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Abstract— In this paper, we introduce a neural-
dynamic architecture that enables autonomous learn-
ing of sensory-motor mappings in a closed behavioral
loop. Dynamic neural fields ensure stability of per-
ceptual and motor representations, a neural-dynamic
representation of the condition-of-satisfaction au-
tonomously terminates the current action and enables
activation of the next action, triggering a transient
learning process when appropriate. Sampling of the
high-dimensional space of the sensory-motor mapping
is facilitated by a representation of the behaviorally
salient states through localized activity peaks in the
visual and motor neural-dynamic representations. We
present the basic concepts of our autonomous learn-
ing architecture, a robotic implementation using a
dynamic vision sensor mounted on a pan-tilt unit,
which enables learning in a closed behavioral loop,
and demonstrate functioning of the architecture in a
simple learning scenario.

I. INTRODUCTION
Sensorimotor transformations are at the core of be-

havior of autonomous cognitive agents, both robotic and
human. The agent receives information about the state
of the environment and its own body from sensors and
has to generate motor commands based on this infor-
mation in order to achieve its goals. The mapping from
the perceived states to the motor commands – however
complex and hierarchical it is – might change in dy-
namic real-world environments. Thus, adaptation of this
mapping and its self-organization are necessary to enable
autonomous functioning of the agent. Autonomy of the
adaptation processes within sensory-motor mappings is
challenged by the continuity in time and in space of the
physical variables which define the environmental states.
This autonomy relies on autonomy of the perceptual
processes and motor control of the behaving agents, an
issue often underdeveloped in work on learning sensory-
motor mappings.

For instance, in the field of developmental robotics,
motor bubbling is often used to discover the complex
mapping between the sensory space and the motor space
of the robot [1]. In an exploration phase, random move-
ments are generated and the resulting sensory changes
are recorded to drive learning process in a learning phase.

The learning process itself applies gradient-descent opti-
mization based on prediction and motor-control errors
in a multi-layer perceptron. Here, a mapping between
the sensory and motor spaces can be learned and the
learning process may be optimized for efficiency of the
exploration strategy and overall speed, but the problem
of autonomy of the learning process is not addressed –
there’s no mechanism to autonomously detect when to
initiate and to terminate an action, when to trigger and
stop the learning process, errors are measured outside the
learning system. Although such approach is useful to cal-
ibrate robotic systems, it does not provide insights into
autonomous learning, as observed in humans and desired
in truly autonomous agents [2]. The lack of autonomy
in the coupling of the adaptive sensory-motor maps to
the perceptual and motor systems is characteristics for
developmental robotic architectures [3], [4], [5].

Other examples of algorithms for building and updat-
ing adaptive sensory-motor maps were introduced and
applied in robotic scenarios [6], [7]. An architecture that
combines a self-organizing map algorithm and dynamics
of neural fields with reinforcement learning [7] exempli-
fies how a dynamical sensory-motor map may be formed,
predictions of the upcoming sensory inputs may be gen-
erated, and sequences of states may be planned. The
learning process here, however, consists of generating
random movements, storing the respective commands
and their consequences, and using the resulting data to
drive the self-organization algorithm. The autonomy of
this implementation is limited: important problems of
autonomous segmentation and categorization of sensory
inputs, as well as categorization of low-level motor com-
mands, have to be solved in order to link the learning
system to sensors and motors of a real physical agent.
Similarly, in architectures in which the sensory-motor
transformations are learned in a self-organizing map
(SOM)[6], the learning process lacks autonomy. Here, the
SOM builds a mapping between the sensory space of a
simulated stereo camera and the end-effector of a simu-
lated robotic arm, while actions are generated by sending
random commands and observing sensory states when
each action is finished. The mechanism of autonomous



selection, initiation, monitoring, and termination of the
actions are not included in the model. The moments in
time, when it is appropriate to update the map are given
to the algorithm, not detected autonomously. Most of
the implementations of SOM algorithms do not focus on
autonomy of the learning process [8].

