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Many everyday tasks rely on our ability to hold information about a perceived stimulus in
mind after that stimulus is no longer visible and to compare this information with incoming
perceptual information. This ability has been shown to rely on a short-term form of visual
memory that has come to be known as visual workingmemory. Research and theory at both
the behavioral and neural levels has begun to provide important insights into the basic
properties of the neuro-cognitive systems underlying specific aspects of this form of
memory. However, to date, no neurally-plausible theory has been proposed that addresses
both the storage of information in working memory and the comparison process in a single
framework. The present paper presents a layered neural field architecture that addresses
these limitations. In a series of simulations, we show how the model can be used to capture
each of the components underlying performance in simple visual comparison tasks—from
the encoding, consolidation, and maintenance of information in working memory, to
comparison and updating in response to changed inputs. Importantly, the proposed model
demonstrates how these elementary perceptual and cognitive functions emerge from the
coordinated activity of an integrated, dynamic neural system.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Human thought and behavior ariseswithin dynamic and often
highly complex visual environments. Within such environ-
ments, objects are distributed in space and the events within
which they are embedded unfold over time. Although the
general properties of a complex scene can be obtained in a
single fixation (1976; Schyns and Oliva, 1994), acquiring
detailed visual information from spatially separated regions

requires the sequential inspection of different objects through
movements of the eyes (see review in Henderson and
Hollingworth, 1999). This allows objects of interest to be
centered over the fovea, a region of the retina containing over
30,000 densely packed photoreceptors that provides high-
acuity information to the visual system. However, the detailed
perceptual representations formed during each fixation
quickly fade as the eyes move on to inspect new objects
(Irwin, 1993; Simons and Levin, 1997). As a result, some form of
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visual memory is needed to maintain continuity in perceptual
processing. In addition, the use of visual memory is necessary
whenever we need to compare visual percepts created at dif-
ferent points in time.

Imagine, for example, that you are sitting at your desk
drinking a cup of morning coffee. At some point, you set
the coffee cup down and turn away to retrieve a paper from
your briefcase. When you turn back towards the desk and
reach for the coffee mug, you notice that the cup is dif-
ferent from the cup you were drinking from previously (e.g.,
its color has changed). What's the cause of this change?
Looking around, you realize that a colleague sitting at a
nearby desk has picked up your coffee mug, mistakenly
identifying it as her own. To detect simple changes such as
this, the properties of the first cup must have been held for
a brief period of time in memory and subsequently
compared to the second cup.

A considerable amount of research has begun to elucidate
the properties of the perceptual and cognitive systems sup-
porting behavior in tasks like these. This work has suggested
that performance in such tasks relies on a short-term form of
visual memory, which we will refer to simply as visual working
memory (VWM). This form of memory can be differentiated
from much shorter-term iconic memory (see, e.g., Averbach
andCoriell, 1961; Irwin, 1992; Phillips, 1974; Sperling, 1960), and
from much longer-term forms of memory (see discussion in
Luck, 2008). Althoughmuch has been learned about the neuro-
cognitive systems underlying VWM, and detailed theories
have been proposed that capture aspects of this system, to
date, no neurally-plausible theory has been proposed that
addresses both the storage of information in workingmemory
and the process by which the contents of memory are com-
pared to new perceptual inputs. The present report describes a
new neurally-based process model that begins to address
these challenges.

1.1. Visual working memory and change detection

One of the primary tasks used to study the properties of the
visual memory systems supporting behavior in situations
like the one described above is the change detection task
depicted in Fig. 1. A typical trial in this task involves the
presentation of a sample array containing one or more
simple objects (e.g., colored squares), which observers are

asked to remember. This is followed by a brief (e.g., 1000-
ms) delay interval, and the appearance of a test array that
is either identical to the original sample array, or differs
from it in the color of a single object. Participants then
make a two-alternative forced choice (2-AFC) response,
indicating whether the items in the test array are the
same as or different than the items that were present in
the sample array. This task mimics the structure of the
real-world task described above, but the perceptual and
motor demands of the task are minimized, making it a
useful method for exploring the properties of VWM.

Behavioral studies of change detection have suggested
that representations in VWM are established very rapidly
(Gegenfurtner and Sperling, 1993; Vogel et al., 2006), and in an
all-or-none fashion (Zhang and Luck, 2008); that the capacity
of VWM is highly limited to ∼3–4 items (Cowan, 2001; Vogel et
al., 2001); and that the detection of changes at test elicits
rapid shifts of attention and the eyes to the location of the
change (Hyun et al., 2009). At another level, evidence from
functional magnetic resonance imaging (fMRI) (Pessoa et al.,
2002; Pessoa and Ungerleider, 2004; Todd and Marois, 2004; Xu
and Chun, 2006) and event related potential (ERP) (Vogel and
Machizawa, 2005) studies of change detection have begun to
elucidate the specific brain areas supporting these functions
(Pessoa et al., 2002; Todd and Marois, 2004; Vogel and
Machizawa, 2005; Xu and Chun, 2006). Additionally, single-
unit recording studies with non-human primates have un-
covered the rich spatio-temporal dynamics underlying work-
ing memory at the cellular and network levels (see, e.g., Amit
and Mongillo, 2003; Fuster and Alexander, 1971; Goldman-
Rakic, 1987).

Studies of change detection have begun tomake significant
contributions to our understanding of VWM at both the
behavioral and neural levels. Nevertheless, few theoretical
models have been formulated within a neurally-plausible
framework that could effectively address both lines of
research. This is due in part to the fact that theories in this
area have tended to live at two different levels: the verbal/
conceptual level of cognitive psychology, and the neurodyna-
mical/biophysical level of computational neuroscience.

Although large-scale integrative theories of working mem-
ory have been proposed within cognitive psychology (see, e.g.,
Baddeley and Logie, 1999; Cowan, 1995), most theories that
interface directly with the change detection literature have
focused on particular aspects of performance in such tasks.
For example, a number of verbal/conceptual models have
focused on maintenance, addressing capacity limits and the
nature of the representations held in VWM (Alvarez and
Cavanagh, 2004; Luck and Vogel, 1997; Wheeler and Treisman,
2002; Zhang and Luck, 2008). Such models have been a fruitful
source of behavioral hypotheses; however, they have not
addressed the question of how such representations are
integrated with incoming percepts. In addition, although
links to neurophysiology have been suggested, the conceptual
models in this domain have not been formalized in a way that
explains how the properties of VWM emerge from the
complex dynamical processes underlying neural function.
Nonetheless, theories within cognitive psychology have a
clear strength—a firm commitment to rigorous behavioral
research and hypothesis testing.

