlaps with that of the red plastic apple in the “red” color-space field, leading to a localized

activation peak (Panel D, red arrow) which triggers the

dicates that deviation from such prototypical
spatial relations can influences spatial language
decision processes (e.g. [45,15,16]). Demonstra-
tions 2a and 2b explore the dynamic conse-
quences of deviating from these prototypical
semantic regions.

In both Demonstrations 2a and 2b, we se-
lect “blue” as the target object color and “green”
as the reference object color. The robot’s task
in both instances then is to answer the ques-
tion “Where is the blue object relative to the
green one?”. However, in Demonstration 2a,
the relative target-reference position corresponds
to a prototypical "right” relation (see Fig. 8A).
In Demonstration 2b, on the other hand, the

“red” response.

relation is neither perfectly “right” nor per-
fectly “above” (see Fig. 9A).

Fig. 8 shows the Demonstration 2a activi-
ties in the color-space fields (C),the reference
field (B), and the spatial semantic fields (D)
just before the answer is given. The spatially
localized input from the robotic camera and
the homogeneous boost from the blue color-
term node sum to produce a localized activa-
tion peak in the “blue” color-space field (see
Fig. 8C). This localized activation is then trans-
ferred to the spatial semantic fields. Here, it
overlaps with the “right” spatial term tem-
plate which is aligned with the reference object
location (see Fig. 8D). The positive activation
in the “right” spatial semantic field triggers
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Fig. 7 Demonstration 1b time course. Panel D shows the spatial-term node activation over the trial (horizontal
axis, seconds; vertical axis, activation). The “right” input indicates the time point of linguistic input at the start of
the trial. The “right” node (red line) passes through a detection instability (ellipse), boosting the “right” semantic
field (upward arrows). Panel C shows the “right” spatial semantic field time course (projected onto the horizontal
axis as in Fig.5). Activity is elevated in the region to the right of the reference object (upper region), leading to
the detection instability (ellipse) and activation into the color-space fields (upward arrow). Panel B shows the
activation time course of the “red” color-space field (projected onto the horizontal axis). The localized activation is
elevated, leading to a detection instability (ellipse). Panel A shows the color-term nodes activity, with the “red”
color-term node (red line) triggered by the “red” color-space field activation. Smaller arrows indicate activity flow
in the direction opposite to that of the dominant flow of the task.

the activation of the “right” spatial-term node,
consistent with the relation in Fig. 8A.

In Demonstration 2b, we provide the same
linguistic input as Demonstration 2a, but this
time shift the blue target object into the upper
region of the image (see Fig. 9A). As a result,
the target object’s spatial relation to the green
referent might be best described by a combina-
tion “right” and “above” (for related empirical
results see [29,45]). This semantic ambiguity is
captured by the two regions of positive activa-
tion in the spatial semantic fields, one in the
“right” field and the other in the “above” field
(Fig. 9D). Eventually, however, the “above”
field wins the competition, thereby leading to
the selection of the “above” response.

These results detail how the shift of the
target object’s position not only changes the

spatial term selected but also shapes the time
course of the decision processes. As Fig. 10
shows, the response latency between the speci-
fication of the target object color and the selec-
tion of the spatial term is substantially larger
in Demonstration 2b (Panels C-D, Fig. 10) than
in Demonstration 2a (Panels A-B, Fig. 10).
This outcome is consistent with empirical find-
ings (e.g. [15]) showing that deviations from
prototypical spatial relations can slow spatial
language decision processes. By describing the
competitive neural dynamics that can qualita-
tively capture these effects, our model provides
promising grounds for addressing competitive
spatial language processes and spatial term se-
lection across varied relations.
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Fig. 8 Demonstration 2a neural field activity just before response generation. The robot answers “Where is the
blue object relative to the green one?” by selecting “right”. Panel A shows the camera image (a red stack, a
green stack, and blue wire roll). Panel B shows the reference field activation corresponding to the selected green
reference object location. Panel C shows the color-space field activity, with the “blue” color-space field boosted
by the “blue” linguistic input specifying the target object. This creates a localized activation profile at the blue
object location. Panel D shows the spatial semantic field activations which are aligned with the green reference
object location and receive input from the active color-space field regions. Activation is highest in the “right”
spatial semantic field which overlaps with the blue target object location (see big arrow, Panel D). This overlap

leads to the activation of the “right” spatial node.

3.3 Demonstrations 3a and 3b: Dynamic
signatures of linguistic sequencing

Demonstrations 1 and 2 support the sufficiency
of our neural spatial language framework, re-
vealing its capacity for behavioral flexibility
and representational integration in the con-
text of real-world visual input. Nonetheless, it
should be pointed out that because the objects
were differently colored, they did not share
any common representational features in our
model. In more complex visual environments,
however, visible objects often have many fea-
tures in common. As a result, unambiguously
specifying an object in these environments will
often require the combination of multiple de-
scriptive terms. For example, if one is trying to
specify a given red object and there are many
other red objects in the scene, “The red one

to the right of the blue” may suffice whereas
“The red one” will clearly not.

Importantly, spoken language unfolds over
time. Given that language is continuously pro-
cessed [59,1], this suggests that the sequence
of words specifying an object whose features
overlap with those of other objects in the scene
will influence the dynamics of visual-linguistic
integration. Demonstrations 3a and 3b explore
the integrative dynamics of sequential linguis-
tic input in a more complex visual environ-
ment where target identification requires both
the target color and the spatial relation.

In these demonstrations, we present four
items: a red stack of blocks, a green tube, a
blue wire roll, and a red plastic apple (see
Fig. 11A). The target object is the red stack
on the left side. The robot’s task is to iden-
tify the object by building an activation peak
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Fig. 9 Demonstration 2b neural field activity just before response generation. The robot answers “Where is the
blue object relative to the green one?” by selecting the spatial term “above”. The objects and the linguistic input
are the same as that of Demonstration 2a but the blue target object location is shifted upwards in the image.
Panel A shows the camera image (red stack, green stack, and blue wire roll). Panel B shows the reference field
activation for green reference object. Panel C shows the color-space field activity, with the “blue” color-space
field boosted by the “blue” linguistic input. This creates a localized activation profile at the blue object location.
Panel D shows the spatial semantic field activations which are aligned with the green reference object location
and receive input from the active color-space field regions. Unlike Demonstration 2a, the target location activation
overlaps with both the “right” and the “above” spatial semantic fields (see large arrows). The slightly stronger
overlap for the above region provides a competitive advantage eventually triggering the “above” response.

at the specified target location in the correct
color-space field.