Autonomy of cognitive processes and their develop-
ment is central in the dynamical systems approach to
modeling human cognition [9]. Dynamic field theory is
a particular flavor of the dynamical systems approach,
which has been particular successful in application of the
cognitive models to control of robotic behavior [10], [11],
[12]. The core element in this framework are dynamic
neural fields (DNFs) – activation functions defined over
topological spaces, which characterize the state of the
behaving agent and the environment. Localized activity
peaks emerge as stable solutions of the dynamics of DNFs
and represent salient characteristics of the perceived
states, as well as the goals of motor actions. Autonomy
of representations in DFT is achieved by introduction of
elements of intentionality [13], [14], which ensure acti-
vation and deactivation of the relevant representations
when appropriate.

Here, we demonstrate how the framework of DFT
can be applied to learning sensory-motor transformations
and exploit the intentional structure of representations
to enable autonomous learning, along with autonomous
perception and action generation. The actions are initi-
ated and terminated autonomously based on stabilized
representations of the sensory inputs. The learning pro-
cess is triggered autonomously when a match between
the intended and the actual sensory state is detected
and stabilized in the neural-dynamic representation of
the condition-of-satisfaction.

We present here the first robotic implementation of the
architecture in a looking scenario using a pan-tilt camera
unit as the test-bed platform to explore autonomous
learning of sensory-motor mappings. Looking behavior
is unique in its simplicity and richness, with a vast room
for learning and adaptation [15]. Here, we present the
first stage of the autonomous adaptation of the neural-
dynamic controller of this robot – adaptation of the
mapping between the low-level sensory representation (a
visual intention induced by a saliency map in retinal co-
ordinates) and low-level motor-command representation
(motor intention based on a map of desired pan-tilt con-
figurations). The learning algorithm is similar to a simple
reward-driven Hebbian learning rule, which strengthens
projections between the sensory and the motor maps if a
condition-of-satisfaction dynamics autonomously detects
a match between the sensory input and the expected ac-
tivation in the central part of this DNF when a successful
saccade centers the selected object. Both the representa-
tion of the visually-induced intention and the respective
motor command that result in a successful saccade, are
stored by a working memory mechanism, inherent in
the dynamics of neural fields. This memory mechanism

sustains the relevant representations to enable learning.
The strength of this architecture is threefold: (1) we

introduce stability to the sensory-motor representations,
needed to drive the learning process, (2) we introduce the
concept of condition-of-satisfaction in the sensory-motor
maps learning, which enables autonomous activation
and deactivation of the representations and drives the
learning processes coupled to continuous sensory-motor
dynamics, and (3) the architecture facilitates sampling
of the space of the sensory-motor mapping through
localized activity peaks in the neural fields dynamics.
Next, we present the mathematical and conceptual basis
of the model and details of the robotic implementation
of the architecture.

II. THE MODEL

A. The basics of DFT
Dynamic Field Theory (DFT) is a conceptual and

mathematical framework in which the neural dynamics
accounts for emergence of elementary cognitive functions
– such as detection of the most salient information,
selection among alternatives, stabilization of decisions,
and stabilization of working and long term memory
– from the low-level, continuous dynamics of neural
fields coupled to sensory input and to motor output
[16]. The dynamic neural fields (DNFs) are activation
functions defined over behaviorally relevant dimensions,
such as visual features (e.g., color or intensity), spatial
position of the target, or motor commands (e.g., the
desired velocity or force). In DFT, the state parameters,
such as the perceptual features or motor commands,
are represented as stable localized activity bumps, or
peaks. The positive activation within such peaks specifies
values of the behavioral parameter that characterize the
particular state. The peak-solution of a DNF is stabilized
by lateral interactions within the neural field according
to the neural field equation [17]:

τ u̇(x,t) = − u(x,t) +h+
∫
f(u(x′, t))ω(x′ −x)dx′

+ I(x,t) (1)

In Eq. 1, u(x,t) is activation of the DNF, spanned over
a behavioral dimension, x (e.g. visual space or motor
commands), in time t; τ is a relaxation time-constant
of the dynamics; h is a negative resting level ensuring
that the DNF is salient if no input is present; f(·)
is a sigmoidal non-linearity, which shapes the output
of the neural field; ω is a Gaussian-shaped interaction
kernel with the shot-range excitatory and the long-range
inhibitory part; I(x,t) is input to the DNF, coming either
from a sensor or from another DNF.