Fig. 1 – Change detection task used to explore properties of
visual working memory for simple features (adapted from
Luck and Vogel, 1997). A sample array is followed by a delay
and then a test array. The task is to indicate whether the
sample and test are the same or different. This illustration
shows a task with color stimuli.
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At the neural level, sustained excitatory reverberation
among visually-selective populations of cells has been pro-
posed as a mechanism for maintenance in working memory
(see, e.g., Amit, 1995; Grossberg, 1978; Hebb, 1949; Wang, 2001).
This proposal has been strongly supported by the discovery of
“memory cells” in the prefrontal cortex exhibiting elevated
spike discharges during the delay interval of delayed response
spatial memory tasks (Funahashi et al., 1989; Fuster and
Alexander, 1971). Memory cells selective for spatial and non-
spatial object properties, tactile stimuli, and other task-
relevant information have also been found in cortical areas
both within and outside the prefrontal cortex (see, e.g.,
Andersen et al., 1990; Fuster and Jervey, 1981; Miller et al.,
1993). The persistent neural activity found in these studies has
been recognized as the most likely candidate for the neural
basis of maintenance in working memory.

Several neuronally detailed accounts of maintenance
have been formulated using integrate and fire and
Hodgkin–Huxley neurons (see, e.g. Amit and Brunel, 1997;
Compte et al., 2000; Tegner et al., 2002). For example,
Compte et al. (2000) have proposed a model of the prefron-
tal cortex that captures working memory for single spatial
locations through localized peaks of activation in neural
fields. Within this model, neurons coding for similar
spatial locations are linked through recurrent excitatory
connections, with the strength of excitatory coupling
decreasing as a function of the distance between their
preferred cues. Spatial tuning is further shaped by broad
lateral inhibition among neurons preferring differing cues
(Rao et al., 1999). This type of tuning allows localized peaks
of activation, or “bump attractors”, representing particular
spatial locations, to be sustained in the absence of con-
tinuing external input.

Although models such as these capture the maintenance
function of working memory, performance of simple visual
comparison tasks requires the integration of workingmemory
representations with perceptual representations that are
stimulus driven. That is, once a working memory representa-
tion has been created, it must be updateable when new,
changed sensory information arises. Several models have
been developed that address the integration of perception and
working memory in the context of specific discrimination
paradigms (see, e.g., Machens et al., 2005; Miller and Wang,
2006). For instance, Miller andWang described a neural model
of two-interval vibrotactile frequency discrimination using a
rate-coding principle where particular frequencies are repre-
sented by different average sustained firing rates. In this task,
the specific vibrational frequency of an initial stimulus (S1) is
remembered across a short delay interval, and is compared to
the frequency of a second stimulus (S2). The animal then
makes a binary decision, indicating whether the frequency of
S2 is greater than or less than S1. In their model, graded
mnemonic activity reflecting the frequency of S1 in working
memory provides an inhibitory signal to upstream neurons
responding to S2. The inhibitory signal gates later input to the
model on the basis of the difference in amplitude between S1
and S2. When S2>S1, upstream neurons overcome the inhi-
bition from working memory and their firing rate increases,
whereas when S2<S1, upstream neurons do not respond.
Such differential frequency-dependent responding to S2

provides a plausible means of generating the binary decision
required in the frequency discrimination task.

Such models provide a framework for thinking about how
both maintenance and comparison functions can arise within
a single integrated system. However, because the same
population of neurons cannot simultaneously maintain dif-
ferent average firing rates, a general approach to multi-item
VWM and change detection using the rate-coding principle is
not conceptually possible. Because of this, we adopt a space
coding principle in the present report where working memory
for metric information is realized through sustained peaks of
activation in neural fields. Models in this class have primarily
focused on working memory for single spatial locations (see
discussion of Compte et al. above), and to date have not been
extended to address the comparison process (but see Simmer-
ing et al. (2006) for steps in this direction). However, such
approaches have been rigorously tied to both behavioral and
neural data looking at spatial workingmemory and, therefore,
provide a fertile ground to explore the properties of VWM.

In the sections below, we show how a multi-layered dyna-
mic neural network can be used to implement basic perceptual
and memory functions, including the encoding and main-
tenance of information about multiple items in VWM, and the
comparison of working memory representations with percep-
tual representations required in change detection tasks. The
proposed model goes beyond existing formulations, showing
how the separate functions necessary for performance in
change detection tasks may emerge from a single, integrated
dynamic neural network. As such, this framework can serve as
a bridge between the behavioral models of cognitive psycho-
logy and the neural models of computational neuroscience.

2. Dynamic Field Theory of VWM and change
detection

To begin addressing VWM and change detection within an
integrated neural system, we have developed a new model
that builds on the Dynamic Field Theory (DFT) of spatial
cognition (see, Simmering et al., forthcoming; Spencer and
Schöner, 2003; Spencer et al., 2007). The DFT is in a class of
bistable attractor neural network models that were originally
developed to capture the dynamics of neural activation in
visual cortex (see, e.g., Amari, 1977; Buerle, 1956; Griffith, 1963,
1965; Grossberg, 1980; Wilson and Cowan, 1972). This frame-
work has been used to account for the processes that underlie
saccadic eyemovements (Kopecz and Schöner, 1995; Wilimzig
et al., 2006), motor planning (Erlhagen and Schöner, 2002;
Schutte and Spencer, 2007), infants' performance in Piaget's A-
not-B task (Thelen et al., 2001), the dynamics of neural
activation in motor and premotor cortices (Bastian et al.,
1998, 2003a), and the behavior of autonomous robots (Bicho et
al., 2000; Engels and Schöner, 1995; Schöner et al., 1995). In
otherwork, neural fields have been used to explore single- and
multi-item working memory (see, e.g., Laing and Chow, 2001;
Laing et al., 2002; Macoveanu et al., 2006; Tegner et al., 2002)
and the processes underlying visual attention (Rougier and
Vitay, 2006), among other things. In the present report, we
expand the framework of the DFT to address themaintenance
ofmultiple items in VWMand the process of change detection.
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2.1. Two-layer neural field models of elementary
perceptual and memory processes

A simple two-layer network of the type analyzed by Amari
(1977; Amari and Arbib, 1977) is shown in Fig. 2. The basic
model consists of a single population of visually-selective
excitatory neurons reciprocally coupled to a second popula-
tion of similarly-tuned inhibitory neurons. These neurons are
arranged by their topographic position in cortex, thereby
forming a continuous dynamic neural field. Thus, the discrete
sampling of inputs by individual neurons that is more typical
in neural network approaches is replaced in this formulation
by a continuous neural field that represents the metric
structure of the represented dimension. Such dimensions
could be spatial in nature, representing, for instance, the
retinal location of a perceived stimulus, or non-spatial,
representing the color or orientation of the stimulus.

