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Abstract— The ability to generate discrete movement with
distinct and stable time courses is important for interaction
scenarios both between different robots and with human
partners, for catching and interception tasks, and for timed
action sequences. In dynamic environments, where trajectories
are evolving on-line, this is not a trivial task. The dynamical
systems approach to robotics provides a framework for robust
incorporation of fluctuating sensor information, but control of
movement time is usually restricted to rhythmic motion and
realized through stable limit cycles. The present work uses
a Hopf oscillator to produce discrete motion and formulates
an on-line adaptation rule to stabilize total movement time
against a wide range of disturbances. This is integrated into a
dynamical systems framework for the sequencing of movement
phases and for directional navigation, using 2D-planar motion
as an example. The approach is demonstrated on a Khepera
mobile unit in order to show its reliability even when depending
on low-level sensor information.

I. INTRODUCTION

Providing theoretical mechanisms for trajectory generation

– for simple mobile units as well as robot arms with many

degrees of freedom – remains an important task in robotics.

This especially holds for autonomous agents expected to

flexibly react to time-varying and partially unpredictable

environments. Contrasting classical approaches that separate

task planning, trajectory planning, and control, the behavior-

based approach to robotics is aimed at linking action and

perception at low levels of sensory information [1]. Its advan-

tages include limited computational needs and some capacity

to act in unknown surroundings. In contrast, temporal proper-

ties of movements are less easily controlled than in classical

approaches. This is revealed when particular velocity profiles

must be achieved, or when the total movement time is to be

stabilized against perturbations to perform a movement “on

time”. Examples for tasks with external temporal boundary

conditions include catching, hitting, or juggling of objects;

sequential tasks, in which successive actions depend on the

timely accomplishment of preceding ones; or coupling and

coordination between several effectors or units. This is also

true for interaction scenarios between robots and human

operators: as humans exhibit strong temporal stabilization

in their movements [2], they expect their robotic partners to

behave likewise.

Within dynamical systems theory [3], stable limit cycles

are known to produce oscillations in phase space with a

This work was supported by the German BMBF grant DESIRE (FKZ 01
IME 01G)

The authors are with the Institut für Neuroin-
formatik, Ruhr-Universität Bochum, 44780 Bochum,
Germany {matthias.tuma | iossifidis |
gregor.schoener} @neuroinformatik.rub.de

fixed temporal structure. Such systems are related to both

the dynamical systems approach to robotics [4][5], and to

the concept of central pattern generators (CPGs, see [6] for

a review).

The dynamical systems approach on the one hand uses on-

line sensory information to dynamically change parameters

of differential equations for a set of behavioral variables

which define the robot’s state. By integrating these time-

variant dynamical systems and simultaneously making use

of bifurcations, action sequences and complex trajectories

can be produced [7]. In this manner, dynamical systems can

be employed at the level of planning in addition to the level

of control. Advantages include the possibility of mutual or

external coupling; stability properties that may be analyti-

cally proven for a range of cases; the ability to incorporate

sensory or feedback information on-line; the possibility to

consider stochasticity; and a low computational footprint.

In comparison to potential field methods, the mathematical

grounding is stronger, and several problems like spurious

minima and oscillations are avoided [8]. Also, the possibility

of integrating multiple constraints and generating decisions

through instabilities and multistability makes such systems

much more flexible than nonlinear controllers.

CPGs on the other hand are neural circuits that generate

rhythmic signals without depending on rhythmic input, and

can mathematically be described as nonlinear dynamical sys-

tems with stable limit cycle (periodic) solutions. Originally

found to be responsible for the generation of rhythmic motor

acts in a variety of both invertebrate and vertebrate species,

CPGs are increasingly used in robotics, especially to couple

and control rhythmic movement of several effectors [6].

A. Related work

Neither in robotics nor in neuroscience has the timing of

discrete motion been addressed with any depth. In particular,

the stabilization of movement time against a broad range

of perturbations remains, to the best of our knowledge, an

open issue. More widely covered are the themes of learning

of rhythmic patterns, combining dynamics for rhythmic and

discrete motion, implementing juggling or catching tasks, as

well as superposing movement primitives. Related work by

Ijspeert et al. [9] decouples learned movement plans from

temporal information to ensure correct pursuit of motion

after disturbances, but depends on task-tailored stabilizing

dynamics and does not attempt a temporal stabilization.