The pattern of lateral interactions in a DNF ensures
that localized peaks of supra threshold activation emerge
as stable solutions of the Eq. 1. These peaks are units of
representation in DFT and represent the percepts and
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Fig. 1: The DNF sensory-motor map learning architec-
ture. See text for details.

motor commands, which impact on the behavior of the
agent.

B. Intentional structure
In order to enable autonomous activation and deacti-

vation of states in a DNF architecture, each behaviorally
relevant state has two dynamical components – an inten-
tion and a condition-of-satisfaction [11]. An intention is
simply a dynamic neural field, Eq. 1, which is spanned
over some behavioral space, receives input from the
sensory surface, and is coupled to the down-stream struc-
tures of the architecture, ultimately setting attractors
for low-level motor dynamics, which drive the behavior
of the agent. Condition-of-satisfaction is another DNF,
also following Eq. 1, which receives a subthreshold input
from the intention DNF. This input is not sufficient to
activate the CoS, but makes the CoS DNF more sensitive
to certain inputs, i.e. the CoS DNF is preactivated, or
preshaped, by the intention DNF. The preactivated CoS
may be activated by a sensory input that matches the
subthreshold input from the intention DNF. An active
CoS field, in its turn, inhibits the intention DNF through
a negatively weighted coupling. The motor action stops
and the agent selects the next action according to a
memorized sequence of required actions [14], rules of
behavioral organization [11], or, in this work, driven by
the most salient sensory input to the intention DNF.

In the architecture presented here, we use zero-
dimensional CoS neural ”fields”, since the CoS of the
motor system represents a match between the current
motor state, defined by a scalar variable for each DoF –

pan or tilt – of the robotic system, and the desired motor
state, defined by the location of the activity peak in the
motor DNF, also represented by a scalar variable for each
DoF of the robot. The visual CoS is driven by a match
DNF, which, additionally to its role as a CoS field also
triggers the learning process, as described further (see
Fig. 1).

C. The architecture
Fig. 1 shows the DNF architecture, which enables

learning of the mapping between the visual representa-
tion of a salient object and the motor command needed to
foveate this object, i.e. to bring the object in the central
part of the visual field.

Here, the visual input from a dynamic vision sensor
(DVS) [18] provides positive activation to the perceptual
DNF, in which peaks of suprathreshold activation is built
at locations, where salient pixels are concentrated. This
perceptual system is a simple model of a saccade target
selection system. The perceptual DNF is tuned in such
a way that peaks are formed if a moving input is present
in the visual array. When visual input ceases, peaks in
the perceptual DNF decay and are not sustained; new
moving input induces new peak(s) immediately.

The visual intention DNF, on the contrary, builds self-
sustained activity peaks. A peak in this field represents
the target for the upcoming saccade and has to be
sustained for the time of the saccade. The visual intention
peak may be switched off by two inputs: either by the
visual CoS, which detects that the selected target is
present in the central part of the image, or by the motor
CoS, which signals that the saccade movement is accom-
plished. Both these inputs inhibit the visual intention
field and bring it in the input-driven regime, in which
the perceptual input may induce a new activity peak.
Activation in the CoS structures ceases and inhibition
on the intention DNF is released – the visual intention
field may stabilize the representation of the new target.

Through the mapping between the visual and the
motor DNFs, which is subject to the learning dynamics,
a peak in the visual intention DNF induces a peak in
the motor intention DNF. The motor intention DNF is
coupled to the motor dynamics and drives looking behav-
ior, which is modeled by a simple attractor dynamic that
sets the pan and the tilt of the camera unit. Before the
learning process has started, the mapping between the
visual and the motor intention is not known and is mod-
eled by a random map. A peak at an arbitrary location in
the motor intention DNF is built from the random input,
induced by the lateral interactions in this field. This peak
generates a looking action, which, initially, does not lead
to centering the object. In this case, the motor CoS is
activated (the movement of the amplitude encoded by
the motor intention is performed) and the visual and
motor intention fields are inhibited to be input-driven
again; the self-sustained activity peaks decay and give
way to the new perceptually-driven activity peaks. The
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Fig. 2: Selection of the saccade target on the sensory pathway from the DVS camera (left), through perceptual DNF
(middle), to visual intention DNF (right).

visual CoS is not activated in this case and no learning
happens.