Although the field concept was originally developed to
address neural dynamics in topographically organized
visual areas (e.g., V1), the same methods have been used
where no clear topographic organization exists on the
cortical surface (e.g., in the motor cortex; see Bastian et al.,
1998; Erlhagen et al., 1999; Georgopoulos, 1995). In this
case, neurons within the field are ordered according to
their functional topography—that is, by each neuron's
“preferred” stimulus, with nearby neurons in the field
coding for similar properties (e.g., similar colors), and
distant neurons coding for distinct properties (e.g., different
colors).

Patterns of activation within such fields can live in
different attractor states. For instance, in the absence of
input, the activation level across the population of neurons
remains at a stable baseline rate, indicating that no relevant
features are currently present. However, in the presence of
input, reflecting, for instance, the appearance of a particular
colored object in the task space, activation increases for those

neurons selectively tuned to this feature. If input is suffi-
ciently strong, the stable baseline firing state is destabilized
and the field moves into an “on” state, characterized by the
formation of a localized peak of activationwithin the field. The
location of the resultant peak along the represented dimen-
sion reflects the field's estimation of themetric values present
in the task space (e.g., the detection of a particular color), in
keeping with the space coding principle. Two or more
instances along the dimension are represented by a double
or multi-peaked distribution, with the level of activation
providing an estimate of the certainty of each informational
source. For instance, a high level of certainty about the
presence of a particular feature (e.g., blue) is represented by
a higher level of activation than a less probable feature (e.g.,
red).

Although the picture sketched thus far parallels many of
the concepts used by feed-forward networks, it is important to
emphasize that activation in dynamic neural fields does not
simply mimic the structure of input (though that is one
potential limit case of the model's dynamics). Rather, activa-
tion in dynamic neural fields can take on a life of its own due
to the internal dynamics that govern the evolution of
activation through time. The model developed here uses the
generic locally excitatory and laterally inhibitory, or “Mexican
hat”, form of interaction among neurons described by Amari
(1977), and commonly found in models of cortical function
(Durstewitz et al., 2000; Rao et al., 1999). With this form of
interaction, neurons coding for similar properties (e.g., similar
locations, features, objects, etc.) enter into mutually suppor-
tive interactions via excitatory synaptic connections (curved
solid arrow in Fig. 2), and neurons coding for very different
properties enter into mutually suppressive interactions
(dashed arrows in Fig. 2) mediated by a field of inhibitory
interneurons.

The simulations in Fig. 3 illustrate the three basic attractor
states that arise in the 2-layer dynamic neural field model.
The first attractor state is illustrated in Fig. 3A, which shows
the state of the field prior to input. At this point, the field is
characterized by a stable sub-threshold state of activation,
reflecting the absence of information along the metric dimen-
sion. In Fig. 3B, the field has transitioned to a self-stabilized
state, wherein one or more above-threshold peaks of activa-
tion are formed in response to specific input. Such peaks
remain above threshold as long as the input remains on, but
quickly transition back to the sub-threshold state when input
is removed. Finally, in the simulation shown in Fig. 3C, the
strength of excitatory recurrence among neurons in the
excitatory layer has been increased slightly. In this case, the
field enters a self-sustaining state where peaks of activation
can remain above threshold after the input has been
removed, a form of working memory that is central to the
work presented here.

Which attractor regime a field is in depends on several
factors, all of which depend on the dynamic balance between
excitation and inhibition. If inhibition is too strong relative to
excitation, peaks will transition back to the sub-threshold
state once the stimulus has been removed. However, chan-
ging the strength of excitatory and inhibitory neural interac-
tions is not the only way to move the network into a given
regime. With all other parameters held constant, a given

Fig. 2 – Two-layer neural field model of the type analyzed
by Amari (1977). The model consists of a single layer of
feature-selective excitatory neurons reciprocally coupled to a
similarly-tuned layer of inhibitory interneurons. Neurons
coding for similar values along the metric dimension in the
excitatory field engage in locally excitatory interactions
(curved solid arrow), and transmit excitatory activation to the
inhibitory layer. Neurons in the inhibitory layer transmit
broad lateral inhibition back to the excitatory field (dashed
arrows). See text for additional details.
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network can be made to function in either the self-stabilized,
input-driven regime or the self-sustained regime through
global modulation of the resting level of neurons in the field.
This changes the functional balance between excitation and
inhibition without requiring specific changes to the neural
interaction parameters that determine the strength of exci-
tatory and inhibitory projections among layers. Such modu-
lations could play a role in “executive” processes (e.g.,
processes believed to be implemented by the PFC) which
maintain task demands, in part, by determining what types
of information are maintained in working memory for use in
ongoing tasks (see, e.g., D'Esposito, 2007; Fuster, 2003). For
instance, in a task where color is the relevant behavioral
dimension, the resting level of neurons in color-selective
regions of cortex could be boosted slightly, allowing them to
enter the self-sustained state following stimulus presenta-
tion (Buss and Spencer, 2008). Conversely, the resting level
of neurons coding for task-irrelevant dimensions (e.g.,
orientation) could be reduced through global inhibitory
input, diminishing the role these neurons play in the con-
trol of ongoing behavior and mental processes (see also
Gruber et al., 2006, which explores the role of dopaminergic
modulation in gating access to working memory).

2.2. Integrating perceptual and memory processes in a
three-layer dynamic neural field model

The simple two-layer networks introduced in the last section
can serve either a perceptual or a working memory function.
Thus, taken separately they capture some of the requirements
of a model of VWM and change detection. For instance, a two-
layer network operating in the self-stabilized regime, where
peaks of activation are formed in response to input but die out
when input is removed, could be used to capture the per-
ceptual encoding of the test array. Additionally, a two-layer
network operating in the self-sustaining regime, where peaks
of activation remain above threshold after input has been

removed, can be used to implement maintenance in VWM.
However, as discussed previously, modeling working memory
and change detection requires that each of these functions be
integrated to explain how items currentlymaintained in VWM
are compared to perceived items in the test array.