To unambiguously specify the red stack rel-
ative to the blue roll, one must give both the
target object color (red) and the spatial rela-
tion (left). In line with natural speech, how-
ever, we vary the sequences. Specifically, in
Demonstration 3a, we specify the spatial term
(“left”) first followed by the color term (“red”).
In Demonstration 3b, on the other hand, the
color term (“red”) comes first followed by the
spatial term (“left”). Although the complete
descriptions are logically equivalent, differing
sequences within an integrative neural dynamic
model will lead to differing intermediate dy-
namic states. To focus on the dynamic conse-
quences of these differing sequences, the refer-

ence object information was provided before-
hand and this step is not shown.

3.83.1 Demonstration 3a: “Left” followed by
“Red”

In Demonstration 3a, we first present the spa-
tial term (left) followed by the target object
color (red). This sequence roughly corresponds
to describing the target as “The one to the left
of the blue, the red one”. The robot must build
a peak at the correct target location in the cor-
rect color-space field.

As shown in Fig. 11 (left column) specify-
ing “left” first leads to positive activation in
the “left” spatial semantic field (see Fig. 11E)
which is then transmitted to the color-space
fields (Fig. 11D). Thus, all color-space field
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Fig. 10 Demonstrations 2a and 2b time courses for the spatial-term and color-term nodes. In both demonstrations
the robot answers “Where is the blue object relative to the green one?”. In all panels, the vertical axis represents
the node activation value and the horizontal axis represents time. Panels A-B show the activation for the color-
term (A) and the spatial-term (B) nodes in Demonstration 2a where the target object is aligned with prototypical
“right”. The “blue” arrow in Panel A marks the user input specifying the target object color; the node remains
active thereafter (blue line) and suppresses the other nodes. The gray region indicates the response latency
between the “blue” linguistic input and the robot’s selection of “right” (green line surpassing zero threshold).
Panels C-D show the activation profile for the color term (C) and the spatial term (D) nodes in Demonstration
2b in which the target object overlaps with both the “right” and “above” regions. The wider gray bar (compare
Panels A-B) indicates the greater response latency from the greater competition between the “right” and “above”
spatial semantic fields.

sites to the left of the reference object receive
additional input. This input overlaps with the
localized visual stimuli in the “red” and “green”
color-space fields because those objects both
fall to the left of the referent. This gives rise
to a competition between the two objects (see
competing objects, Fig. 11D). At this point,

the system dynamics are unstable and are largely

driven by the visual input and its interaction
with the spatial semantics. Because the green
object is larger in the image, it maintains a
slight competitive advantage over the red stack.
Consequently, a peak is eventually built in the
“green” color-space field at the green object
location (see incorrect activation, Fig. 11D).
This activation peak in turn inhibits the com-
peting color-space fields.

When we next specify the target object
color “red”, however, the color-term node raises
the resting level of the “red” color-space field
(see Fig. 11F). The linguistic input therefore
works to counteract the peak-driven inhibition
from the “green” color-space field. This activa-
tion boost together with the summed, overlap-
ping activations from the red object input and
the “left” field region (Fig. 11G) leads to an ac-
tivation peak at the location of the described
red object(see Fig. 11F). The robot has thus
selected the correct object.
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Fig. 11 Demonstrations 3a and 3b neural field activity. The robot’s task is to locate the red object to the left
of the blue object by building a peak at the correct location in the correct color-space field. Panel A shows
the camera image (a red stack, a green toothpaste tube, a blue wire roll, and a red plastic apple). Panel B
shows the initial color space field states before the target and the spatial term input are given. Panel C shows
the spatial semantic field after semantic alignment with blue reference object. Panels D-G (Demo. 3a, “left”
then “red”): In Panel E, the user provides the “left” linguistic input and the “left” spatial semantic field becomes
more active. This activation passes to the color-space fields (Panel D) and activates the regions to the left of the
reference object. This region overlaps with the green toothpaste tube and the red stack (see competing objects,
Panel D). In Panel F the user provides the “red” color term input, increasing the activation of the red color-space
field and creating a peak for the red stack on the left (yellow blob). Panels H-K (Demo. 3b, “red” then
“left”): Panel H shows the increased activation from the “red” linguistic input, leading to competition between
the two red objects (see competing objects, Panel H). In Panel K, the “left” linguistic input increases activation
in the “left” spatial term field, boosting activity for those color-space field regions to the left of the blue reference
object (Panel J) and leading to the selection of the red stack (see yellow blob in the “red” color-space field,
Panel J).

3.3.2 Demonstration 3b: “Red” followed by lowed by the spatial term “left”. This roughly
“Left” corresponds the description “The red one to

the left of the blue.” Again, the robot must
Demonstration 3b (Fig. 11, right column) pro- build a peak at the correct target location in

duces a different dynamic structure. In this the correct color-space field.
case we first present the “red” target color fol-
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This sequence first raises the resting level
of the “red” color-space field and brings the
two red object locations in the field to the de-
tection threshold (Fig. 11H). Because of the in-
hibitory interactions within the field, however,
only one peak can be sustained. As in Demon-
stration 3a, the metric characteristics of the
visual input drive the process. In this case, the
mild shading of the red stack (see Fig. 11A) re-
sults in comparatively stronger input from the
the red plastic apple. This leads to the estab-
lishment of a peak at that location which sub-
sequently propagates activation into the cor-
responding “right” spatial semantic field (see
incorrect activation, Fig. 11I). This in turn

drives the activation of the linked “right” spatial-

term node.

When we subsequently provide user input
to the “left” spatial-term node (see “left”,
Fig. 11K), however, this activation overcomes
the inhibition from the previously activated
“right” node. This leads to a bifurcation and,
accordingly, the “right” spatial-term node then

becomes inhibited, the activity level in the “right”

spatial semantic field is lowered, and that of
the “left” field is raised (Fig. 11K). The el-
evated “left” semantic field activation in turn
activates the left regions of the color-space fields
(Fig. 11J), most notably in the “red” color-
space field where it’s activation overlaps with
that from the red stack. This overlapping acti-
vation in turn creates a peak at that red stack
location. The new peak therefore corresponds
to the fully described target location (yellow
blob, Fig. 11J).