When after a looking act, the target appears in the
central part of the visual field, the visual match DNF
is activated and triggers a learning process, in which the
(still active) location in the visual intention DNF and the
(still active) location in the motor intention DNF are
associated by strengthening the respective locations in
the sensory-motor map, according to a simple Hebbian-
like (“fire together – wire together”) learning rule, Eq. 2:

τlṪ (x,y,k, l) = λ
∫
f(umatch(x,y))dxdy ·

·
(

−T (x,y,k, l) +f(uvis(x,y))×f(umot(k, l))
)

(2)

Here, the mapping T (x,y,k, l) (time-dependence is
omitted in the equation) between the visual intention
field, uvis(x,y), defined over image coordinates (x,y),
and the motor intention field, umot(k, l), defined over the
motor coordinates, k (pan) and l (tilt), retains its values
if the match DNF, umatch(x,y), is salient. If there’s a
positive activation in the match DNF, the integral before
the learning term shunts the change in the mapping to
be non-zero. The learning equation sets an attractor for
T (x,y,k, l) at the values of positive correlation between
the two intention DNFs, calculated as a sum between
the output of the visual intention field, expanded along
the dimensions of the motor intention field, and the
output of the motor intention field, expanded in the
dimensions of the visual intention field, augmented with a
sigmoidal threshold function. This correlation computa-
tion is equivalent to calculations performed by gain-field
cells and is one of the cognitive operations, which may
be employed in the DFT [10].

D. Sensory-motor system
We have coupled the DNF architecture to a custom-

made sensory-motor system, which consists of a dynamic
vision sensor (DVS) – a retina-inspired neuromorphic
camera, which detects change events in its sensor array
and sends the information about the pixel and time of
occurrence of each event asynchronously to the com-
puter, on which the DNF architecture is simulated. A
snapshot of a typical output of the DVS is shown in

Fig. 2. The perceptual DNF is activated in a region of
the most salient and spatially coherent activity in the
DVS output. Because of the weak lateral interaction in
the perceptual DNF, several activity peaks may be built
in this field. The perceptual DNF is coupled to the visual
intention DNF, which, in its turn, has strong lateral
interactions, and consequently a single activity peak is
built in this field over one of the salient locations. This
peak represents the visual target of the next planned
saccade.

Activity in the visual DNF is propagated to the motor
DNF through the mapping, which is random in the
beginning of the experiment and results in a peak in
the motor intention DNF at a random location – the
motor intention DNF performs a selection decision and
stabilizes this decision, induced by the random input
from the sensory-motor mapping. A peak in the motor
intention DNF sets an attractor for the pan and the tilt
of the robotic system (Fig. 3), the motor dynamics drives
the camera towards the corresponding pose. Activity
peaks in both visual and motor intention DNFs stay in
the same locations during camera motion because of the
strong lateral interactions in these fields, sufficient to in-
duce self-sustained activity, independent of the changing
inputs. This activity ceases when motor CoS is activated,
which brings both fields back in the input-driven regime.

eDVS sensorPan-Tilt-Yaw 
motor unit

Fig. 3: The DVS sensor mounted on a pan-tilt motor
unit.
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Fig. 4: The mapping between the visual and the motor intention spaces. The colormap of the plots spans the interval
[0, 1] (light blue to dark blue). The 4D mapping is shown here as slices along the motor dimensions, arranged in the
figure according to the visual dimensions. Before learning (left), the mapping is initialized as random connections
tensor. After the first successful saccade (middle), one region in the 4D field encodes a learned mapping between a
localized region in the visual intention space and a localized region in the motor intention space (the region marked
with the red circle; note the light-blue dots in the tiles in this region). After only a few successful saccades (nine
shown here), a large portion of the 4D space of the mapping is learned (regions marked by the red circle and the
red arrows).