To address this, we have developed a three-layer architec-
ture consisting of two layers of excitatory neurons coupled to a
single layer of inhibitory neurons. This framework allows
simple perceptual and working memory functions, including
the detection of stimuli in the task space and their retention in

Fig. 3 – Three basic attractor states arising in the two-layer dynamic neural field model. (A) A stable sub-threshold state, where
activation at all field sites is negative, reflecting the absence of information along the represented dimension. (B) A self-stabilized
state, where localized peaks of activation, representing the detection of a particular feature (e.g., a certain color) in the task
space, are formed in the presence of input but decay once input is removed. (C) A self-sustaining state where localized peaks
of activation are maintained in the absence of input, implementing a form of working memory. In each panel, input to the
model is represented by a dashed line, whereas the pattern of activation within the field is indicated by a solid line.

Fig. 4 – The three-layer dynamic neural field model of visual
working memory and change detection. The model consists
of an excitatory perceptual field, PF(u), (A), and an excitatory
working memory field, WM(w), (C), which are reciprocally
coupled to a single layer of inhibitory neurons (B). Excitatory
and inhibitory patterns of connectivity among the layers are
indicated by solid and dashed arrows, respectively. In
addition, neurons in both PF and WM engage in localized
excitatory interactions (curved solid arrow). Input to the
network is indicated by the dashed lines in PF and WM.
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working memory, to be implemented in the same neural
architecture. In addition, excitatory and inhibitory interactions
among the layers give rise to emergent decisions about
detected change. The next section describes the architecture
andpatternsof connectivity of themodel, andpresents a series
of simulations illustrating the model's functionality. These
simulations demonstrate that the model can serve as an inte-
grated neural framework that captures the encoding, con-
solidation, andmaintenance of information inWM, in addition
to the coordination of WM and perception leading to updating
and change detection in the face of changing sensory inputs.

2.2.1. Model architecture
To combine basic perceptual and working memory func-
tions in a single neural architecture, we have developed the
three-layer dynamic neural field model depicted in Fig. 4
(for equations and parameter details, see Appendix A and
Table 1, respectively). The model consists of an excitatory
perceptual field (PF(u); Fig. 4A), an excitatory working
memory field (WM(w); Fig. 4C), and a shared inhibitory
field (Inhib (v); Fig. 4B). In each field, the x-axis consists of a
collection of neurons tuned to particular metric features
(e.g., specific colors), and the y-axis shows each neuron's
activation level. Excitatory and inhibitory connections
among the layers are indicated by solid and dashed arrows,
respectively. With respect to this coupling, it is important to
note that only positive levels of activation are significant.
That is, only sufficiently activated field sites transmit their
activation to other neurons, and thus contribute to the
evolving patterns of activation across the network. This is
captured by the sigmoidal nonlinearity characteristic of
neuronal dynamics (Grossberg, 1973).

Perceptual inputs to the network take the form of
Gaussians positioned at particular locations in the field and
having a particular strength and width. As its name suggests,
PF is the primary target of perceptual input to the model.
However, the neurons in theWM field also receive weak direct
input (see parameter details in Table 1).1 Additionally, nearby

neurons (i.e., neurons coding for similar colors) in both fields
interact via local excitatory connections. With respect to
coupling among the layers, PF provides excitatory input to
both Inhib and WM, and Inhib provides inhibitory input to
both PF and WM. Significantly, WM only interacts with PF via
the inhibitory layer. That is, the only external source of
excitatory input to PF is direct stimulus input. Note, however,
that the fundamental pattern of interactions is symmetrical
for PF and WM: both project excitation to the inhibitory layer
and receive inhibition in return, and neurons in both fields
engage in locally excitatory interactions. The primary differ-
ence between them, therefore, is the source of their excitatory
input. PF is primarily excited by direct afferent input, whereas
WM is primarily excited by PF. This asymmetry of input
channels leads to the emergence of different functional roles,
with PF being responsible for detecting new inputs, and WM
serving to maintain activation patterns consistent with past
inputs (see Discussion below). To serve this role, WM must be
buffered from external input to some degree, which is why its
primary input comes from PF, rather than directly from earlier
visual areas. Finally, because the projection from PF or WM to
other neuronal structures, such as motor structures respon-
sible for generating behavioral responses, is subject to the
same rule of non-linear sigmoidal transmission, only suffi-
ciently activated sites in either layer have behavioral sig-
nificance. That is, activation levels in the field and the
associated sigmoid are normalized such that sites with
positive levels of activation successfully transmit their state
to downstream structures, whereas sites with negative levels
of activation do not. Note that to explain the model's
functionality we have opted to show patterns of activation at
particular moments in time in all figures; however, patterns of
activation evolve continuously over time.

3. Model simulations

In the present section, we present a series of simulations that
demonstrate the emergent functionality of the three-layer
model described above. Our model's ability to capture specific
data sets, and the impact of noise and distractors on the
functioning of the model are explored elsewhere (see, e.g.,
Johnson et al., 2009; Spencer et al., 2009). We begin by
showing how the model behaves when a single input is
applied, moving from perceptual encoding, to working
memory consolidation and maintenance, to comparison and

Table 1 – Parameter values for simulations.

Layer τ h Self-excitation Excitatory projection(s) Inhibitory projection(s) Target input

u (PF) 80 −7 cuu=2.0 cuv=1.55 ctar=12a

σuu=3 σuv=26 σtar=3
v (Inhib) 10 −12 cvu=2.0

σvu=10
cvw=1.95
σvw=5

w (WM) 80 −4 cww=3.15 cwu=1.85 cwv=1.05
σww=3 σwu=5 σwv=42 [scaled by cs=0.2]

a Input strengths for the variable amplitude simulations were 12 for the strong input, and 8 for each of the weak inputs.

1 Weak input to the WM field plays a role in our model's ability
to simulate reference repulsion effects found in spatial recall
tasks (Simmering et al., forthcoming). In the present case, direct
input to WM allows peaks to be updated in a continuous fashion
in response to changes in input that are too small to support a
“different” response (see Discussion below). However, such inputs
are not required to achieve the majority of the functionality
demonstrated in the present work.
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updating. After this, we discuss the multi-item case, showing
how the model can capture multi-item VWM and change
detection.

3.1. Single-item perception and working memory

3.1.1. Perceptual encoding
The resting level of neurons in each field, h<0, ensures that
interaction among neurons only plays a role in the presence of
sufficiently strong input. For localized inputs, S(x), with low
amplitude, PF, and to a lesser extentWM, begins to assume the
form of the input, but activation values across all field sites
remain negative (see Fig. 5A). That is, PF andWM remain in the
stable sub-threshold activation state. When the amplitude of
the input is sufficiently strong (see Fig. 5B), however, interac-
tions among neurons come into play. At this point, PF tran-
sitions to the self-stabilized state consisting of a localized peak
of activation centered at the location of the input. The size and
shape of the peak reflect both the input state, as well as locally
excitatory and laterally inhibitory interactions among neu-

rons (via recurrence between PF and Inhib). The transition
from the sub-threshold state to the self-stabilized state as a
function of input strength involves a dynamical instability and
is the mechanism by which detection decisions, or perceptual
encoding, emerges in the model. Thus, for the model to detect
a stimulus, input to PF needs to be sufficiently strong and of
sufficient duration to generate a self-stabilized peak of
activation.