A theoretical proposal by Righetti et al. [10] provides a

frequency-learning mechanism for nonlinear oscillators in

the presence of external signals, which has been applied to
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the learning of bipedal locomotion in a humanoid robot [11].

Degallier et al. [12] enabled a humanoid to perform a drum-

ming task by superposing and switching between rhythmic

and discrete movement patterns. Hersch and Billard [13]

used VITE-like dynamical systems in redundant reference

frames to produce human-like reaching acts. Studies on

(dis)similarities between discrete and rhythmic movements

in humans [14] should be seen as accompanying robotical

research.

In earlier work, we proposed oscillating pattern dynamics

to describe timing and coupling properties of discrete move-

ment [15], developed a framework for the behavioral organi-

zation of sequential action [16], and fused both concepts to

steer onset and termination points as well as movement times

of discrete motor acts [17]. Other projects addressed obstacle

avoidance using dynamical systems (see [4] for an overview).

Santos [18] in turn attempted to include into these concepts

a temporal stabilization mechanism against disturbances,

which we however found to be subject to several limitations

and structural inconsistencies (see section VI).

II. OVERALL SYSTEM

Building on this prior work, the present approach provides

the capabilities i) to initiate and terminate discrete movement

through a dynamical system for the stable generation of

sequential actions; ii) to reach a possibly moving target while

circumnavigating obstacles or dealing with other perturba-

tions; iii) to do this while maintaining, as close as physically

possible, an approximately constant total movement time;

iv) to be implementable on a wide range of robotic systems

for which directional dynamics and kinematics exist.

We formulate sets of dynamical systems on two layers

of abstraction: on the level of behavioral sequencing, values

for variables representing start, execution, and end phases

of a movement are calculated depending on external signals.

On the second level, dynamics for all behavioral variables

that define the robot’s state are integrated. In the simplest

realization of 2D-planar movements, these can be the heading

direction φ and the velocity v. The appearance of obstacles

or a change of the target location influence the directional

dynamics (e.g. that for φ) on-line: repellors and attractors

are dynamically erected for safe navigation around obstacles

and simultaneous acquisition of the target.

The dynamics for v makes use of stable limit cycle

solutions of a Hopf oscillator. Generally utilized to create

rhythmic motion [6], here one oscillator cycle is associated

with one discrete reaching act by formulating a second order

dynamics, i.e. one for the robot velocity. An adaptation rule

for intrinsic properties of the limit cycle is formulated, so

that the velocity profile is sped up or slowed down following

perturbations, in order to reach the target in as close to the

initially desired movement time as possible.

III. SEQUENCE GENERATING DYNAMICS

A dynamical system that produces discrete movement

should be able to stabilize postural states before and after

the main motion phase. The decision when to switch from
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Fig. 1. Exemplary time course of three “neural” variables (u1, u2, u3)
governed by eq. (1). Their competitive advantages (µ1, µ2, µ3) were
controlled by quasi-booleans (b1, b2, b3) according to eq. (2). Proportional
differences between these bi are amplified into decisions in which either
one state is selected and all others are suppressed or in which a blend of
multiple states may be activated at the same time. To demonstrate the state-
controlling abilities and stability of the dynamics, the bi were initially set
to (1, 0, 0) and changed every 100 timesteps. Their subsequent values were
(0.1, 0.9, 0.1), (0.3, 0.3, 0.8), and (0.6, 0.5, 0.55).

such a postural state to movement, or vice versa, should

be met according to external information (e.g. reaching a

critical time-to-contact, arrival at the target, disappearence

of the target). The corresponding decision dynamics must

therefore be continuously updated, but also be stable against

temporary fluctuations of the respective signals.