8.8.8 Linguistic Sequences: Comparing the
Neural-Dynamic Time Courses

Fig. 12 further details the sequence-dependent
dynamics of these tasks. Fig. 12 (left side) shows
the Demonstration 3a time course which first
specifies the spatial term (see arrow, Fig. 12G).
This input supports the development of an ac-
tivation peak in the “green” color-space field
(yellow region, Fig. 12D) because it is the larger
of the objects to the left of the blue refer-

ent. This activation peak in turn drives the
early activation of the “green” color-term node
(black line, Fig. 12B).

When we complete the description by in-
troducing the “red” linguistic input
(see time mark, Fig. 12G), however, the “red”
color-term node becomes active, triggering an
instability in the system and ultimately sup-
pressing green node (Fig. 12B). This in turn
facilitates the development of a localized acti-
vation peak in the “red” color-space field (yel-
low region, Fig. 12C). The new peak subse-
quently extinguishes the incorrect peak in the
green color-space field (see transition from yel-
low to blue in Fig. 12D). The peak location
shift in the “left” spatial semantic field reflects
this change in the dynamic state of the system
(Fig. 12E).

The Demonstration 3b time course differs
dramatically (see Fig. 12, right side). The ini-
tial “red” color-term node boost increases the
node activation and leads to the development
of a peak at the location of the larger red ob-
ject, in this case the apple to the right of the
blue referent (see orange-yellow region, Fig. 12J).
This subsequently builds positive activation in
the “right” spatial semantic field (Fig. 12M)

and activates the “right” spatial-term node (black

line, Fig. 12N).

To complete the description, we then spec-
ify the “left” spatial term which triggers an in-
stability and ultimately inhibits the previously
active “right” spatial-term node (see Fig. 12N).
Its positive activation also boosts the “left”
spatial semantic field and enhances the acti-
vation at the red stack location in that field
(note activation transitions in the “left” and
“right” spatial semantic fields, Fig. 12L and
M). When this “left” spatial semantic field ac-
tivation propagates to the color-space fields, it
increases the activation at the correct red ob-
ject location and a peak emerges there (Fig. 12J).
Although this is the same peak location as that
in Demonstration 3a, our fine-grained analy-
sis reveals our system’s dynamic sensitivity to
changes in linguistic sequencing.
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Fig. 12 Demonstrations 3a and 3b time courses. The horizontal axis in all panels represents time. The vertical
axis in Panels B, G, I, and N represents activation level. Panels C-F and J-M project activation onto the horizontal
axis; the lower region corresponds to the leftmost portion of the image, the upper region to the rightmost portion.
Panels A-G (Demo. 3a, “left” then “red”): Panel A shows the camera image (blue wire roll reference object).
In Panel G the “left” linguistic input activates the “left” node (red line), increasing activation for both objects
to the left of the blue reference object. This increases activation in the “left” spatial semantic field at the green
toothpaste location (see initial orange ridge, Panel E) and creates an activation peak in the “green” color-space
field (Panel D); the “green” color-term node also becomes active (black line, Panel B). When the “red” linguistic
input is given (red line, Panel B), however, a peak forms in the “red” color-space field (see emerging yellow
activation ridge, Panel C), eliminating the “green” color-space field peak (Panel D) and shifting the activation
from the green to the red object in the “left” spatial semantic field (Panel E). Panels H-N (Demo. 3b, “red”
then “left”): The “red” color term input activates the node (red line, Panel I) and leads to an activation peak
in the “red” color-space field at the red plastic apple location (first orange activation ridge, Panel J); the “right”
spatial semantic field (Panel M) and “right” node also become active (black line, Panel N). When the “left” spatial
term input is given (Panel N), the “left” node becomes active (red line, Panel N), increasing the “left” spatial
semantic field activity in the region of the leftmost red object (orange ridge, Panel L). The increased spatial
semantic activation also increases activation in the color-space field regions to the left of the reference objects.
This eliminates the first activation peak in the Panel J and creates a new peak at the red stack in the leftmost
portion of the color-space field (see emerging yellow-orange activation ridge, Panel J).
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Notably, these integrative effects are also

broadly consistent with empirical research. Spivey

and colleagues [83], for example, found that

people can use early linguistic information about

a target object in a conjunction search task to

dynamically constrain visual search processes.

Eye-tracking results from Chambers and col-

leagues [17] reveal similar findings, showing that
the presentation of constraining words like “in-

side” in the context of a visual scene imme-

diately increases visual attention to those ob-

jects affording containment. Our time course

analyses of linguistic sequencing differences are

in line with these effects.

3.4 Demonstrations 4-5: Challenges of sensor
and object movement

The previous demonstrations highlight our ar-
chitecture’s flexibility and robustness in the

face of varying scenes and linguistic input. Move-

ment presents an additional set of behavioral
challenges. First, movements (gaze, orienting,
reaching, etc) are driven by internal neural dy-
namic states. Thus, providing a dynamic ac-
count of emergent cognitive functions and link-
ing these internal decision dynamics to bodily
movement is an important benchmark for a vi-
able framework.

Second, when that movement involves the
sensor providing the spatial information (e.g.
eyes) then the spatial relations between that
sensor and the objects in the world change.
Such changes in visual input and can disrupt
the dynamics supporting the peaks driving cog-
nitive behaviors. This is particularly so for spa-
tial language where decisions depend funda-
mentally on spatial relations. Robustly adap-
tive behavior in the context of such movement
is thus an important benchmark for a dynamic
model of spatial language.

Finally, in addition to sensor movements,
embodied cognitive systems often encounter
objects moving in the world as well. Moving
objects can also threaten dynamic stability be-
cause they too shift the sensory inputs sup-
porting the peaks that drive cognitive behav-

iors. Generating appropriately adaptive behav-
iors in the context of object movements is there-
fore a third important test of our framework.

Demonstrations 4a and 4b address these
first two challenges through an internally driven
sensor (camera) movement. Demonstration 5
probes object movement.

