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Abstract. The order parameter equation for the relative
phase of correlated hand movements, derived in a
previous paper by Haken et al. (1985), is extended to a
time-dependent stochastic differential equation. Its
solutions are determined close to stationary points and
for the transition region. Remarkably good agreement
between this theory and recent experiments done by
Kelso and Scholz (1985) is found, and new predictions
are offered. '

1 Introduction

In recent experiments by Kelso (1981, 1984) a re--

markable transition between two different modes of
human hand movement was found, namely between an
antiphase motion of relative phase ¢=m involving
nonhomologous muscle groups, and an in-phase mo-
tion with relative phase ¢=0 that involved homolo-
gous muscles. These experimental results were success-
fully modeled by Haken et al. (1985). However, though
the latter paper already suggested that fluctuations
were important for the occurrence of this transition, no
explicit attempt at a quantitative treatment of the role
of fluctuations was made at that time. In this paper we
develop a stochastic model of the phase transition that
turns out to be in good agreement with recent experi-
ments (Kelso and Scholz 1985) in which fluctuations
were explicitly measured. '
The current work attests to the usefulness of
synergetic concepts in modeling complex systems that
are governed by order parameter equations (Haken
1975, 1983). Such a synergetic treatment allows one to
interpret observed changes in behavioral pattern be-
tween the hands as a nonequilibrium phase-transition,
a phenomenon nowadays found in a variety of phys-
ical, chemical, and biological systems (see e.g., Haken
1983). Fhus, a rather different account of “switching”

among spatiotemporal movement patterns is offered
by synergetics, one that contrasts sharply with theoret-
ical accounts that posit distinct motor programs (cf.
Schmidt 1982) for each new pattern (e.g., the loco-
motor gaits). In synergetics, new (or different) modal
patterns arise as a result of instabilities that occur as a
system is scaled away from its “preferred” equilibrium
state. Though pattern generation emerges as a conse-
quence, it is not necessary to introduce a priori special
mechanisms, such as motor programs to explain such
pattern formation. Importantly, the identity between
these abrupt shifts in behavioral pattern with a non-
equilibrium phase transition leads, as we shall see, to
new and testable predictions that have not come to

light in more standard accounts.

The present paper is organized as follows: First, we
shall describe briefly the experimental set-up and the
main experimental results to be treated in-depth here.
These focus principally on new experiments that deal
with the stochastic aspects of the transition. In Sect. 3
we shall present the basic model, and then, in Sect. 4
deal explicitly with theoretical stochastic properties.
There we shall treat both the transition region itself as
well as the surrounding stationary states in relative
phase. This section will be concluded by a calculation

* of the first passage time.

2 Experimental Stochastic Properties

In the original experiments (Kelso 1981, 1984), subjects
were initially instructed to cycle their fingers or hands
at a preferred frequency using an out-of-phase motion.
The driving frequency, F, measured in Hz, was then
increased in a continuous fashion. At a critical fre-
quency, a transition from one state with relative phase
¢=+n (referred to as the antisymmetric mode) to
another state with relative phase ¢ =0 (referred to as
the symmetric mode) occurred. Below the transition
point the system was bistable, i.e., two stable phase (or
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36008. POINT ESTIMATE OF RELATIVE PHASE

Fig. 1. A Time series showing
position over time of lef (dashed
line) and right (solid line) index

fingers as the control parameter, F, is
systematically scaled. B The
corresponding point estimate of
relative phase, i.e., the phase of one
finger’s oscillatory peak relative to

the other (see text for details)
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Fig. 2. Schematic drawing of the temporal evolution of the
experimental control parameter frequency. In this case, which
refers to Fig. 1, the transition occured at 2.25 Hz

“attractor”) states between the hands could be realized.
Beyond the critical frequency only the symmetric mode
persisted, at least within the range of driving fre-
quencies examined. _

In more recent experiments (a preliminary account
of which is given in Kelso and Scholz 1985), that were
designed to explore in more detail the stochastic
properties of the transition, subjects oscillated the
index fingers bilaterally in the transverse plane (i.e.,
abduction-adduction). Continuous finger displace-
ment in two planes of movement was measured using a
modified Selspot camera system. The electromyo-
graphic (EMG) activity of the right and left first dorsal
interosseus (FDI) and first volar interosseus (FVI)
muscles were obtained using platinum. fine wire
electrodes (see Kelso and Scholz, Fig. 4). In the experi-
ment of prime interest here, the control parameter, F,
was systematically increased in 0.25 Hz steps at 4-s
. intervals according to a metronome pacing stimulus.
Data from trials in this experiment could therefore be
time-averaged. Figure 1 presents measurements which
exhibit the phase transition nature of the phenomcnon,
and Fig. 2 illustrates how F was increased in a step-
wise manner. Several time-scales can be identified in
the experiment.