E. Scenario and experimental set-up

In our experiment, the robot is put in front of a screen,
on which a pattern of blinking inputs is present, which
induces an activity pattern in the DVS output. The
perceptual DNF stabilizes this output and the visual
intention DNF selects one of the active regions as the
target of the following saccade. Through the randomly
initiated mapping, the output of the visual intention
DNF provides a randomly distributed input to the motor
intention DNF. Because of the lateral interaction in the
motor intention DNF, a localized activity peak is built
in this DNF at one of the locations. The robot performs
a saccadic movement (controlled by a simple attractor
dynamics), which stops when the motor attractor is
reached. The motor CoS is activated and inhibits the
intention DNFs slightly. If the saccade is not successful,
the visual intention DNF builds peak over the new
location of the selected visual object. The new visually-
induced intention is again propagated to the motor in-
tention DNF, where a new activity peak represents a new
hypothesis about the required motor action.

This process is repeated until, by chance, one of the
saccades brings the visual input close enough to the
central portion of the visual array. This event induces
an activity peak in the match DNF, which has a sub-
threshold preactivation in its central part, projected from
the active visual intention DNF, and is sensitive to visual
input in the central part of the camera image. The active
match DNF triggers the learning process in the mapping
between the visual and the motor intention DNFs (ac-
cording to the Eq. 2), while inhibiting the intention DNF
additionally. Learning happens in a transient, when both

intentions that have resulted in the successful saccade are
still active. When the motor intention DNF is inhibited
below threshold, peak in the match DNF decays as well,
and the update of the sensory-motor weights stops. The
new visual input from the periphery of the camera image
induces a new activity peak in the visual intention DNF
field, and the exploration and learning processes continue
autonomously.

III. RESULTS
Fig. 4 shows the sensory-motor map before the learn-

ing session, after the first successful saccade, and after
several successful saccades. Although the mapping is
defined between two continuous spaces, both these spaces
are sampled by bell-shaped localized activity peaks in
the learning process. This facilitates the learning process,
since the mapping is learned in a localized, finite, region
of the 4D mapping space each time a successful saccade
is made. Thus, the whole mapping space maybe sampled
in as few as twenty successful saccades. By adjusting
the width of the central region, preactivated in the
match DNF, learning may be further refined. Here, we
present only a proof of concept implementation of the
autonomous learning architecture and demonstrate how
learning of a sensory-motor mapping may be performed
autonomously, in a closed behavioral loop. A thorough
statistical analysis of the learning process is currently
being performed.

IV. DISCUSSION
In this paper, we have presented a neural-dynamics ar-

chitecture that enables autonomous learning of a sensory-
motor mapping between the visual and motor intentions,



each represented by a dynamic neural field. We have
implemented this architecture on a robotic agent and
demonstrated how learning accompanies autonomous
generation of looking actions based on low-level sensory
input in a closed behavioral loop. We have combined sta-
bility of the dynamic neural field representations with el-
ements of the behavioral organization – the intention and
condition-of-satisfaction neural-dynamical structures –
to enable autonomy of the learning process, which in-
cludes autonomy of selection of the visual target, initia-
tion of the motor action, termination of the motor action,
and decision to trigger the learning dynamics. All these
processes are controlled by autonomously generated in-
stabilities in the dynamics of the neural fields, which are
mutually coupled and linked to the raw, continuous in
time and in space, sensory input. We have demonstrated
autonomy of this learning architecture in a challenging
setting with a dynamic vision sensor and an uncalibrated
pan-tilt unit. Starting with a randomly generated cou-
pling, the robot was able after several successful saccades
to coarsely sample the sensory-motor mapping between
the image-based visual intention and the map of the pan-
tilt motor poses, which bring the target object into the
center of the robotic camera. This first implementation
demonstrates how learning may be accomplished in a
closed behavioral loop and will be further analyzed and
developed in subsequent experiments.
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