3.4.1 Demonstrations 4a and 4b: Dynamically
driven sensor movement

Previously discussed empirical work from Cham-
bers and colleagues [17] indicates that eye-mo-
vements reflect the continuous integration of
visual and linguistic input. To provide a be-
haviorally meaningful test of movement in line
with the functional spirit of these results, we
again probed linguistic sequencing using the
same visual and linguistic input as in Demon-
strations 3a (“The one to the left of the blue,
the red one”) and 3b (“The red one to the left
of the blue”).

As before, the robot’s task is to build an
activation peak at the specified target location
in the correct color-space field. In the current
movement tasks, however, we also integrated
a dynamic motor control module. This module
drives the robotic pan/tilt unit (see Appendix)
based on the location of a peak in the color-
space field, centering the corresponding object
in the camera image. Movements of the camera
in this context are roughly analogous to gaze
shifts driven by internal dynamic processes.

Fig. 13 presents the time courses of these
differently sequenced tasks (with the blue ref-
erence object already specified previously in
both instances) along with the summary cam-
era movements (see Fig. 13A and Fig. 13H). In
Demonstration 4a (Fig. 13, left side) the “left”
linguistic input is presented first. As we previ-
ously detailed, the green object is the larger
of the two objects to the left of the reference
object. This leads to a peak at that location
in the “green” color-space field (see yellow re-
gion, Fig. 13D). Once this peak is established,
however, the camera begins to center that lo-
cation in the image by shifting to the left. This
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Fig. 13 Time courses of Demonstrations 4a and 4b involving camera movement. The horizontal axis in all panels
represents time. The vertical axis in Panels B, G, I, and N represents activation. Panels C-F and J-M project
activation onto the horizontal axis; lower region corresponds to leftmost portion of the image, upper region to the
rightmost portion. Panels A-G (Demo. 3a, “left” then “red”): Panel A shows the camera image. The arrow
next to the “X” indicates camera movement to the initially selected object; the other arrow indicates the correct
item selected and centered in the image. Panel G shows initial “left” input activating the “left” spatial-term
node (red line). This increases activation for both objects to the left of the blue referent. Activation at the green
toothpaste location in the “left” spatial semantic field increases (see initial orange ridge, Panel E) and creates
a peak in the “green” color-space field (Panel D); the “green” color-term node also becomes active (black line,
Panel B). The green tube is close to the center so the camera movement is small (small shift in bounded region,
Panel D). When the “red” linguistic input is given (red line, Panel B) the “red” color-space field peak forms (see
emerging yellow ridge, Panel C), eliminating the “green” peak (Panel D) and shifting activation from the green
to the red object in “left” semantic field (Panel E). The new peak at the described red object location drives the
camera to center the selected object (see esp. Panel C). Panels H-N (Demo. 3b, “red” then “left”): The
“red” color term input activates the node (red line, Panel I), creating a peak in the “red” color-space field at
the red plastic apple (first orange ridge, Panel J); the “right” spatial semantic field (Panel M) and “right” node
(black line, Panel N) also become active. This initiates a leftward camera movement (see esp. bounded region,
Panel J). When the “left” input is given (Panel N), the “left” node becomes active (red line, Panel N), increasing
the “left” semantic field activity by the leftmost red object (orange ridge, Panel L). This increases activation in
the color-space field regions left of the referent. In Panel J, the first activation peak is eliminated and a new red
stack peak emerges, driving the camera movement.
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shift in turn leads to the smearing and shift of
the activation profiles across all the depicted
fields in Fig. 13 (left side). Nevertheless, note
that this peak is stably maintained across the
camera movement, thus tracking the location
of the green object in the image. To this point
then, our framework has shown the ability to
guide the camera movement according to the
specified peak location and also stably main-
tain that peak across the movement.

This dynamic behavioral flexibility is fur-
ther born out when we then complete the de-
scription by providing the “red” color term. As
discussed in Demonstration 3a, this linguistic
input activates the “red” color-term node (red
line, Fig. 13B) and ultimately boosts the en-
“red” color-space field leading to a peak
at the correct red object location (Fig. 13C).
This also extinguishes the peak in the “green”
color-space field (Fig. 13D). Moreover, because
the specified object is even further to the left,
the camera continues to shift in that direction,
eventually centering the described object in
the image (see centering of yellow activation
profile in “red” color-space field, Fig. 13C).
Again, however, this peak-driven movement do-
es not destabilize the peak.

tire

Demonstration 4b (Fig. 13, right side) shows
comparably robust behavior for the alternative
sequence in which we present the “red” color
term first. In this case, the resulting uniform
boost to the “red” color-space field creates an
activation peak at the red apple location in the
right portion of the image (see yellow activity
in Fig. 13J). This in turn drives the camera
to center this location in the image (see es-
pecially shifting activity profile in Fig. 13J).
When we later specify the “left” spatial re-
lation(Fig. 13N), however, this initial peak is
extinguished and a peak at the fully described
correct location arises instead (see later por-
tion of Fig. 13J). This new peak then shifts
the camera dynamics and the camera begins
to move in the opposite direction to center the
correct object (see shifting activity profiles in
Fig. 13J-M).

These demonstrations together reveal our
framework’s ability to dynamically drive mo-
tor behaviors based on emergent neural dy-
namic decision processes. Moreover, they also
highlight the ability to stably maintain those
decisions over the resulting input shifts.

3.4.2 Demonstration 5: Target object
movement

Elements in the visible world frequently move,
either by their own actions (e.g. animals) or
the actions of others (e.g. a person moving
a coffee cup). Like sensor movements, mov-
ing objects alter the flow of visual input and
therefore risk disrupting the dynamic stability
on which adaptive behaviors depend. A viable
neural dynamic approach to spatial language
should be behaviorally robust to such move-
ments.

To test this, we presented a blue wire-roll, a
green flashlight, and a red apple (see Fig. 14A)
but then moved the blue wire roll during the
task. The robot’s task is to identify the blue
target object (blue wire roll), track its move-
ment through the scene, and then select a de-
scriptive spatial term when we later identify
the reference object (Fig. 14B).

