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Abstract. Looking is one of the most basic and fundamental goal-
directed behaviors. The neural circuitry that generates gaze shifts to-
wards target objects is adaptive and compensates for changes in the sen-
sorimotor plant. Here, we present a neural-dynamic architecture, which
enables an embodied agent to direct its gaze towards salient objects in
its environment. The sensorimotor mapping, which is needed to accu-
rately plan the gaze shifts, is initially learned and is constantly updated
by a gain adaptation mechanism. We implemented the architecture in
a simulated robotic agent and demonstrated autonomous map learning
and adaptation in an embodied setting.
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1 Introduction

The ability to direct gaze towards interesting objects in the surrounding envi-
ronment is one of the most basic goal-directed behaviours of an embodied agent.
Bringing the interesting object into the foveal (central) region of the retina not
only puts the object’s image into the receptive fields of a larger number of pho-
toreceptors, but also aligns the motor system of the agent with the outside world
and allows to calibrate motor plans of other motor actions directed at objects,
such as reaching, pointing, or walking towards them [12]. The neural system,
responsible for the looking behaviour has been studied experimentally since the
beginning of the last century. The neural circuits, involved in generating the goal-
directed eye movements, have been identified [4, 11] and include the cerebellum,
basal ganglia, superior colliculus, and the frontal eye field.

A prominent property of eye movements is their adaptability. Indeed, the
saccadic eye movements1 are too fast for the visual feedback to influence their
accuracy. Thus, gaze shifts have to be planned based on the location of the

1 Here, we don’t distinguish between saccades, i.e. goal-directed eye movements with
restrained head, and saccadic gaze shifts, which include both eye and head move-
ment. See [16] for a discussion of the relation of the neural mechanisms, revealed for
saccadic eye movements, and the gaze shifts. In our experiments, the robotic head
was moved, which corresponds to a gaze shift.
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visual stimulus on the retina. However, the pathway from the retina to the rep-
resentation of the motor plan and further to muscles is subject to noise and
trial-to-trial as well as developmental variations. Consequently, the amplitude
of the planned gaze shift towards the object, detected on the retina, needs to
be constantly updated. Indeed, the experiments on saccadic adaptation [19, 17,
10] reveal pervasive adaptation capacity of the eye movement circuitry in hu-
mans and primates. In these experiments, the saccadic target is shifted during
the saccade, when this shift cannot be perceived by the subject. Over several
trials, the amplitude of saccades to the given target changes to compensate for
the error, perceived after the manipulated saccades. Neural models of this adap-
tation process include cerebellum and superior colliculus [6, 15, 2, 8, 3], as well
as the parietal cortex [9]. Learning mechanisms based on internal feedback and
the visual error after a saccade [19] have been proposed to act in this adaptive
circuitry. The models of gaze shift generation, mentioned above, focus on identi-
fying neuronal structures involved in saccades generation and adaptation. These
models typically do not demonstrate autonomous processing of visual inputs in
this system and actual generation and adaptation of eye movements.

Here, we present a model for saccadic gaze shifts, which includes all stages of
sensorimotor processing from acquiring visual input from a simulated camera,
selecting the target, generating motor command, to actually executing the mo-
tor act with simple motor dynamics and updating the sensorimotor gains when
a gaze-shift error is detected. This ‘wholistic’ and embodied approach demon-
strates how the mechanistic level of a neural architecture may be bridged with
the behavioural level of an embodied agent, using the framework of Dynamic
Neural Fields.

In this paper, we focus on the learning and adaptation mechanisms, which
update the map of gains between the retinal representation of targets and the
amplitude of the motor command, which brings the target into the fovea. The
actual implementation of the model in a simulated robotic agent revealed non-
linearities in this mapping and dependence of the mapping on both the location
of the target on the retina and the motor state of the system prior to the sac-
cade. The gain map is updated based on the error after a saccade; the region of
adaptation is selected autonomously based on the perceptual and motor state
of the agent before the movement. Our neural-dynamic architecture may be re-
lated to the neuronal structures, involved in generation and updating of saccadic
eye movements, but the focus of this work is not on neuronal modelling, but on
demonstrating the adaptivity of looking behaviour and of the underlying sen-
sorimotor circuits in an artificial system, inspired by the equivalent neuronal
system.