The length of the frequency plateau (4 s) shown in
Fig.2 constitutes the experimental time scale for
change of control parameter 7,=4s. The measured
mean absolute value of relatlve phase (J¢|> and its
standard deviation (SD) are depicted in Fig. 3.! Note
that {|¢|> and SD in the symmetric mode are roughly
constant through all parameter values. The constants
are (|¢|> ~8 deg and SD~4.5 deg.

In the antisymmetric mode below the transition the
mean absolute phase decreases, while SD increases as
the transition is approached. In the transition region
the SD reaches a maximum, while {|@|>~85deg, a
value that almost corresponds to an equidistribution
(for which (jg|> =90deg). Above the transition the
data of antisymmetrically and symmetrically prepared
experiments coincide. Outside the transition region the
behavior is stationary on the observed time scale of
7,=4s. This was checked explicitly in the Kelso and
Scholz data by calculating mean and variance for
several 0.5 s time windows on these plateaus. On the
transition plateau transients occur. These can be seen
in the time plots of relative phase (Fig. 1) and were
checked with the statistical data as mentioned above.
The typical time it takes the system to reach its new
state, the so-called transicnt time, 7,,,, has not yet
been measured systematically. However, from the
present data a preliminary estimate is 7,,,,, = 1t0 2 s (cf.
Fig. 1).

Another relevant time scale is that of the local
relaxation times 1, These are the times it typically
takes the system to reach one of the stationary states
[i.e., the symmetric (¢,,,=0) or the antisymmetric
mode (¢,,,,= £ 7)] from a somewhat perturbed state
(O<|¢ —pyad €1). These Jocal relaxation times have

1 Note that these data are based on the point estimate of
relative phase (cf. Fig. 1), not the continuous estimate as erro-
neously indicated in Kelso and Scholz (1985, Fig. 6). When time
averaged, however, both estimates yield a near-identical pattern
of results. The data based on a continuous estimate of relative
phase are available from the third author
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not yet been measured systematically either, but an
estimate can be made based on the time the subjects
need to adapt to a change in driving frequency. An
upper bound for this time is that of one cycle. Hence
7, =0.33s to 0.8s at driving frequencies between
125Hz and 3.0Hz. We choose 7,,=025s as an
estimate. This seems to be a reasonable assumption in
light of the fact that reaction times in other skills (like
car driving) are of the same order of magnitude (cf. e.g.
Kelso et al. 1979). In the theoretical considerations of
Sect. 4 all calculations were repeated also for para-
meters based on an estimate of ,,=0.5s and no
qualitative difference was observed.

3 Model

In an attempt to model the stochastic properties of the
‘experimental system described above we can profit
from the model developed previously by Haken et al.
(1985). In their work the relative phase ¢ was identified
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Fig. 4. A phase portrait of V in the parameter plane (a, b). The
regime, where ¢=0 is the only minimum is separated from a
regime with two minima at #=0 and ¢=+n resp. by the
transition line. We restrict ourselves to a>0, b>0, because the
transition line lies completely in this domain. The insets illustrate
the form of the potential in the two regimes. The control curve, on
which the experimental system moves through the transition has
been included. This was determined from experimental data and
local models (cf. Sect. 43)

as an order parameter in the sense of synergetics and a
relaxational equation of motion for ¢ was determined
from the attractor layout:

ov .
=25 - G.1)

where

V(#)= —acosg—bcos2¢= V(4 +2n) 3.2)

is a periodic potential and a and b are model param-
cters. We can restrict ¢ to [—n, n] mod2n with the
identification 7= —n. In Fig. 4 the attractor layout is
illustrated for the potential (3.2) (cf. Haken et al. 1985). .
Minima of the potential correspond to stable, station-
ary states ¢,,,, that can be prepared experimentally (i.e,
=0 and 4, = + 7).