We began the trial by first providing input
into the “blue” color-term node, thus selecting
the blue wire roll as the target. We then move
the blue wire roll through the visible space be-
fore specifying the reference object. Fig. 14C
shows this tracking within the “blue” color-
space field. After approximately six seconds,
we then specify the term “green” as the refer-
ence object color, leading the robot to select
the green flashlight as the referent. With the
reference object specified, the spatial seman-
tic templates become aligned with the refer-
ence location and increase the resting activa-
tion level of the relevant sites of the spatial se-
mantic fields (see elevated activation after six
seconds, Fig. 14D and E). The target object lo-
cation overlaps with the activity in the “right”
spatial semantic field, leading to a positive ac-
tivation in this field (Fig. 14E) and trigger-
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Fig. 14 Demonstration 5 time course for a moving target object. The robot’s task is to track the blue target
object and provide a spatial description at the final position. Panel A shows the workspace at the beginning of
the task. Panel B shows the final position of the target object when the robot selects “right”. In Panels C-E,
the horizontal axis represents time; activation is projected onto the horizontal axis as in previous figures; the lower
region of these fields corresponds with the leftmost portion of the image, the upper region with the rightmost
portion. Panel C shows “blue” color space field activation. At the beginning of the trial, the blue target object
is in the bottom region of the field (leftmost region of the workspace image). As the object is moved through
the space, the activation profile shifts accordingly, moving eventually to the region to the right of the reference
object. Panels D and E show the shift of the target object position through the respective “left” and “right”
spatial semantic fields. When the reference object information is provided (at approximately 6 seconds), activation
increases in the spatial semantic fields. The overlap between the target object location and the “right” spatial
semantic region leads to an activation peak in the spatial semantic field (Panel E) and a peak in the “blue” color
space field. The additional peak movements visible in the latter portions of Panels C and E arise from shaking
the object and further highlight the representational robustness of the target location.

ing selection of the “right” spatial-term node.
Furthermore, as an additional test of represen-
tational stability we also continued to move
the target object slightly after the generation
of the spatial term response (see slight varia-
tions in the peak’s location in Fig. 14E after 6
seconds). The dynamic states were nonetheless
stable in the face of this additional movement.

This demonstration highlights two behav-
iorally significant aspects of our model. First,
in tracking the target item, the robot again
stably represented the target object location
despite the substantial change in visual input
and even tolerated the potentially disruptive
presence of the hand in the scene. This fur-
ther extends the behavioral flexibility of the
system because it provides another instance of
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successful operation in an unstable, variable
environment. Second, by tolerating an object
movement in the period between the linguis-
tic inputs specifying the task, the robot also
again displayed the ability to successfully in-
tegrate linguistic and visual input over time.
This complements the sensor movement demon-
strations and further substantiates our model’s
ability to dynamically structure behavior in
the presence of non-static visual input.

4 Discussion
4.1 Summary

Language behaviors are generated by real bod-
ies in real time. To facilitate the development
of a formalized theoretical framework for em-
bodied language processes, we implemented a
multi-component neural dynamic model em-
phasizing behavioral flexibility and represen-
tational integration in spatial language. Tests
of our architecture implemented on a robotics
platform across five different demonstration sets
using real visual input support the viability of
this approach.

In Demonstration 1a we first tested the “whe-

re” pathway by asking “Where is the blue ob-
ject relative to the green one?” in the con-
text of a three-item visual scene. The system
autonomously selected the correct spatial term
“right” using only this input. This task cap-
tures two of our three key spatial language
characteristics. First, in correctly applying the
color-based descriptions to the visual scene and
generating a spatial term, the system necessar-
ily integrated spatial and non-spatial (color)
representations. Second, in combining the lo-
calist node activation with the color-specific
visual input, our model also demonstrated the

capacity to integrate symbolic functionality with

continuous, graded spatial representations. The
subsequent probe of the “what” pathway in
Demonstration 1b (“Which object is the right
of the blue?”) produces a similar verification,
again showing how a graded, neurally-grounded
approach to scene representations can produce

integrated representations across feature dimen-
sions and between the symbolic and the con-
tinuous.

These two demonstrations also represent
two qualitatively different behaviors, one gen-
erating a spatial term (“right”) from descrip-
tions of the target and the referent, the other
extracting a target object color (“red”) from a
description of the referent and a spatial rela-
tion. This represents the first evidence of be-
havioral flexibility in our model. As such, it
is important to emphasize that only the con-
textually-specific input differed between these
cases. These behaviors did not require different
parameter values nor did they require an ex-
ternal controlling input. This behavioral struc-
turing instead inheres in the underlying au-
tonomous processes and their continuous cou-
pling to sensory inputs.

The behaviors in Demonstrations la and
1b depend fundamentally on the neural dy-
namic concepts of autonomy, gradedness, and
stability. In building on these same neural con-
cepts, Demonstrations 2a and 2b also made
contact with metric spatial language effects.
Specifically, we showed that shifting a target
away from a prototypical spatial relation (e.g.
right) to a non-prototypical one increased the
degree of competition within the system and
the response generation time. This result is
generally consistent with empirical spatial lan-
guage research (e.g. [15]) and is generic within
the neural dynamics and thus captures a gen-
eral principle.

Although these initial tests alone show that
a neurally grounded approach can address core
aspects of spatial language, our subsequent re-
sults show that these basic functions in fact en-
able a far greater behavioral breadth. Consider
Demonstrations 3a and 3b, the four-item sce-
narios. Correctly identifying the target object
in these tasks required both color and spatial
term information. However, this information
was provided sequentially (as it would be with
natural speech), not simultaneously. Providing
the symbolic information sequentially as we
did in the four item scenarios thus tested the
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model’s ability to continuously integrate infor-
mation as it becomes available yet still arrive
at the correct answer.

The results suggest that our framework is
indeed substantially tolerant of such timing
variability. Demonstration 3a, for example, pro-
vided the spatial term first before the disam-
biguating color term, thus leading an early, but
incorrect, target selection. When the target-
specific color information was later provided,
however, this new information was then incor-
porated and the correct target peak was es-
tablished. In Demonstration 3b, on the other
hand, we reversed the order by specifying the
target object color first which again lead to the
generation of an incorrect target peak. Despite
this radically different time course, the sys-
tem nevertheless again eliminated the incor-
rect peak and created a peak for the correct
target object once provided with the disam-
biguating spatial term.