3.1.2. Consolidation and maintenance in working memory
In addition to activating neurons in Inhib, above-threshold
activation in PF is propagated to WM, which also receives
weak direct input as described above. With sufficiently strong
input, a single peak of activation begins to build in WM (see
Fig. 5B). As before, this peak is stabilized by locally excitatory
interactions in WM together with broad lateral inhibition
from Inhib (see solid arrows from PF to Inhib and from WM to
Inhib in Fig. 4). Fig. 5C shows the consequences of removing
the input from PF. This event leads to the destabilization of
the peak in PF. In contrast, a self-sustaining peak of activation

Fig. 5 – Simulations demonstrating the emergent functionality of the three-layer model in response to a single input.
Dashed lines show the input to the model, whereas activation within each of the layers is represented by solid lines. (A) With
weak input all field sites remain below threshold. (B) When input strength is increased, the field goes through an instability,
resulting in the formation of a self-stabilized peak in PF. (C) When input is removed, the peak decays in PF, but is sustained
in the WM layer. (D) During the delay interval, the only input to PF is from Inhib, which receives excitatory activation from
the sustained peak in WM. This produces a region of localized inhibition in PF surrounding the maintained value. (E) and (F)
show the generation of “same” and “different” responses, respectively, in the model. A new peak is built in PF only when a
new input that is sufficiently different than the value being held in WM is presented to the model. The presence of a peak in
PF at test serves as the basis for a “different” response. (G) and (H) show the updating of WM in response to new input. In
the first case, the original peak is destabilized and replaced by a new peak, whereas, in the second case, a second peak is
added to the field without destabilizing the original peak.
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remains in the WM field. This occurs as a result of the large
reduction of excitatory input to PF when the input is removed,
and a consequent reduction of inhibitory input to WM (note
lower levels of activation in middle layer of Fig. 5C), which
also continues to receive excitatory input as long as above-
threshold activation is present in PF. The strength of recur-
rent excitatory connections among neurons in WM is some-
what stronger than in PF, giving WM a competitive advantage
once the input is removed. Although this contributes to both
the maintenance of the peak in WM as well as the desta-
bilization of the peak in PF via shared inhibition, sustained
activation also arises in a variant of the model where the
strength of excitatory recurrence in PF and WM is identical.
Thus, the different functional roles of PF and WM do not
merely reflect differential tuning, but arise, in part, as a
function of the asymmetry in their input channels, which
allows self-sustained activation to emerge in the WM layer as
a result of the flow of incoming activation directly to PF and
indirectly to WM.

3.1.3. Emergent change detection and updating in WM
In the absence of continuing perceptual input, the only input
to PF comes from Inhib, whose activation is driven by the
presence of a self-sustaining peak in WM. As a result, a region
of inhibition is formed in PF at the location of the sustained
peak in WM (see Fig. 5D, top layer). This leads to a failure to
re-ignite a peak in PF when a second input that matches the
value being maintained in WM is presented to the model (see
Fig. 5E). As a result, the model remains in its previous state,
with a single stable peak of activation sustained in WM, and
negative activation in PF. The presence of a peak in WM, but
no peak in PF at test serves as the basis for a “same” decision
in the model.

Compare this with a trial where a metrically very different
input is applied at test. In this case, the input enters PF at a
relatively uninhibited site, which allows an above-threshold
peak to be built in PF at the location of the new input (see
Fig. 5F). The presence of a new peak in PF at test serves as
the basis for a “different” response.

Thus, responding “different” relies on a specific neural res-
ponse to novel input, whereas “same” responses are generated
by activation that is already present in WM.

This mode of operation is consistent with the findings of
Hyun et al. (2009), showing that the detection of changes at
test generates an active change signal that produces rapid
shifts of attention and the eyes to the location of the change
(see also Beck et al., 2001; Pessoa and Ungerleider, 2004).2

Moreover, because “different” responses must wait for activa-
tion to build in PF and overtake activation associated with
maintenance in WM, “same” responses tend to be generated
faster than “different” responses, in keeping with previous
findings (see review in Farell, 1985; Hyun, 2006).

Thus, the model has clear potential for addressing RT
effects in visual comparison tasks, although this topic is not
explored in detail here.

In addition to signaling that a change has occurred, the
presence of an above-threshold peak in PF leads to the
updating of WM. When the new peak in PF is metrically
relatively close to the old peak in WM, interference can arise.
In some cases, this can result in the deletion of the old peak in
WM and its replacement by a new peak at the value specified
by input from PF (see WM field in Fig. 5G). However, as shown
in Fig. 5H, when peaks are metrically far apart, a multi-peak
solution can arise where the new peak in PF is added to WM
without destabilizing the old working memory peak (for
similar functionality in a somewhat different framework, see
Gutkin et al., 2001). This would reflect, for instance, the
sequential loading of WM with information obtained across
successive eye movements or successive presentation of
stimuli.

3.2. Multi-item perception and working memory

The goal of the present section is to show that the basic
functionality of the model illustrated for single items in the
previous section can be extended to the multi-item case.
Recall that rate coded models have been used to address
discrimination, but are conceptually incapable of multi-item
memory. Thus, it is important to demonstrate that the neural
field model proposed here goes beyond such models by
addressing multi-item VWM and change detection.

3.2.1. Multi-peak encoding, consolidation, and maintenance
The presence of multiple high-amplitude inputs results in the
formation of peaks of activation in PF, representing the
detection of multiple features in the task space. In general,
because PF operates in the self-stabilized mode, where locally
excitatory recurrence is somewhat weaker than in WM,
several peaks can be simultaneously formed as long as the
input remains on. This is demonstrated in Fig. 6A. In Fig. 6B,
these three inputs have been successfully consolidated in the
WM layer and are self-sustained even though the input has
been removed. In this case, the “Mexican hat” interaction
profile, where inhibition declines as a function of the distance
from the focus of excitation, allows the locally excitatory
interactions associated with each peak to be isolated by lateral
inhibition, while keeping the total amount of inhibition in the
field relatively low. Thismakes it possible formultiple items to
be maintained simultaneously in VWM (see also, Laing et al.,
2002; Macoveanu et al., 2006; Trappenberg, 2003).