In their work Haken et al. go on to derive the order
parameter dynamics from a model of two nonlinearly
coupled, nonlinear oscillators. In this paper we restrict
ourselves to an analysis of the system’s fluctuational
character at the level of the order parameter, ¢.

To account for the fluctuations present in the
experimental data (cf. Fig. 1) we add to the equation of
motion (3.1) a stochastic force in an ad hoc fashion:

ov :
¢=—%+V§é,, (3.3)
where £, is a Gaussian white noise process with
Co=0; <(&&>=6(-1) (3.3a)

and Q>0 is the noise strength (a third model param-
eter). This process has to be taken modulo 27 to
make ¢, a stochastic process on the circle of radius one
[ —=, 7] mod 27. The rationale for using this particular
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choice of stochastic force is the assumption that the
degrees of freedom acting as noise on the system live on
a time scale that is much faster than the time scale of ¢,.
This approximation is usually good near bifurcations
due to the slowing down of the order parameter (cf.
Sect. 4 for details). In other words we do not expect the
stochastic properties to depend qualitatively on the
details of the dynamics of ¢, near the transition. [For
more information on the nature of stochastic forces see
e.g. Haken (1983, Chap. 6).]

The stochastic process defined by the so called
Langevin Eq. (3.3) is a Markov process that is com-
pletely characterized by the transition probability
P(¢,1|¢’,t") and the one-time probability distribution
P(¢,1). (All distributions in this paper are distribution
densities really.) These functions obey a Fokker-
Planck equation that is completely equivalent to the
Langevin Eq. (3.3) and reads:

P)= 2 v@P@.)+ 2 pGn. (4
Y’ ’ 209 7 )
[For an introduction to these concepts consult e.g.
Haken (1983, Chaps. 4 and 6), or Gardiner (1983).]

4 Theoretical Stochastic Properties
4.1 Times Scales

In the experiment described in Sect. 2 above, there are
basically three theoretically relevant time scales:;

(a) The scale of local relaxation times ,,,..Such
relaxation times measure how long a transient to one
of the stationary modes from a mode “nearby” typi-
cally takes. In this context the stationary modes are
just ¢, =0and ¢, = +nand a mode “nearby” means
a relative phase close to 0 or + 7 resp. A more precise
definition of 1., will be given below (Sect. 4.2) in terms
of correlation times. Our estimate for 1,,, outside the
transition region was t,,,=0.25s in either mode (cf.
Sect. 2). '

(b) The observed time scale on which averages are
performed. This includes times from 1,,, up to the time
scale of change of parameter t,, which was 4 s in Kelso
and Scholz (1985).

(c) The time scale of equilibration t..,. This is a
somewhat more abstract concept in the present experi-
mental context. Let us explain it first ifi terms of the
stochastic model (2.3). In this model equilibration
means that the stationary distribution of phase, i.e. the
solution of P(¢, t) =0, is realized. Approach to equilib-
rium means that an initial distribution evolves in time
such that it finally becomes the stationary distribution.
The equilibration time is the time this typically takes.
(See also Sect. 4.5 for a quantitative measure of Tequ il
the bistable potential) Due to the presence of a

stochastic force, that can time and again push the
system to any point in [ —=, n], the stationary distri-
bution is always a distribution that feels all of the
potential, i.e. with finite, though possibly very small
probability, any subinterval can be occupied. In the
bistable potential below the transition, for example,
the stationary distribution has peaks at both station-
ary states (although that at ¢ =0 is larger).

How do these time scales impact on the interpre-
tation of the phase transition? Below the transition the
equilibrium state in the experiment would be one in
which the system may occasionally switch from one
stationary state to the other. In effect, the system can
spend a certain amount of time in each stationary state,
that amount being proportional to the height of the
corresponding peak of the stationary distribution.
Effects of the initial preparation would not be felt
anymore. No such switching between the two modes
can be observed below the transition, however. We
infer that .., is much larger than observed times:
Tequ Tp» SO that equilibration does not happen in the
experiment. At the transition we do indeed observe one
switching and infer that r_,, has sufficiently decreased.
A switching back to the now unstable antisymmetric
mode, however, is so unlikely, that it cannot be seen in
the observed time.