The following competitive dynamics are formulated for

each of three “neural” variables ui ∈ {uInit, uHopf , uFinal}
representing the three phases before, during, and after the

movement, respectively. The system is based on a degenerate

pitchfork bifurcation with an additional competitive term,

that stabilizes states in which only one neuron ui has values

close to one while the other two have values close to

zero [19]:

τ u̇i = µiui − |µi|u
3
i − ν

∑

a6=i

u2
aui (1)

The parameter ν controls the strength of competition, and τ
determines the time scale of the dynamics. If one competitive

weight µi is larger than the other two, the corresponding

neuron ui is most likely to win the competition, i.e. to switch

to the “on”-state while suppressing the other two neurons.

For sufficiently small differences between the µi, multiple

outcomes are possible, so that the system is multistable. For

the dynamics in eq. (1), the values of ν = 2.1 and 1.5 ≤
µi ≤ 3.5 give a reasonable trade-off between stability and

flexibility.

The competitive advantages µi can be used to “switch”

between different stable states of the system by binding

them to external signals, e.g. a time-to-contact or the target

proximity. Such a link to external information can have any
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mathematically suitable form, as long as the range of possible

values is mapped into the correct interval, here between

1.5 and 3.5. A simple form uses quasi-logical variables

bi ∈ [0, 1] that steer the switching dynamics through:

µi = 1.5 + 2bi, with 0 ≤ bi ≤ 1 (2)

Fig. 1 shows an exemplary run of such a system to demon-

strate its state-controlling and stability properties. See [17]

for an elaborate framework for movement (re)initialization

and termination based on coupling the µi to sensory input.

IV. DYNAMICS OF THE MOVEMENT STATE

In the dynamical systems approach to robotics, the robot’s

state is described by a set of behavioral variables that suit

both the physical design of the robot and its task. The

present approach uses two separate dynamics to define the

robot’s state: one for the robot velocity, and another for

the remaining set of behavioral variables. In theory, this

remaining set can have any suitable form, as long as it

can provide for directional navigation towards the target

and away from obstacles or joint limits. We shall, in the

following, consider the simplest case of 2D-planar movement

with a heading direction φ (in angular space, and in a fixed

reference frame) as second behavioral variable.

A. Directional dynamics

The dynamics for φ contains one term that attracts towards

the direction ψTar in which the target lies, and another

term which repels from the directions in which obstacles

are perceived:

τ φ̇ =

N
∑

i=1

fObs,i(φ, ψObs,i) + fTar(φ, ψTar) (3)

Here, N is the total number of obstacles, sensed at angles

ψObs,i, and fTar is a linear attracting force of strength λTar:

fTar(φ) = −λTar (φ− ψTar) (4)

The obstacle terms fObs,i are gaussian-modulated linear

repelling functions:

fObs,i = λi (φ− ψObs,i) exp

[

−
(φ− ψObs,i)

2

2σ2
i

]

(5)

The repellor strengths λi are set to decay exponentially with

the distance between the obstacles and the sensors. In angular

space, the range of the repellor is delimited by the width σi.

All contributing terms are wrapped onto the circle. See [5]

for a detailed example of a heading direction dynamics.

B. Velocity dynamics

The velocity v is set to the value of a state variable a
at each timestep. Together with an auxiliary variable b, this

state variable a evolves according to a 2D dynamical system:

τ

(

ȧ

ḃ

)

= − c1 · u
2
Init

(

a
b

)

(6)

+ u2
Hopf · fHopf (a−Rh, b)

− c2 · u
2
Final

(

a2 − a · αtc

b

)

where c1 and c2 are scaling parameters, αtc is the bifurcation

parameter of a transcritical bifurcation, and fHopf is a Hopf

oscillator of radius Rh (possibly time-dependent, see below).

As only one of the neural variables ui is in an “on”-state at

any given time, only one of the three terms in eq. (6) is

different from zero. Associated with uInit is an attractor for

(a, b) at (0,0), which keeps the robot at rest before movement

onset. After uFinal is activated, the velocity is stabilized at

zero again for any negative αtc. For positive values of αtc,

the velocity v approaches αtc > 0 itself. This is useful in

cases in which, despite the stabilization mechanism described

below, the target can not be reached in the initially planned

time (e.g. due to hardware velocity limits).