2 Methods

2.1 Dynamic Neural Fields: choice of the mathematical framework

Dynamic Neural Fields (DNFs) are continuous in time and in the underlying
behavioural space descriptions of activity of neuronal populations [1, 5]. DNFs
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are the basis of the Dynamic Field Theory [14], which aims to extend the neural-
dynamic modelling approach to account for cognitive behaviour in an embodied
and situated agent [13]. DNFs, which form the basis for our architecture, follow
the Amari equation, Eq. 1:

τ u̇(x, t) = −u(x, t) + h+ S(x, t) +

∫
f(u(x′, t))w(x− x′) dx′, (1)

where u̇(x, t) is the rate of change of the activation function, u(x, t), defined over
a behaviourally relevant space x (e.g., color, location, or motor command). τ is
the time constant and h < 0 is a negative resting level, which ensures that the
DNF is silent (below activation threshold) in an inactivated state. S(x, t) is input
to the DNF, which may come from the sensory system or other DNFs. The last
term formalizes the lateral neural interactions in the DNF, which are shaped
by the interaction kernel, w(x − x′). The lateral connectivity is homogeneous
within DNFs, with nearby sites exciting each other and far-off sites inhibiting
each other. f(·) is a sigmoidal non-linearity, which defines the output of the DNF.
This non-linearity and the lateral interactions in the field result in a special form
of solution of the DNF equation – a localised activity peak, which is the unit
of representation of DFT and a bridge between the continuous in time and in
space dynamics of the activation function (which may be directly linked to the
sensory input coming from a physical sensor) and discrete, categorical states of
the cognitive system. DNFs were previously used to detect, select, and stabilise
the representation of target objects, as well as to account for timing of gaze-shift
generation in early models for looking behaviour [7, 18, 20].

2.2 The DNF architecture for looking
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Fig. 1: The DNF architecture for looking. Shaded regions mark four components
of the architecture. Arrows show direction of activation flow between different
subsystems, lines with circles denote inhibitory couplings.

The complete DNF architecture for looking has four components, shown in
Fig. 1. Adaptation of the saccadic gains happens in the gaze-shift generation
system. The fixation system tracks the target during fixation and drives the
memory formation processes when the target is foveated. The memory formation
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system combines the features of the currently attended object with the motor
state of the camera head when the object is fixated, creating a body-centred
representation of the visual scene.

Fig. 2 shows the gaze-shift generating circuitry, which is the focus of this
work. A perceptual DNF is defined over the retinotopic space and the visual
feature (color, the third dimension, not shown in the figure). Activity peaks over
salient objects in the visual field are induced in this DNF by the visual input.
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Fig. 2: The gaze-shift generation system. Shaded regions and arrows have the
same meaning as in Fig. 1. Dashed lines show couplings involved in adaptation.

The perceptual DNF provides input to the target DNF, also defined over the
retinotopic space. A single peak evolves in the target DNF over the location
of the most salient object. In our architecture, the activity peak in the target
DNF is stabilised by very strong lateral interactions, such that this peak is self-
sustained. Once initiated, the peak conserves its location even if the initial input
from the perceptual system moves (e.g., due to the initiated eye movement). This
is a critical property of the architecture: it creates a stabilised, self-sustained
representation of the initial location of the target in retinal coordinates, which
is critical to enable learning of the gain to the motor system, associated with
this retinal location.

An activity peak in the target selection DNF drives a saccadic burst genera-
tor, which consists of two connected nodes: the excitatory node eventually drives
the motor system of the agent and activates the inhibitory node, which, in its
turn, inhibits the excitatory node. This system behaves as an oscillator, which
generates a stereotypical (i.e. the same for saccades of all directions and ampli-
tudes) trajectory for the motor signal and is similar to neuronal burst generators,
involved in saccades generation.

Before arriving in the motor system, the oscillatory signal is scaled with an
adaptive gain, which depends on the location of the target object on the retina
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(represented by the activity peak in the target selection DNF) and the gaze
direction of the agent before the saccade (represented in the motor memory
DNF, driven by the proprioceptive inputs). These dependences are marked with
“gain selection” labels in Fig. 2. The latter input is required in our robotic agent,
because the mapping from the retinal locations of targets to the respective motor
commands (in terms of the amplitude of pan and tilt joints’ movements) is non-
linear because of the geometry of the robot. In the human looking system, non-
linearities come from the non-linearities of the neuromascular plant. The motor
signal eventually drives the motor system, setting velocities of the two motor
joints, which control the camera head in our experiments.

After a gaze shift, an end-of-saccade node (condition-of-satisfaction) is acti-
vated by the saccadic burst generator, which has finished its single oscillation.
The end-of-saccade node activates the fixation system (see Fig. 1), which sta-
bilises the target in the central portion of the visual field and enables memory
formation for the gaze-centred representation of the foveated object. A detailed
description of the fixation system, as well as memory formation are outside the
scope of this paper.