In summary we expect in the present experiment
the following time scales relation to hold sufficiently far
below the transition: .

Tre) < Tp L Tequ- 4.1)

At the transition ., comes down to the observed time
scale t,, while one of the relaxation times (that with
respect to the stationary state ¢, = % n)is expected to
increase to the level of 7,. These two points will be
discussed in much more detail below.

What are the implications of this analysis for the
theory? First, this relation shows that the discussion of
the qualitative behavior of the model in terms of
potential minima (cf. Sect. 3) is consistent. Second, in
the present study of the stochastic properties of the
model, the arguments above require us to differentiate
between two regimes: (a) The pre- (and post-) tran-
sition regimes in which the system obeys the time scales
relation (4.1). Thus we model it by local models of the
state, in which the system is prepared. In these local
models, which possess only one stationary state, we
perform the stationary limit time to infinity (cf. Sects.
4.2 and 4.3); and (b) The transition regime itself, in
which we expect transients to occur. Thus we study the
temporal evolution of the distribution of ¢ as governed
by the full dynamics of (3.4). As initial distribution we
shall use the stationary distribution of the local mode}
of the antisymmetric mode corresponding to the last
pretransitional parameter plateau (cf. Sect. 4.4).




4.2 Local Model of Symmetric Mode

We expand the equation of motion of ¢ about the
deterministic stationary solution ¢,,,, =0 and obtain in
first order:

$=—(@b+a)p+}/Q¢, 4.2)

which corresponds to overdamped motion in a qua-
dratic potential illustrated in the inset of Fig. 5. We can
calculate the stationary distribution of ¢ exactly from
the Fokker-Planck equation corresponding to this
linear Langevin equation. From the stationary distri-
bution we obtain the stationary moments as:

¢ — JEp— 2 )
<‘¢}>slm= _,(w d¢|¢lPsta((¢)= 1 eXP( n‘d )

—_— 4.
[/;d erf{nd} ¢3)
and
1 ne "¢
Ogar= <¢2>slal— <l¢l>szlal = izf - dCff{ﬂd} - <‘¢l>52mt .
4.4)

In these expressions the dependence on the parameters
~a, b, and Q condenses into a dependence on

4b+a
d= 0 4.5

In Fig.5 the mean absolute phase ¢|¢|),,, and the
corresponding standard deviation SD= ]/;; are
plotted as a function of d. The limit d—0 corresponds
to an infinite noise level, where the stationary distri-
bution is an equidistribution. The limit d— oo corre-
sponds to no noise. The mean is then the deterministic
value |¢|=0 and SD is zero. The data of Fig. 3 show
that {|4|,,, and SD are in experiment roughly con-
stant for all driving frequencies. From the experimental
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Fig. 5. The mean phase modulus and its SD as calculated from the
local model of the symmetric mode (¢,,,,=0), as a function of
d={(a+4b)/Q}'". Two lines indicate the experimental values
for mean (=0.14)and SD (=0.08), so that experimentally realistic
values for d can be read off. The inset shows a sketch of the
potential (far) and the local model (thin) at a=b=1. Hz
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values for mean and SD we can determine via the
functions of Fig. 5 the values of the parameter d
corresponding to the experimental situation. Using a
mean of {|@|>,,,~8 deg we find d in the range 3. to S.
The experimental value of SD ~4.5 deg yields approxi-
mately the same range for d (this is a check on the range
of d through a second measured quantity). Thus we can
use as an estimate: d ~4. Note that this, as well as all
subsequent estimates for model parameters are meant
to determine the adequate order of magnitude only.

The local relaxation time can conveniently be
discussed in terms of this local model. A deterministic
definition of local relaxation time is the following: 7,
is the typical time in which a small deviation from the
stationary solution ¢, =0 decays2. A solution of the
deterministic linear equation of motion

(1) =¢(o)exp[—(4b+a)1] (4.6)
immediately shows that

1 1
Teel = 4b+a = E (4.7)

A more general definition of 7, that takes the
stochasticity of ¢, into account, makes use of the
stationary correlation function:

{bbo)sa= }1_{2) {4 +'x"¢x'> - (4.8)
(lim¢t’— co means: for ¢’ large enough for the average
not to depend on ¢’ any more). One can define 7,,, then
through?