During the main movement phase (the “on”-state of the

neuron uHopf ), a Hopf oscillator fHopf governs the dynam-

ics:

fHopf (a−Rh, b) =

(

λ −ω
ω λ

)(

a−Rh

b

)

(7)

−γ
[

(a−Rh)2 + b2
]

(

a−Rh

b

)

The angular frequency ω defines the cycle time T = 2π/ω
and hence the total movement time. The parameters λ > 0
and γ > 0 mutually set the oscillator radius Rh:

Rh =

√

λ

γ
(8)

In phase space, the Hopf cycle is shifted along the a-axis

by the cycle radius Rh, so that the variable a smoothly rises

from zero to 2Rh and back during one oscillator cycle.

V. TEMPORAL STABILIZATION

If we disregard physical effects (like friction, motor dis-

cretization, etc.), the robot’s velocity profile will equal the

time course of the variable a, defined by eqs. (6) and (7). In

the dynamics for (a, b), a fixed cycle radius Rh is appropriate

if no disturbances (e.g. obstacles, target displacement, etc.)

occur. If, however, the task setup changes during the robot’s

movement, an adaptation rule for the cycle radius Rh will

automatically adjust the system in eq. (7) in order to stabilize

total movement time.

A. Undisturbed case

Integrating the dynamics in eq. (7) for a fixed cycle radius

Rh gives the distance s covered by the robot in time t:

s(t) =

∫ t

0

Rh(1 − cosωτ)dτ = Rh(t−
1

ω
sinωt) (9)

After one full cycle, the distance 2πRh/ω is reached. Hence,

the radius of the oscillator should initially be set to

Rh =
ωD(t = 0)

2π
(10)

with D(t = 0) being the distance between the robot’s initial

position (x0, y0) and the target coordinates (xtar, ytar).
Together, the dynamics in eq. (3) keep the robot oriented

towards the target, and eq. (7) drives the robot exactly over

the required distance in a sinusoidal velocity profile.
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Fig. 2. Three different realizations of integrating eq. (7). The subplots
show the resulting paths in phase space, the time course of the variable a
(velocity profile), and the time course of its integral s (distance profile). The
“variable” system begins with the same oscillator radius Rh as the “initial”
system. Starting at one third of the cycle, the total distance to be covered
is gradually increased up to the total distance reachable with the “final”
system, and Rh is adapted according to eq. (12). All units are arbitrary.

B. Disturbed case

There are many possible influences that may disturb the

planned time course of robot motion, including physical

stalling, movement of the target, or obstacles along the path.

Regardless of whether the disturbance requires speeding up

or slowing down, the target should still be reached in as

close to the initially planned movement time as possible. To

this end, an adaptation rule for the Hopf cycle radius Rh is

formulated. For the undisturbed case, using ω = 2π/T and

eqs. (9), (10) yields the relation

D(t = 0) = D(t) +

∫ t

0

v(τ)dτ

=
D(t)

(

1 − t
T + sin (2π·t/T )

2π

)

(11)

between the initial distance, D(t = 0), the distance remain-

ing, D(t), and the currently elapsed fraction of one oscillator

cycle, t/T . With eq. (10), the last identity can be interpreted

as an adaptation rule for the Hopf cycle:

Rh(t) =
ω

2π

D(t)
(

1 − t
T + sin (2π·t/T )

2π

) (12)

This online updating rule takes into account not only the

current distance to the target, but adapts the limit cycle so

as to accelerate or decelerate the motion sufficiently so that

remaining distance is traversed within the remaining time.

If no disturbances occur, the adaptation rule in eq. (12) will

not alter Rh.

In eq. (8), the two parameters λ and γ jointly define

the cycle radius through their ratio, while their absolute

values influence the relaxation behavior of the system in
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Fig. 3. Three different realizations of integrating eq. (7). The subplots
show the resulting paths in phase space, the time course of the variable a
(velocity profile), and the time course of its integral s (distance profile). The
“variable” system begins with the same oscillator radius Rh as the “initial”
system. Starting at two thirds of the cycle, the total distance to be covered is
instantaneously increased up to the total distance reachable with the “final”
system, and Rh is adapted according to eq. (12). All units are arbitrary.

eq. (7). This additional degree of freedom should be carefully

adjusted in order to provide reliable relaxation into the

current oscillator state. In the implementations below, we

use a fixed value for λ of 0.1.