3.2.2. Multi-peak change detection
The simulations shown in Figs. 6C, D demonstrate robust
change detection performance when three items are held in
workingmemory (i.e., when the number of items inmemory is
below capacity). As with the single-item case, when a new
input that matches one of the original inputs is presented
(Fig. 6C), a new peak fails to be re-ignited in PF, and the model
generates a “same” response. Similarly, when a new input that
does not match one of the original items is presented (Fig. 6D),
a robust peak is built in PF, which serves as the basis for the
generation of a “different” response. Note that the model

2 Tagamets and Horwitz (1998) have proposed an alternative
model of delayed comparison where activation in a response
layer only arises when the test input matches the memory
representation, as has been seen in some single-unit delayed-
match-to-sample studies with nonhuman primates (Miller et al.,
1993).
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behaves identically when three items, rather than one, are
presented at test. When all three items match the original
items, no new peak builds in PF. Conversely, when one of the
items is different, a peak builds in PF at a location matching
the changed input.

3.2.3. Updating in multi-peak WM
Figs. 6E, F show two different forms of updating in multi-item
VWM. In the first case, the presentation of a new input that is
distinct but metrically relatively close to the original value
produces interference in WM. This leads to the deletion of the
original peak in WM and its replacement by a peak at the new
value, that is, the value specified by the peak in PF (compare
WM peaks in Figs. 6D and E).

Fig. 6F shows a case where new inputs are presented that
are not identical to the original inputs, but are too similar to
support explicit change detection. Note that the scale of the
simulations has been changed so that this rather subtle effect
is visible in the figure. Also, for these simulations, the inputs
presented to the model are illustrated in the top panel, rather
than in the PF layer, with dashed lines representing the first

input (S1), and solid lines representing the second input (S2),
which was presented following a 1000-ms delay interval. The
bottom two panels show the PF and WM layers of the three-
layer model—Inhib has been left out for simplicity. The
dashed lines in PF and WM show the patterns of activation
in these layers after the offset of the first input. As before, two
self-sustained peaks of activation are present inWM following
stimulus offset, and neurons representing similar features are
inhibited in PF. When the second input is applied, peaks try to
build in PF, but are unable to do so because of strong inhibition
at those locations.

In addition, because WM receives weak direct input when
S2 is on, the peaks in WM begin to shift in the direction of the
new inputs. That is, WM is updated in a continuous fashion to
reflect the values of the new stimulus, even though the change
was not large enough to provoke the generation of a
“different” response (see Hollingworth and Henderson, 2004).

3.2.4. Capacity limits in VWM
Thus far, we have demonstrated the functionality of the
model when the number of items to be remembered (i.e., the

Fig. 6 – Simulations of the three-layer model in response to multiple simultaneous inputs. (A) and (B) show the detection of
the inputs by PF, and their consolidation and maintenance in WM, respectively. The simulations in (C) and (D) show the
generation of “same” and “different” responses in themulti-item case. Finally, (E) and (F) show two different forms of updating
in the model. In the first case, the presentation of a changed input at test results in the destabilization of the original peak in
WM and its replacement by the new value. In the second case (F), activation in WM is updated in a continuous fashion in
response to new input. Note, that the scale of the simulations shown in (F) has been magnified, and the inputs to the model
are now shown in the top panel. The first (S1) and second (S2) stimuli presented to the model are indicated by dashed and
solid lines, respectively.
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number of peaks) is relatively small. What happens when
the number of items is increased beyond three? Figs. 7A–C
show the consequences of adding more and more items to
WM. Although the Mexican hat function underlying main-
tenance in the model allows a multi-peak solution of the
field dynamics, the capacity of working memory is not
unlimited. As more items are added to working memory, the
net excitatory activation increases, which in turn increases
the overall amount of inhibition. Figs. 7A, B show that the
model can stably maintain up to four items in WM.
However, when two more inputs are added (Fig. 7C), the
level of inhibition overtakes excitation. Recall that inhibition
is not homogenous throughout the field, but is governed by
an inhibitory interaction kernel of a given strength and
width. In addition, activation within the field is influenced
by the presence of internal noise. As a result, individual
peaks will vary somewhat in their strength and accuracy,
and will be subject to varying amounts of inhibition. Thus,
as shown in Fig. 7C, when additional inputs are added,
inhibition selectively prevents several peaks from forming in
WM, rather than weakening all peaks equally. Under these
circumstances, if a new input were to be presented that
matches one of the “forgotten” items, the model would

incorrectly generate a “different” response by building a peak
at that location in PF.3

Thus, the proposed model, and bistable attractor network
models of maintenance more generally, suggest that capacity
limits in change detection arise as a result of limitations in the
number of representations that can be simultaneously main-
tained in working memory (for similar proposals, see Cowan,
2001; Luck and Vogel, 1997; Pashler, 1988; Zhang and Luck,
2008).4 This view has been contrasted with a resource-based

Fig. 7 – Simulations showing capacity limits in the three-layer neural fieldmodel. The simulations in (A) and (B) show themodel
successfully maintaining up to four peaks of activation simultaneously in WM. However, when two more items are added,
inhibitory input toWMoutweighs excitation, and three of the items failed to be sustained in the absence of input. Note that, for
simplicity, the inhibitory layer is not shown here.

3 Note that errors can also arise if memory representations are
inaccurate or distorted as a result of, for instance, noisy inputs, or
through metric-dependent interactions among items in working
memory that can make it more or less difficult to detect changes
at test (see, e.g., Johnson et al., 2009; see also Gruber et al. (2006)
for evidence of distortions arising as a result of the sequential
presentation of stimuli).
4 This assumes that the items in the memory array are highly

discriminable, that they remain visible long enough to allow
accurate and stable encoding, and that the changes introduced at
test are of sufficient magnitude to be easily detected. When these
assumptions are violated, errors may arise for reasons other than
a failure of memory (see Simmering, 2008; Simmering et al., in
preparation).
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view of change detection (see, e.g., Wilken and Ma, 2004)
which holds that observers can store a potentially large
number of representations, with resolution decreasing at
larger set sizes due to increased internal noise. Although
models based on this latter conceptualization do provide
better fits to change detection results than high-threshold
approaches in some cases (Macmillan and Creelman, 1991),
Zhang and Luck (2008) have demonstrated that this does not
hold for limited-capacity models of working memory more
generally. Indeed, their work, which applies a signal detection
conceptualization to a small and potentially variable number
of fixed-resolution representations, provides strong support
for the idea that discrete items (e.g., individual objects) are
encoded in working memory in an all-or-none fashion. This is
consistent with the detection instability underlying encoding
in the neural field model proposed here. In each case, when
capacity is exceeded, a small number of items are selected for
encoding andmaintenance in workingmemory, and the other
items are simply forgotten, as shown in Fig. 7C.