1 ]
Tra ™= m g dt<¢t¢0>slzl . (4'9)

Unfortunately it is impossible even in this linear model
to calculate the stationary correlation function (4.8)
exactly due to the periodic boundary conditions:
pe[—n,n] with = —=n. In an approximation we
extend the range of ¢ to (—o0,00). This is a good
approximation everywhere, because ¢,,,, =0 is a stable
stationary solution, so that ¢, will depart from the
vicinity of O only with negligible probability. In that
approximation ¢, is an Ornstein-Uhlenbeck process
with
Q

{BBodsa= 3@ +a)
where 1, is given by (4.7). A convenient way to

determine 1, is to read it off the Fourier-transform of
the stationary correlation function:

9

w41}

e tua, (4.10)

C@)= T dte™(Bgodom= @1y

2 These definitions can be used to devise a measurement
procedure
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Obviously 7! is just the line width of this Lorentzian
spectrum.

If we use the experimental estimate for 7, 0f0.25s
(cf. Sect. 3) and the value for d~4. determined above,

Wwe can give an estimate for the noise level in the system:
0~0.25Hz.

4.3 Local Model of the Antisymmetric Mode

We are now concerned with the stationary state

st = T 7, which is stable only below the transition, i.e.
for a<4b. To write down a linear equation of motion
for small deviations from $ua= T 7 it is convenient to
introduce a new variable ¢e [-mn]):

e {¢—n for O<¢<n

¢+n for —n<g=<0. (4.12)

We can now expand the equation of motion about
$ua= £ 7 by expanding in ¢ to first order:

é=—@b—a)e+)/0¢,. (4.15)

Figure 6 illustrates the corresponding local potential.
Mathematically this model is completely equivalent to
that of Sect. 4.2 with the mere substitutions ¢—¢ and
(4b +a)—(4b—~ a). Still we exhibit the results explicitly,
because their interpretation is quite different and
important for understanding the experiment, The

stationary distribution can be determined as before
and reads:

S s »
Pya(e)= W e/, (4.14)
where
[= ]/ dh-a (4.142)
Y

Note that f is positive below the transition and
approaches zero from above at the transition. The
mean modulus is then:

<l¢l>snt =71 <‘£|>slax =g M

4.15
Vafedwy 0
and its variance is
Og1at = <¢2>sm - <l¢l>82tal = <52>sm - <Vl£|>‘szm'
I L s P

27 Serf{nf}
We have plotted {|¢|D,,, and SD=(c,,)}/* as a
function of f in Fig. 7. We can now use the experi-
mental data for {|#|> to determine from the result of
the local model the values of the parameter f corre-
sponding to each pretransitional parameter plateau.

v
-1 \/ ™ 2w &
- 0 T

Fig. 6. The potential (fat) for a=b=1.0 Hz. The thin curve
depicts the corresponding local potential. The variable ¢ is in
effect centered at ¢g=n

ve-
V12

1 1 i 2

{ [ 3 2 I
- experimental range of f +

Fig.7. The mean absolute phase and its SD for the local model of
the antisymmetric mode as a function of S=[(4b—a)/Q]2,
Approach of the transition corresponds to J—0. The f-axis was
oriented to the left to illustrate this. The curves have been used to
determine from experimental values of mean and SD the
corresponding values of f. The range of such values is indicated

2F) ()
a(F) (o)
| B(F) (o)

transition

1.25 1.75 2.25 F[Hz]

Fig. 8. The model parameters f, a and b as a function of the
experimental control parameter frequency F as determined from
the data on mean and SD and an estimate of relaxation time

This has been done with the help of Fig.7. The
resulting function f(F), where F is the experimental
driving frequency, is shown in Fig. 8. The range of f
extends from 4. to 1, with the plateau immediately
preceding the transition corresponding Jore=1.1. The
data for SD give us the opportunity to check these
estimates. We observe that these experimental values



are consistent with the above range of f, with the last
pretransitional plateau consistently corresponding to
foe=1.2.