This is a particularly strong test of lin-
guistic input timing tolerance for two reasons.
First, across the demonstrations, we reversed
the order of the color and spatial term infor-
mation, not simply the timing interval within
some fixed linguistic input sequence. Second,
within each demonstration, the dynamic inter-
play between the currently available linguis-
tic input and the slight activation advantage
for the larger of the two possible targets led
to an initial, incorrect answer. Nevertheless,
despite the inhibition created by such peaks,
the system still ultimately created the correct
target object peak. This draws attention to a
new dimension of behavioral flexibility, namely
consistent cognitive decision processes in the
face of highly variable linguistic input. Impor-
tantly, this tolerance to linguistic input vari-
ability is not the product of an “insensitive”
dynamic system. That is, instead of preventing
the emergence of peaks in all but the most fully
specified scenarios, our system instead main-
tains the ability to flexibly build peaks based
on partial information along with the ability
to build new, competing peaks as information
unfolds. As we previously noted, this accords

well with empirical research demonstrating the
continuous integration of the visual and lin-
guistic inputs [17,83,86].

This empirical evidence of continuously in-
tegrative language processing, namely eye-tra-
cking research, draws attention to another chal-
lenge for our system. A core premise of these
and other eye-tracking studies is that motor
behaviors (e.g. eye-movements) reflect under-
lying cognitive states. The ability to adaptively
structure motor behaviors, specifically camera
movements, according to the model’s internal
neural dynamic states is thus a significant test
for our framework. In initiating such sensor
movements, however, our implementation must
also provide for the representational stability;
in the absence of such stability the shifting
spatial relations between the sensor and the
objects in the world could perturb the scene
representations that support adaptive, flexible
behavior.

Demonstrations 4a and 4b addressed both
these challenges by again presenting sequen-
tially varying linguistic inputs but now driving
camera movement from the neuronal dynam-
ics. Results from these two scenarios showed
that camera movements changed according to
the internal dynamic states of the system. More-
over, in eventually shifting from the incorrect
target to the fully specified correct target, we
also demonstrated a robust tolerance for chan-
ges in the visual stimuli. Furthermore, in in-
tegrating spatial and non-spatial features as
well as symbolic and continuous representa-
tions, our system generated another, wholly
embodied behavior — movement. This capac-
ity emerges directly from our neurally-based
approach to symbol grounding and our atten-
tion to the core neural concepts of autonomy,
gradedness, and stability.

In Demonstration 5, our final test, we fur-
ther examined our system’s robustness to move-
ment, this time by shifting the object before
providing the reference object color. As a con-
sequence, the system needed to track the spec-
ified target object through space and time be-
fore receiving the reference object color and
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selecting the correct spatial term. Neverthe-
less, our model again accurately integrated the
sequential linguistic input and stably main-
tained the scene-symbol link required to an-
swer correctly. This result further substanti-
ates the model’s capacity for representational
stability and the behavioral flexibility conferred
by a neurally-based approach to scene repre-
sentations.

4.2 Neural foundations

The theoretical language we used is grounded
in the following neural principles which play a
central role in our account. (1) All represen-
tation is based on graded activation variables.
(2) Space, perceptual features, and movement
parameters are captured by continuous dimen-
sions along which activation fields are defined.
The principle of neural fields reflects the en-
coding of such information by populations of
neurons, whose feedforward path from the sen-
sory surface or to the motor surface determines
how they contribute to the activation fields.
(3) The neural dynamics that characterize the
temporal evolution of the activation fields con-
sist of (a) external inputs, which mediate both
feedforward connectivity from sensory input
and the coupling among different fields, and
(b) intra-field interaction, which reflects the
generic cortical pattern of local excitation and
global inhibition. The stability of local activa-
tion peaks, which are the units of representa-
tion, emerges from this pattern of interaction.
(4) When peak locations are not specified by
inputs but by learned patterns of excitability,
neural fields act like categorical neural rep-
resentations described by individual dynamic
neurons.

Adopting these neural principles as con-
straints for the theoretical modeling of spatial
language is a necessary, but not yet sufficient,
condition for a comprehensive neural account
of spatial language behaviors. One may envis-
age a further step, however, in which specific
populations in particular parts of the higher

nervous systems are assigned particular func-
tions. Because we know much about the early
visual system, particularly its representation
of retinal space and perceptual features, it is
easy to envision broad qualitative assignments.
Neural correlates of object perception and recog-
nition, for example, have been found in the
ventral stream [85]. In addition, an initial un-
derstanding of how parietal structures in the
dorsal stream, in particular, LIP, may enable
more abstract, object-centered spatial repre-
sentations [97] is also emerging. The neuro-
physiological foundations of goal-directed reach-
ing movements have also been extensively stud-
ied [32]. The neural mechanisms of language
and speech are known at a much more macro-
scopic level, however [68].

While promising, we believe that this next
step is still outside the range of current neu-
rophysiological research. This belief is partly
driven by practical considerations. In partic-
ular, the broad diversity of neural functions
invoked in spatial language has not been stud-
ied at a consistent level of resolution across the
many potentially involved brain areas. This
belief is also driven in part by theoretical and
conceptual considerations. Specifically, the neu-
ral dynamics that provide the requisite stabil-
ity and coupling are strongly interactive. Such
interaction makes assignment of neural func-
tion to particular substructures particularly dif-
ficult. When a subpopulation of the neural dy-
namic system is removed, for instance, a par-
ticular cognitive function may fail to emerge.
Such failure need not, however, imply that the
subpopulation in question “is responsible for”
that particular function. The failure may in-
stead come about because input from the re-
moved subpopulation to another subpopula-
tion is now missing. This missing input might
then prevent that other subpopulation from
reaching the dynamic regime needed to stabi-
lize the neural representations critical for the
relevant function. At the same time, the in-
put needed may also be quite non-specific to
the neural function. It could, for example, be
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something as generic as a constant or a broad
input that enables peak generation.

4.3 Connections with Established Spatial
Language Research

Our framework adopts a qualitative neural-
dynamic approach to spatial language, empha-
sizing the continuous integration of sensory-
motor processes and linguistic input. In doing
so, it aims to address a host of issues typi-
cally overlooked in spatial language theories
to date, including representational integration
and behavioral time courses. For this reason,
we believe that our process-based approach is
uniquely well placed to address flexible spatial
language behavior.