3.2.5. Selection of inputs for consolidation in working memory
Although the model shows robust change detection perfor-
mance at smaller set sizes, self-sustained peaks can fail to
be established in WM in some cases even though the
number of items to be remembered is within the capacity
of WM. Thus far, we have assumed that all inputs were
more or less identical in strength. This is not entirely un-
reasonable. For example, normalization of input strength
could be mediated through other layers of perceptual pro-
cessing not implemented here. It is likely, however, that the
strength of perceptual inputs arising from different objects
in multi-item arrays could vary considerably. Such variations
might arise through spontaneous fluctuations, or due to
factors such as the relative salience of the objects (e.g., their
relative luminance), or the spatial distribution of attention
within the display. In this case, less salient objects, or
objects that are unattended would produce lower amplitude
inputs to PF. This would decrease their likelihood of going
through the detection instability and their probability of
being consolidated in WM.

The simulations presented in Fig. 8 show the conse-
quences of presenting variable amplitude inputs to the
model. For these simulations, the model was presented with
one strong input, and two relatively weak inputs (Fig. 8A). In
this case, the strongest of the three inputs is successfully
consolidated and sustained inWM after the input is turned off
(Fig. 8B), whereas the two weaker inputs remain below thres-
hold. However, when the model is probed a short time later
(Fig. 8C), a second peak has formed at the location of one of
the weaker inputs. Thus, with variable amplitude inputs, the
model shows an emergent property of sequential consolida-
tion in WM. In addition, these simulations provide a plausible
basis for the finding that attended inputs are more likely to be
consolidated in WM (Schmidt et al., 2002).

4. Discussion

The present paper provided a survey of a new approach to
visual working memory and change detection based on the
principles of the Dynamic Field Theory that bridges the gap
between neural and behavioral levels of theorizing. Although
theories at the cognitive level have maintained a tight back
and forth with behavioral research looking at VWM, such
theories have not been formulated at the level of neural
processes, and have not addressed the comparison process in
change detection. Conversely, theories at the neural level have
shed light on the biophysical and neurodynamical properties
of the neural systems supporting maintenance in working
memory, but have made little contact with the human beha-
vioral literature looking at change detection. In addition, such
approaches have focused primarily on single-itemmemory for
spatial information, and have not addressed multi-item
maintenance and the process of change detection in a single,
integrated neural system. In the present paper, we described a
new neural process model of VWM and change detection that
addresses these limitations.

The basic functionality of the proposed model was
demonstrated in a series of exemplary simulations showing
how the model can be used to capture different aspects of the

Fig. 8 – Simulations of the three-layer model with variable amplitude inputs. When one strong and two weak inputs are
presented to the model (A), the strong input is successfully consolidated and maintained in WM (B). In addition, a short time
later, one of the weaker inputs is also consolidated (C).
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change detection task. Recall that the first step in change
detection involves the detection of items in the memory array
and their successful consolidation in working memory. When
inputs of sufficient strength and duration are presented to the
model, the system goes through a detection instability,
marked by an abrupt transition from a stable sub-threshold
state of activation to an above-threshold state where localized
peaks of activation can be formed and, in some cases,
maintained once the input has been removed. Whether
peaks of activation are maintained in the absence of input
depends on the balance of excitatory and inhibitory inputs to
the field.

Excitatory recurrence in PF and laterally inhibitory input
from Inhib canmove PF into a self-stabilized state in response to
input, where one or more peaks of activation are maintained
as long as input is present. Once input is removed, however, PF
quickly transitions back to the sub-threshold state, where
activation at all field sites remains at baseline. In contrast,
neurons in the WM layer, where excitatory recurrence is
stronger, enter a self-sustaining state in response to input,
where localized peaks of activation are maintained after the
input is removed. Once a stable self-sustaining peak of
activation is formed in the WM layer, the model can be said
to have consolidated the information in WM.

The self-sustained state persists unless systematic or
random perturbations (e.g., noise) destabilize the peak. One
source of systematic perturbation of particular interest here is
the case where new inputs are presented to the model some
time after the original inputs are consolidated in WM. Under
these circumstances, several functions emerge, depending on
the nature of the new inputs. When the new inputs are the
same as the original inputs, neurons in PF coding for those
features fail to enter the self-stabilized state. The failure to
build a peak in PF occurs as a result of strong inhibitory
recurrence from Inhib, whose activation is driven by the
presence of self-sustaining peaks in WM. Thus, in this case,
the self-sustained state is maintained in WM, and PF remains
in the sub-threshold state.

In contrast, when a new input that is different than the
original is presented to themodel, patterns of activation in the
model are changed depending on the metric similarity of the
new and old inputs. When the new inputs are only slightly
different than the original inputs, no new peak is built in PF,
but the peaks in WM may be updated in a continuous fashion
to reflect the new values. In contrast, when a new input is
presented that is sufficiently metrically different from the
original inputs, PF transitions to the self-stabilized state,
signaling that a change has occurred, and working memory is
updated to reflect the new value. If the new inputs are
metrically similar to the original inputs, the original peak in
WM is destabilized, and is replaced by the new value.
However, when the new input is metrically very different
than the original input, the new itemmay be added to theWM
field without destabilizing the old peak.

Thus, the proposed model realizes each of the basic
components needed to capture performance in change detec-
tion tasks, from encoding and consolidation, to maintenance,
to comparison and updating in response to changed inputs.
Importantly, the model shows how these different functions
can arise within an integrated, dynamic neural system.

4.1. Neural plausibility of the proposed model

We have claimed that the model proposed here represents a
neurally-plausible approach to VWM and change detection. In
what sense is our neural field model grounded in neural
principles? First of all, there is a demonstrated link between a
population dynamics approach to cortical activation and
patterns of activation in neural fields, as well as clear
methods that can be used to map single-unit recordings
onto dynamic population representations that can be directly
compared to dynamic field models. For instance, Bastian et al.
(Bastian et al., 1998, 2003b; Erlhagen et al., 1999) have used
population coding techniques to compare single-unit neural
activity in motor cortex to time-dependent changes in neural
activation in a dynamic field model of motor planning. The
first step in making this comparison was to map the res-
ponses of neurons in motor cortex to basic stimuli and create
a continuous field by ordering the neurons based on their
“preferred” stimulus. This was followed by a behavioral
precuing task that probed predictions of a Dynamic Field
Theory of movement preparation (Erlhagen and Schöner,
2002). A similar procedure was used in studies of neuronal
interaction in the cat visual cortex (Jancke et al., 1999). In both
cases, the reported results suggested a robust relationship
between predictions of dynamic field models and neural
measures.