Analogously to the considerations in Sect. 4.2 we
can calculate the deterministic local relaxation time as

1 1
Trel':m:m- 4.17)
Although completely analogous to our previous result
for the symmetric mode, this expression behaves quite
differently near the transition. Due to the fact that d is
roughly constant for all frequencies (as exhibited by
constant {|#|> and SD of the symmetric mode) and on
the assumption that the noise level does not change
drastically through the transition 3, the local relaxation
time of the symmetric mode hardly changes at all as
frequency is scaled. Quite to the contrary, the relaxa-
tion time of the antisymmetric mode diverges as [
approaches the transition. While the divergence is an
artefact of the linear approximation, a strong increase
of the local relaxation time is predicted also by
nonlinear theories. In this experimental setup an upper
bound on 7, will be 7,. This increase in relaxation time
of the mode that turns unstable at the transition, is
called critical slowing down and is characteristic of this
kind of bifurcation phenomenon. Detailed experi-
ments, that determine the local relaxation time of the
- antisymmetric mode as the system is scaled through
the transition are presently under way. They can serve
as an additional check on the phase transition charac-
ter of the present phenomenon.

As discussed already in Sect.4.2 a more precise
definition of 1, can be phrased in terms of the
stationary correlation function. We calculate this
correlation function for the present local model again
in the approximation that ¢ ranges from — co to oo.
The result is:

.—Q__ e"‘/‘trel
3(@b—a) ’

where 7, is identical to that of (4.17). Note that this
approximation fails very close to the transition, where
the local potential becomes flat, so that the system
departs from ¢=0 with increasing probability. The
actual experimental determination of 1,,, can be done
via the Fourier transform of the stationary correlation
function:

{eodsm= (4.18)

© Q
C.(w)= _I dt €880 gar = W

rel

(4.19)

by measuring the line width of this Lorentzian.

3 The argument here is that the noise sources do not feel the
transition because they live on a different time scale
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We can use the experimental information that Trer I8
of the same order of magnitude for the antisymmetric
mode as for the symmetric mode sufficiently far from
the transition to check our estimate for the noise
strength Q. Taking 1,,~0.25s and considering the
pretransitional range of f to be 1. to 4. we find 0
ranging from 0.25 to 4. Hz, which is consistent with our
previous estimate Q=0.25Hz (order of magnitude
wise). Furthermore we can set out now to determine,

.on which control curve in the parameter plane (a, b)

the system approaches the transition. To that end we
again assume that d~4 and Q=~0.25Hz do not
perceptibly change as the driving frequency is scaled
[cf. discussion following (4.17)]. With that we find from

4b+a=0d

4b—a=Qf*(F)

that
2

ar=2C L ), (4.20)
2

b(F)=%d—+%f2(F), 4.21)

where f(F) is the previously determined function. We
have plotted these functions of the driving frequency F
in Fig. 8. Obviously the transition is approached by
increasing a, while b decreases slightly. We have
included the control curve b=b(a) in the phase
portrait of Sect. 2 (Fig. 4).

Independent of these considerations we can deter-
mine the set of critical parameters (using again d~4
and Q ~0.25 Hz) from the critical condition a=4b. We
find:

a,=20Hz; b,=05Hz (4.22)

and we shall use these values to discuss the transients of
the transition regime. According to our estimate of f
the last pretransitional parameter plateau corresponds
approximately to

fore=10. (4.22a)

We shall use the stationary distribution (4.14) with this
parameter value as an initial condition in the next
section.