VI. IMPLEMENTATION

The approach laid out above was tested in simulation and

implemented on a mobile robotic vehicle (K-Team Khepera

unit) generating movements in the plane. Its performance was

tested in a target acquisition task in cluttered environments.

Although we also implemented a temporal stabilization

mechanism proposed by Santos [18], problems in this ap-

proach prevented a side-by-side comparison. Specifically,

Santos’ use of independent dynamics and movement abor-

tion conditions for each cartesian coordinate axis severely

constrained the scope of possible task setups. Also, Santos’

stabilization method rescaled the velocity profile in the case

of delays in an ad hoc manner that does not theoretically

warrant invariant movement time. A comparison would thus

have merely demonstrated that a fixed but arbitrary degree of

qualitative adaptation is not well suited across varying target

configurations.

A. Simulations

Figs. 2 and 3 show simulations of the temporal stabiliza-

tion mechanism. In both figures, three different realizations

of integrating the dynamics in eq. (7) are displayed each

in phase space, as a velocity profile, and as a distance

profile. The first realization is a complete Hopf cycle with

an oscillator radius of Rh = 250 units (“initial system”), the

second a complete Hopf cycle with an oscillator radius of

Rh = 400 units (“final system”), and the third is the result
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a) b)

c) d)

e) f)

Fig. 4. Sequence depicting robot movement to a target area without the
occurence of disturbances. The robot’s velocity is set according to eq. (6),
and the distance profile follows eq. (9).

of integrating eq. (7) with a time-variable oscillator radius

calculated from the adaptation rule in eq. (12).

This “adaptive system” starts with an initial radius of

Rh = 250. During the oscillator cycle, the fictional target is

assumed to move away from the robot, up to a distance that

would have required an initial oscillator radius of Rh = 400.

In Fig. 2, this enlargement of the distance to be covered is

gradual and starts at about one third of the cycle. In Fig. 3,

the enlargement is instantaneous at about two thirds of the

cycle, thus requiring a more sudden increase of velocity to

cover the remaining distance in the remaining time. In both

cases, the adaptive system produces a velocity curve well-

suited for covering the larger distance in the same time.

For Fig. 3, note that the integrated eq. (7) is only one part

of the whole dynamics in eq. (6), in which an additional

attractor to the origin “re-sets” (a, b) and stops the robot’s

motion. In practice, two parameters of this final attractor

(onset criterion bFinal and attractor strength c2) have to

mutually balance between two opposing properties: first,

smoothness of trajectories even in cases of high velocities

(e.g., as in Fig. 3), and second, the degree to which the

overall trajectory in phase space given by eq. (6) represents

the system that is given by eqs. (7) and (12) only. Apart from

this trade-off and additional physical effects like friction and

motor discretization, the courses of the simulated dynamics

remain valid for the following hardware implementations,

both for gradual and sudden changes in the task setup.

B. Khepera mobile unit

We use a two-wheeled K-Team Khepera robot to demon-

strate the approach. But, as laid out in section IV, the

dynamics proposed are to a large degree independent from

the physical implementation, and the only modifications

necessary are in the directional dynamics.

The implementation on a Khepera robot demonstrates that

the approach, in spite of its mathematical sophistication, is

suited for low-level robotic units with uncalibrated sensors

and a fairly simple control system, as is typical of the dy-

namical systems approach. Here, obstacle sensing is provided

a) b)

c) d)

e) f)

Fig. 5. Sequence depicting robot movement in a parcours unknown at
starting time. The oscillator radius is adapted according to eq. (12), and the
movement time approaches that of the undisturbed case shown in Fig. 4.

by the Khepera’s built-in infrared sensors with a maximum

range of approx. 8 cm. The odometry is based on the

Khepera’s wheel encoder values. For simplicity, targets were

directly represented through coordinates rather than by visual

extraction. The dynamics were integrated on an external PC,

and velocities for each wheel communicated to the unit. All

dynamics were additionaly superposed with gaussian white

noise to provide realistic conditions and ensure escape from

meta-stable states.