While theoretically distinct, our work does
nevertheless have a strong connection with the
established spatial language literature. Our spa-
tial semantics, for example, are implemented
with a separate set of connection weights which
are dynamically aligned with a reference ob-
ject and applied to a visual scene. This is con-
ceptually similar to the notion of spatial tem-
plates developed by Logan and colleagues [58,
16,15] in which spatial regions are divided ac-
cording to good, acceptable, and bad instances
of a spatial relation term. Our spatial seman-
tic approach may therefore be described as a
dynamic instantiation of this idea. Addition-
ally, the partial overlap of our semantic fields
is also consistent with empirical work showing
that some spatial locations are best described
with a combination of spatial terms (e.g. above
and a little to the right) rather than a single,
exclusive term [45,29].

Our framework also captures some core el-
ements of the spatial apprehension sequence
from Logan and colleagues [16,15,57]. These
elements conceptually outline the steps indi-
viduals take to confirm the presence or ab-
sence of a described spatial relation in a vi-
sual scene (e.g. “the dash is above the plus”),
including indexing the arguments of the spa-
tial relation (the target and reference objects)

onto the visual scene, establishing the refer-
ence frame within the scene, and applying the
specified semantics accordingly. Although our
framework does employ some simplifying as-
sumptions, namely a single reference frame at
a fixed rotation, it does show how the spa-
tial indexing and semantic application steps
may be instantiated within a neural dynamic
framework. It also extends these basic steps to
a broader range of tasks and therefore shows
how these functions may be accounted for with-
in a behaviorally flexible framework that can
tolerate sequence variation. The core elements
described by Logan and colleagues thus appear
to be conceptually primary in spatial language
although our results reveal that their dynamic
details can vary considerably according to the
specific visual and linguistic context.

4.4 Limitations

In order to focus on representational integra-
tion and flexibility in spatial language, we made
some simplifications in our model. Some re-
sulting limitations bear noting. First, as we
alluded to earlier, we simplified our reference
frame alignment process. We assumed a sin-
gle default viewpoint and thus sidestepped the
complexities of reference frame rotation. As a
result, our work cannot address evidence that
spatial language behaviors are sensitive to chan-
ges in the rotation of reference objects with
canonical orientations (e.g. chair; [12,14,16]).
Our object representations were also sim-
plified. This is tied to the reference frame rota-
tion issue because alternative, object-based in-
trinsic reference frames require object orienta-
tion information. In acknowledging this limit,
however, we also note the recent development
of a dynamic field model of object recognition
which can quickly learn to recognize multi-
feature objects [28]. The inclusion of orienta-
tion information in these representations sug-
gests that our approach is well suited to incor-
porating more complex object representations.
Parsing of the input stream is another el-
ement absent in our framework. However, re-
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cent models show that neurally grounded ap-
proaches can parse linguistic streams [46] and
embed symbolic parsing processes within tem-
porally continuous neural dynamics [41]. The
conceptual mapping from these dynamics onto
the DFT is therefore feasible.

Finally, although stability plays a central
role in the generation of behaviors across the
tasks, particularly the movement scenarios, the-
re is one case in which stability is a problem.
Specifically, after generating a spatial or color
term response, the linguistic node stays at the
same activation level. This stability prevents
the generation of a new decision. This would
be a problem if, for instance, the system se-
lected a descriptive term after which the target
was moved to a new spatial relation requiring
a different spatial term. In essence, the sys-
tem fails to register the generation of its own
response and thus cannot shift to a qualita-
tively different state as a result. This is in-
consistent with our emphasis on the contin-
uously adaptive structuring of behavior. One
could address this with a form of contextually-
dependent feedback that effectively recognizes
the generation of a linguistic response. This
points to the need for greater behavioral or-
ganization that generalizes beyond the spatial
language scenarios. Although no comprehen-
sive approach to behavioral organization yet
exists, recent work does suggest that neural
dynamic theories like the DFT might also pro-
vide the grounds for developing this capability
[72].

5 Conclusions

We began with the observation that theoret-
ical treatments of language are often dissoci-
ated from the unfolding of behavior in real-
time. In order to address this problem and
build on the growing empirical support for a
real-time, embodied foundation of language we
adopted a systems-level neural dynamic per-
spective. We brought these theoretical tools
to bear on spatial language, a domain that
directly connects linguistic processes and the

sensory-motor surfaces embedded in the world.
With this vantage point we further proposed
that addressing the neural dynamic processes
supporting scene representation could provide
the basis for a behaviorally flexible spatial lan-
guage system. To test this claim, we developed
a neural dynamic architecture grounded in the
Dynamic Field Theory and implemented it on
a robotics platform linked to a real-time cam-
era image of a shared workspace.

Our results show that attending to the neu-
ral dynamic details of scene representation can
provide the foundation for flexible, contextually-
dependent spatial language behaviors. Across
the demonstrations our model generated dif-
fering responses based solely on the linguistic
and visual input. These outcomes reveal the
system’s capacity for representational integra-
tion and the grounding of linguistic terms in
dynamic sensory-motor processes. They also
verified the ability to behave continuously and
dynamically integrate new linguistic informa-
tion as it unfolds. Furthermore, these demon-
strations also shed light on how neural dy-
namic scene representations and variability in
the strength of the visual input can shape the
time course of these behaviors.

Our framework has important theoretical
consequences both within the spatial language
domain and for language research more gen-
erally. In the realm of spatial language, this
work is the first demonstration of behavioral
flexibility within a unified, neurally grounded
theoretical framework. Thus, while it is cer-
tainly not the first robotics platform dealing
with the complexities of real-world visual and
linguistic input (e.g. [63]) it is to our knowl-
edge the first to do so in a manner aligned with
the neural dynamic foundations of embodied
cognition. Applied to the broader domain of
language more generally, this work therefore
highlights the power of attending to the fine-
grained dynamic details of non-linguistic pro-
cesses supporting “higher” level language. Our
demonstrated satisfaction of several key con-
straints across several complex and varied sce-
narios also suggests that systems-level neural
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dynamic theories, such as the DFT, can pro-
vide the conceptual foundation needed to unite
real-time language and the sensory-motor world.