4.4 Transition Region

In the transition region the system, initially prepared in
the antisymmetric mode, switches to the symmetric
mode, as the antisymmetric mode turns unstable. In
the parlance of stochastic theory this means that we
expect a transient from an initial distribution centered
at ¢=+n to a distribution centered at ¢=0. To
describe such transient behavior we have to study the
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time dependence of the full stochastic system (3.3). We
did that by solving the corresponding Fokker-Planck
Eq.(3.4) numerically. A one-step integration algorithm
for the temporal evolution and a discretization of the
interval [ —m, n] with step size A4¢ were used. The ratio
of the time step 4t to (4¢)* was kept at 0.25, which
secured stability (cf. e.g. Ames 1977). Periodic bound-
ary conditions were employed. As an initial condition
we chose the stationary distribution of the local model
of the antisymmetric mode (4.14). The results for the
critical parameter values (4.22), determined in the
previous section, are depicted in Figs. 9 and 10. Figure
9 illustrates the temporal evolution of P(4, t). One can
clearly see, how the probability mass, initially concen-
trated at = and — 7 flows to the central peak at ¢=0.
The resultant distribution is much sharper than the
initial one, because ¢=0 is a deeper and steeper
minimum of the potential than ¢ = + = was at the last
pretransitional parameter plateau. Figure 10 shows
mean and SD evolving in time. {|¢|> quite clearly
marks the switching from =+ = to 0. The SD shows how
fluctuations are enhanced during the transient (i.e. the
distribution is spread out), while they settle to a level
even lower than before the transition once the transient
has died out. This latter observation again shows that
Py =0 is a more attractive stationary state than
@ = £ 7 was before the transition. Let us make the
following quantitative observations: (a) We can read
off the plots of mean and SD the duration of the
transient: this transient time is approximately 2.5-5s
in accord with the experimental estimate of 1-2s. This
result is a true prediction in that the experimental
information on T, has not been used. A more exact
discussion of transient times follows below. (b) The
temporal mean of SD is defined as the mean up to the
time, when the switching has occured with 90%
probability [i.e. when P,(t), defined below in (4.23), first
exceeds 0.9]. With that definition we find from the data
of Fig.10: SD =56 deg. This is the correct order of
magnitude as compared to the experimental value of
60 deg (cf. Fig.3). The corresponding values for the
. mean phase are 65 deg theoretical and 85 deg experi-
mental. () After the transient the SD settles to a
stationary value of 6.0 deg, which has to be compared
with the experimental 4.5 deg. The corresponding
values for the mean phase are 7.3 deg theoretical and
8.0 deg experimental. Again correct orders of magni-
tudes are obtained. :

We performed these same calculations for the
parameter setting .= 1.0Hz, b,=025Hz, and
0=0.125Hz, that results, if the larger value for
7,4 =0.5 Hz is used (cf. Sect. 2). The results are very
similiar. The switching is somewhat slower {about
5-7s), but the temporal means and the asymptotic
values are identical.
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Fig. 9. The temporal evolution of the probability density for the
critical parameter values (4.22) is illustrated by showing it at
times: 0.0s, 1.10s, 2.195,3.29 5, and 4.39 5. All distributions are

normalized. The integration parameters were: 4t =2.7- 107 3and
4¢=0.11

2.5 5.0 75 time [sec]
Fig. 10. The mean absolute phase {|¢,}> and its SD as a function
of time determined from P(g,¢) of Fig.9. The inset shows the
potential V(¢) at critical parameter values used in Fig.9 and
illustrates the transient motion that occurs during the first 2.5-5 s

A more detailed comparison of theory and experi-
ment would entail time resolved data for the transition
regime. Such experiments are under way. Preliminary
results show that the transient in SD can be seen {Kelso
and Scholz, in preparation). In view of these experi-
mental possibilities we would like to put forward two
more exactly defined concepts for the determination of
mean transient times in the model. One is the concept
of mean first passage time (MFPT), which will be
discussed in the subsequent subsection. The other
concept makes use of the time dependent solution of
the Fokker-Planck equation and can be derived as
follows (cf. e.g. Broggi and Lugiato 1984): During the
transient, probability mass that is initially concen-
trated at ¢ = +nflows to ¢ =0 and accumulates there,
until the “new” peak at ¢ =0 is dominant and station-
ary. The quantity

P0= 1 46P@.0 423

is for adequately chosen §>0 the probability mass of

the “new” peak and grows during the transient.
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Fig. 11. The switching velocity v(t) defined by {4.24)as a function
of time for the transient at critical parameter values 4.22).1,, is

the mean switching time calculated with v(t) as probability -

density
dP(t
o(t)= —stQ (4.24)

is the velocity of this growth, i.e. o(t)dt is the proba-

bility that switching occurs in the time interval
[t,t+dt]. Thus

@« o©

Towitch = { tw(t)dt= { tdPy(t) 4.25)
is the mean switching time. This ‘quantity can be
compared to an experimentally determined transient
time*. We have calculated v(t) for the transient of
Fig. 9 [i.e. for the critical parameter values (4.22)]. This
is depicted in Fig. 11. The mean switching time from
this run is 7,4, =2.5s. This is the correct order of
magnitude if we compare with the experimental esti-
mate of 7,,,,=1to 2s.