For the sequence generating dynamics in eq. (1), the

competitive advantages µi were chosen to depend on a set

of logical conditions bi as in eq. (2). After an initial phase

allowed for orienting towards the target, bHopf was activated

to begin the movement phase. Once the robot was as close

to the target as 6% of the original total distance, bFinal was

activated.

Fig. 4 shows a Khepera robot while approaching a target

without constraints. Initially, the oscillator radius Rh is

set according to eq. (10), i.e. the distance to the target

coordinates. The resulting trajectory is a straight line towards

the target, with a velocity profile similar to that of the initial

and final system in Fig. 2. In Fig. 5, the path towards the

target is obstructed by obstacles, which the system has no

prior knowledge about and only senses as it drives close by.

They are circumnavigated by the heading direction dynamics

in eq. (3). At the same time, the total distance needed to be

driven in the time of one oscillator cycle rises. The stabilizing

mechanism in eq. (12) thus gradually increases the radius Rh

of the oscillator and produces a velocity profile similar to that

of the variable system in Fig. 2.

Movement times for the experiment runs are, averaged

over several trials, shown in Tb. I. The setup in Fig. 5 is listed

as “Medium Disturbance”, while another course, requiring

more extensive detours, is shown under “High Disturbance”.

The total distance driven gives an overview over the demands

of both setups. Although an influence of the disturbances on

the movement time is visible, it is marginal when compared

to the relative increase in total distance driven and due both

to the system’s relaxation in phase space and physical effects.
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TABLE I

AVERAGE MOVEMENT TIMES (MT) IN DIFFERENT SETUPS.

Total Increase in Increase in
Setup Distance MT (s) Distance Time

driven (cm) (Factor) (Factor)

Undisturbed 72.4 12.3
Medium Disturb. 96.0 12.7 1.33 1.03
High Disturb. 109.7 12.9 1.52 1.05

C. Robustness

For obstacle avoidance and generation of movement se-

quences, a dynamics of the heading direction and a com-

petitive dynamics were employed in a modular fashion.

These building blocks maintain their original properties of

robustness with regard to their intrinsic parameters (e.g.

ν, λi) [8][19]. Concerning the velocity dynamics with its

adaptation rule, the oscillator will not relax into its foreseen

state fast enough if the value of λ is too high. Below a

corresponding threshold region, we found the system to

be stable both against changes in λ and for a variety of

representative changes in the task setup, including sudden

displacement of targets (e.g., as in Fig. 3). While a systematic

theoretic examination of robustness does not seem feasible,

a more comprehensive empirical approach such as in [13]

can be the aim of future investigations.

VII. CONCLUSION

We presented a framework for the generation and temporal

stabilization of discrete movements. Consistently formulated

within the dynamical systems approach to robotics, the pro-

posed method has the capabilities i) to initiate and terminate

discrete movement through a dynamical system for the stable

generation of sequential actions; ii) to reach a possibly

moving target while circumnavigating obstacles or dealing

with other disturbances; iii) to do this while maintaining,

as close as physically possible, an approximately constant

total movement time; iv) to be implementable on a wide

range of robotic systems for which directional dynamics and

kinematics can be formulated. We have demonstrated the

approach on a Khepera mobile unit to show its reliability

even when depending on low-level sensor information. The

use of a wheeled vehicle moving in a 2D plane with obstacles

should however be seen as one particular realization of a

more abstract problem: stabilizing movement time of discrete

movements in the presence of perturbations.

Other tasks for the future include exploiting the coupling

capabilities of the Hopf oscillator when coordinating multiple

movements and further exploring possible similarities and

necessary differences between systems generating discrete

versus rhythmic movement. Currently, we are working on

an extended implementation for a redundant robot arm with

seven degrees of freedom.
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