6 Appendix
6.1 Color-space fields

Conceptually, the three-dimensional color-space
field evolves according to the equation:

7-[.Jcol (Cv €, Y, t) = _UCOI(Cv €, Y, t) + h
ey )+ [ F(Vale ' v'0)

xw(ec—dc x—a' y—y)dddx' dy

()

In the implementation, however, we resolved
the color dimension sparsly, substituting the
interactions in this dimension through the global

inhibition between the six two-dimensional color-

space fields:

TUC(Ia yvt) = _UC(xvya t) =+ h + I(Cv'rvya t)

+ / f(Uc(:v’, Y, t))W(év -’y —y)da'dy

—Z/

/750
CcC = 1--Ncol = 6

2,y t)) dx'dy/,

(6)

The spatial interaction kernel was the sum
of a Gaussian for the local excitation and a
global inhibitory term:

(AJ(.’IJ - :E/,y - y/) =
(@—a)>2+y-y)

2
Ocxc

(7)

) — Cinh

The sigmoidal non-linearity smoothing the
output of the fields was:

CEIEC exp (

1

1) = g

B =80
(8)

The parameters were:

T=10
h=-2
Ceze = 0.3
Oexc = 3
Cinh — 1

The external input to the color-space field
was formed as:

I(c,z,y,t) = ccamlcam(c, T, Y, 1)
+ CSPIS;D (I Y, t) + Cnodelnode (C t)

Zf( sp(2, 9, )
Luaele 1) = f(dc(t))

spxyu

Ccam = 4
Csp = 2
Cnode = 3

The input from the visual sensor I.qpm, (¢, z,y, t)

was formed as described in section 2.2.1.
The color-space fields were represented as
50 x 50 matrices for calculations.

6.2 Color-term nodes

The dynamical nodes’ activity evolved accord-
ing to equation

7d,(t) = —de(t) + ha + Cegef (dc(t))

—Cinh Z f( ) + Li(e,t)

c'#e

(10)

The external input to a node was defined
as:

Ii(e,t) = cqurlauil(c,t)

+CU/ f(Uc(x,y,t)>dxdy

Here, [ denotes the summed activity
in the respective field normalized by the filed’s
size (divided by TmazYmaz)- laur(c,t) = 1, if
c=color selected by the user; Igyr(c,t) = 0
otherwise.

The parameters were:

(11)



35

7=10
hg=-1
Ceze = 0.5
Cinh = 2.5
cour =7

Cy = 3

6.3 Reference field

The reference field evolved according to the
dynamics

TUR(:E, Y, t) - _UR(xv Y, t) +h+ Icam(xa Y, t)
+ /f(UR(x', Y, t))w(x — 'y —y)dx'dy’
(12)

The spatial interaction kernel and the sig-
moidal non-linearity were the same as for the
color-space fields. The parameters were:

h=-1
Cinh — 0.5
Ceze = 0.3
Ocxe = 3

The camera input Ieam (2,Y, ¢ = ¢ref, t) was

formed as described in the main text (section 2.2.3).

The color c,.¢ of the refererence object was
specified by the user.

6.4 Semantic templates

The semantic template functions were:

(p— po)? (0 — 0o)?
Msp = exp |:—T‘% exp —T‘g
(13)
where
o, =40 (at fields’ size 50 x 50),
op = 60 rad,
PO = 55

0o =m,0,7/2,—7/2
(for “left”, “right”, “above”, “below” respec-
tively).

To reduce the computational overload, the
weight matrices were represented centered on
the edge of the matrix. When convolving with
the output of the reference field, the weight
matrices (used as kernel) were anchored ac-
cordingly.

6.5 Spatial semantic fields

Spatial semantic fields evolved according to
equation

TUSP(xv Y, t) = _USP(Ia Y, t) + h + ISp(xv Y, t)
+ / f(Usp(wC Yy, t))w(:v — o',y —y')d'dy,
sp=1.Ny =4
(14)
The spatial interaction kernel and the sig-
moidal non-linearity were the same as for the

Color-space fields.
The parameters were:

h=-5
Cinh = 0.0
Ceze = 0.3

Oecxc = 3

The external input

Neo

Lp(,y,1) = cc Y f(Uc(w, v, t))
i=1

+ Cshz‘ftlshift,sp (17, Y, t) + Csnodef (dS;D (t)),
Ce = 2.2
Cshift = 0.2

Csnode = 4.5
(15)

The Isnift,sp was the result of the “shift”
operation, aligning each of the spatial semantic
templates with the location of the reference
object.
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6.6 “Shift”

The shift was accomplished by convolution of
the outcome of the reference field with the spa-
tial semantic templates:

IShiftvSP(xv Y, t) = / f (UR(I/a y/a t)) X
:E/’y/

XMgp(x — 2’y — oy, t)da'dy’
(16)

For computational efficiency we approxi-

mated this integral by summation over the points

of positive activation in the reference field.

0.6.1 Short introduction to the navigation
dynamics

The camera head is mounted on a robotic pan-
tilt unit, which can be controlled via a PVM
(parallel virtual machine) interface directly from
our software. A navigation module implemented
the dynamic navigation (proposed in [10]) but
without the obstacle avoidance component. The
target contribution was calculated from the

summed output activation in the color-space
fields (17).

Neot
T(ZC, Y, t) = Z (Uc(xa Y, t))
Fpan(t) = R(ZZ?) : TI (Ia Y, t) (17)
Fiie (t) = R(y) ’ Ty(xa Y, t)
TPan(t) = —Pan(t) + Fpan(t)
TTilt(t) = —=Tilt(t) + Fi (t)

Here, R(x) = x — 2= R(y) = y —
were monotonic functions defining the map-
ping between the distance from the positive
activation in the color-space field to the center
of the fields and the strength of the attractor
associated with the positive activation.

Thus, as soon as positive activation sig-
naled the detection of the object of interest in
the visual array, the head moved smoothly to
center that object. Because the representation
of objects in the color-space fields was updated

, the color-space fields effectively tracked the
visual scene. The dynamics of the whole frame-
work was also autonomously updated.
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