Finally we should mention that the transient
solutions of the Fokker-Planck equation were also
calculated for non-critical parameter values. For pre-

transitional parameter setting we found that no switch-

ing of the type exhibited in Figs. 9 and 10 occured.
Instead one could observe the equilibration process on
a much larger time scale (> 7,4 ) in accord with our
time scales argument (4.1). The final state was a
comparatively broad distribution with large SD and a
mean phase modulus close to /2 (which corresponds
to the equidistribution). For posttransitional pa-
rameter setting, initial distributions centered at +n
(which then is an unstable stationary state) relaxed to
very sharp distributions céntered at ¢=0 on fast time

4 A measurement procedure could be as follows: In each of a
number of runs one determines the time it takes the system on the
transition plateau to first reach a phase with {¢,{< 5 [8 of 4.23)].

The arithmetic mean over different runs is then Tywitch

time [sec)
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scales of <1.0s. Thus the transient behavior of Figs. 9
and 10is indeed characteristic of the critical parameter
setting only.

4.5 First Passage Time

The question asked here is: How long does is take
before the stochastic relative phase ¢, first reaches
¢=0, if it was intitially at + 7. This time is a random
variable called first passage time and its distribution
and moments can be calculated. In the bistable situa-
tion below the transition the mean first passage time
(MFPT)from + 7 to 0is a measure of the equilibration
time. The reason is that in the equilibration, when an
Initial distribution evolves towards the stationary
distribution, the most arduous and thus slowest pro-
cess is that of transporting probability mass over a
potential hill. But the time scale for this transport is
just the MFPT. In our system we expect the MFPT to
be large below the transition: MF PT»1, At the
transition the MFPT is a measure of how long it takes
before the system first switches to the new stable state
$uae=0. Thus the MFPT is a second theoretical
quantity, that can be compared to experimentally
determined transition timesS.

Standard theory gives us a formula for the MFPT
that only involves two ordinary integrations (cf. e.g.
Gardiner 1983, Sect. 5.2.7b therein). Here we have used
the inversion symmetry of the potential to restrict the
system to [0, n] only, erecting a reflecting boundary at

MFeT=2T dyw"(y)(f) dzp(2),

(4.26)

SIS

where

p0)=exp [— 5 V(y)}
and
V(y)=acosy—bcos2y.

We have evaluated the integrals numerically for vari-
ous parameter settings. Figure 12 shows the MFPT for
Q0=0.25Hz, b=0.5Hz as a function of a (logarithmic
scale). This plot corresponds approximately to the
path of the experimental system through the transition
(cf. Fig. 8). Note that at a=a_,, =2.0 Hz we have

MFPT,, =43 (4.27)

again in accord with the experimental estimate of Tirans:
Obviously the MFPT is very large below the tran-

5 The mathematical definition of MFPT could be used to
devise a different measurement procedure for switching times.
We do not want to elaborate this here
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" Fig. 12, The MFPT from ¢=+nto ¢ =0 plotted Iogari!hmical)y
as a function of g at 0=0.25Hz and b=0.5Hz. The valye ofa
corresponding to the critical parameter set (4.22) is indicated

S Concluding Remarks

Were one to attempt to count the neurons, neuronal
connections, vascular Support processes, muscles, and

locomotion, to the vertebrates that use oOte, two, three,
or four pairs of legs, the same design feature €Xists,
namely ...“a mechanism for communicating informa-
tion about the phase of cyclica] activity between
adjacent members of the system™ (Sleigh and Barlow
1980, p. 51). The nature of this phasing information has
been recently elaborated (Kelso and Tuller 1985). In
addition, phase has been observed to be an essential
parameter in many voluntary activities of a less cyclical

The second major consequence of our studies -
treated in detail here - jg the decisive role played by
fluctuations in initiating a transition between ope state
and the other at 5 critical value of the contro}

In Summary, a serious effort is made here to address
the necessary and sufficient conditions for new (or
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