The end-of-saccade node also excites an error-estimation circuit, which com-
pares the location relative to the fovea of the activity peaks in the perceptual
DNF (after the saccade) and in the target DNF (holding the memory for the
target location before the saccade) and represents the decision whether the sac-
cade was too short or too long along the horizontal and the vertical directions in
the image plane. This error-sign signal defines whether the gain, specified by the
target location and the initial motor state (“where to adapt” labels in Fig. 2),
will be increased or decreased (“how to adapt” label in the figure). Next, we
describe this adaptation mechanism in more detail.

2.3 Learning and adaptation of the sensorimotor gain maps

Here, we describe the learning process, which initially learns and constantly
updates the gain maps if a saccadic error is detected. Initially, the gains are set
to small random values and are updated according to the following learning rule:

τlĠ
h,v(x, y,m, t) = εh,v(t)f(uEoS(t))f(um(m, t))f(u(x, y, t)). (2)

Here, Gh,v(x, y,m, t) are two sets of gain maps (for the horizontal and vertical
components of movement). Each of the m gain maps in the two sets is defined
over the dimensions of the target DNF, u(x, y, t). The sets span m different ini-
tial motor states (the tilt joint angle in our setup). The gains change in the
map(s), which are selected by the output of the motor DNF, f(um(m, t)), at
the locations, which are set by the activity peak in the target DNF. f(uEoS(t))
is the output of the end-of-saccade node, which is required to be positive (sac-
cade finished) for learning to become active. εh,v(t) is the error in each of the
movement components, τl is the learning rate. Using this rule, the whole gain
map may be learned in a learning session, where the whole visual-motor space
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is sampled. The map is updated locally over a few gaze-shifts if an unexpected
change in the sensorimotor plant happens.

3 Results

In our learning experiments we used a simulated robot CoRa, which may be seen
in the upper right corner of Fig. 2. The implementation allows to transfer the
architecture onto a real robot, but this was not the focus of our work here. In
this paper, we report two sets of experiments.

3.1 Learned gain maps

In the first experiment, we investigated how the whole gain-map may be learned
by the agent based on a coarse prestructure that associates horizontal movements
on the retina with the pan joint of the camera head, and vertical movements with
the tilt joint, which is not correct for all initial joint configurations. The objects
were placed systematically (on a virtual 16x15 grid in the image, projected on
the table) in front of the simulated robot to sample the whole visual space. The
initial camera head pose was also varied systematically to sample the whole
space of initial motor states (we used only five different initial poses).

Fig. 3 shows the learned gain maps for five slices along the tilt motor di-
mension. It took 6000 saccades to learn these maps (i.e. approx. five saccades
per location and initial tilt). In our experiments, the pan angle of the initial
pose of the robot did not affect the gain maps, because of the geometry of the
robot. The dependence on the initial tilt angle was successfully learned by the
agent and calibrated the sensorimotor mapping, needed to direct actions at the
visually perceived objects.
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Fig. 3: Gain maps: each map is defined over retinotopic (image-based) coordi-
nates. Maps are arranged according to the initial state (tilt angle) of the camera
head. Note that the gain maps change with the initial tilt angle.

3.2 Adaptation experiments

In the second set of experiments, we simulated a gaze adaptation session, in
which the target object was displaced during the saccade. This shift is not per-
ceived by the system, since the activity peak in the target DNF is self-sustained
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and thus ‘decoupled’ from the perceptual system. Fig. 4 shows results for an ex-
periment with the initial pose fixed at [0, 0] (the robot looks straight ahead). The
robot performs horizontal saccades, during which the target is shifted against
the saccade direction.

Fig. 4a shows the time-course of the gaze error. The gaze error is estimated
only in the periods when the end-of-saccade node is active and is zero otherwise
(see the plot). First six saccades demonstrate a low error, since the system has
already learned the gain map. Starting with the seventh saccade, the target is
shifted (during each gaze shift) against the saccade direction horizontally. Over
a few saccades, the error is decreased again; the agent performs shorter saccades
to the manipulated target. Fig. 4b shows a slice of the adapted gain map, which
corresponds to the initial pose of the robot in the adaptation session. Note the
slightly decreased amplitude of the gains around the adapted location ([25, 55]
in image coordinates), where the target was perceived.
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(b) The adapted horizontal gain map.

Fig. 4: Results of an adaptation experiment.

4 Discussion

In this paper, we presented the neural-dynamic architecture for generation of
saccadic gaze shifts and their adaptation, which may be coupled to sensory
inputs and drive a physical motor system. On the one hand, the architecture
offers a neural-dynamic framework, in which various aspects of saccades and
gaze shift generation, as well as their adaptation, may be studied. On the other
hand, the system allows to study sensorimotor learning in an adaptive artificial
cognitive agent.
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