Additionally, because cortical neurons never project both
excitatorily and inhibitorily onto targets, the inhibitory lateral
interaction must be mediated through an ensemble of
interneurons. We used a generic, two-layer formulation
(Amari and Arbib, 1977) to realize this interaction where an
inhibitory activation field receives input from an excitatory
activation field and in turn inhibits that field.

Finally, the model presented here incorporates additional
insights gained from studies of the layered structure of cortex.
Specifically, the three-layered architecture was inspired by a
cortical circuit model of the neocortex that was derived from
decades of research investigating the cytoarchitecture of the
neocortex (Douglas and Martin, 1998). This basic circuit model
consists of two interacting populations of excitatory pyrami-
dal cells distributed across different layers of cortex, coupled
to a single population of inhibitory neurons. The basic
structure and patterns of connectivity within the model are
therefore consistent with known principles of cortical organi-
zation. It is also possible, however, to achieve the same
functionality using a four-layer architecture where each
excitatory layer projects to a local inhibitory population in
addition to the inhibitory population of the other excitatory
field (see, e.g., Edin et al., 2007). This four-layered architecture
would be consistent with the proposal that the perceptual
field resides in posterior cortex and the working memory field
in another area such as the prefrontal cortex. Future work will
be required to assesswhich of these possibilities ismost likely.

4.2. Behavioral plausibility of the proposed model

In addition to providing a framework for capturing existing
data and relating behavioral phenomena to neural processes,
a central challenge for any model is to make novel predictions
that can be empirically tested. How does themodel perform in
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this respect? An interesting property of dynamic neural field
models is their metrics, which is reflected in the topographic
organization of neurons within the field. As a result, when
more than one peak of activation is present in working
memory, peaks interact as a function of theirmetric similarity.
For instance, when peaks are relatively far apart in feature
space, reflecting, for instance, memory for multiple highly
distinctive colors, they either do not interact, or they interact
in a weakly inhibitory fashion. In contrast, when items are
moved closer together in feature space they interact in a
strongly inhibitory fashion. In some cases, this can lead to
competition between peaks, with one peak being suppressed
by another nearby peak. In other cases, shared lateral inhi-
bition can lead to a narrowing of the range of local excitation
associated with each peak in WM, and a consequent narrow-
ing of the inhibitory projection from WM to PF via the inhi-
bitory field. As a result, when a different color is presented a
fixed distance away from the original color in color space,
neurons coding for the color of the test stimulus are less
inhibited for close versus far colors. In the context of our
model of change detection, this suggests that it should be
easier to detect changes when one of two similar colors is
changed at test. This counterintuitive prediction has been
confirmed in a series of change detection experiments probing
workingmemory for both color and orientation (Johnson et al.,
2009; see also, Lin and Luck, 2009).

A second prediction arising as a result of close metrics in
VWM is that shared lateral inhibition among similar items
will lead to mutual repulsion between nearby peaks. This
arises as a result of the fact that when two similar peaks are
held in WM at the same time, inhibition is stronger in-
between the peaks than it is on the “outer side” of each peak.
As a result, it is easier for the excitation associated with each
peak to grow in a direction away from the other peak (i.e.,
away from the other item in memory) across the delay
interval. This leads to the prediction that when similar
features are held in VWM, they will be systematically biased
away from each other over delays. This prediction has been
confirmed in a cued color recall experiment comparing
memory for a “far” color with memory for two “close” colors
(Johnson and Spencer, in preparation).

5. Conclusions

In conclusion, we contend that the three-layer neural field
architecture described here provides a useful framework for
thinking about how elementary perceptual and cognitive
functions can emerge from the coordinated activity of an
integrated, dynamic neural system. The proposed model
captures each of the primary components required in simple
visual comparison tasks such as change detection, and is
consistent with general principles of neural function. An
important future direction for this approach will be to move
beyond general principles and more tightly link the model to
behavioral phenomena in this area. The tests of novel
behavioral predictions discussed above represent our initial
efforts in this direction. The early success of these efforts
suggests that the model is in a position to bridge the gap
between neural processes and behavioral phenomena.
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Appendix A. Model equations

Activation in the perceptual field, PF (u), is captured by:

su x; tð Þ = � x; tð Þ + hu +
R
cuu x� xVð ÞLuu u xV; tð Þð ÞdxV

� R
cuv x� xVð ÞLuv v xV; tð Þð ÞdxV+ star x; tð Þ ð1Þ

where u̇ (x, t) is the rate of change of the activation level for
each neuron across the feature dimension, x, as a function of
time, t. The constant determines the time scale of the
dynamics. The first factor that contributes to the rate of
change of activation in PF is the current activation in the field,
−u(x, t), at each site x. This component is negative so that
activation changes in the direction of the resting level hu.

Next, activation in PF is influenced by the local excitation/
lateral inhibition interaction profile, defined by self-excitatory
projections, ∫cuu (x−x′) Λuu (u(x′, t))dx′, and inhibitory projec-
tions from the inhibitory layer (Inhib; v), ∫cuv (x−x′) Λuv (v(x′, t))
dx′. These projections are defined by the convolution of a
Gaussian kernel with a sigmoidal threshold function. In
particular, the Gaussian kernel was specified by:

c x� xVð Þ = cexp � x� xVð Þ2
2r2

" #
; ð2Þ

with strength, c, width, σ, and resting level, k. The sigmoidal
function is given by:

L uð Þ = 1
1 + exp �bu½ � ; ð3Þ

where β is the slope of the sigmoid, that is, the degree to which
neurons close to threshold (i.e., 0) contribute to the activation
dynamics. Lower slope values permit graded activation near
threshold to influence performance, while higher slope values
ensure that only above-threshold activation contributes to the
activation dynamics. At extreme slope values, the sigmoid
function approaches a step function.

Inputs to the model take the form of a Gaussian:

Starspace x; tð Þ = cexp � x� xcenterð Þ2
2r2

" #
v tð Þ ð4Þ

centered at xcenter, with width, σ, and strength, c. These
inputs could be turned on and off through time (e.g., the
target appears and then disappears). This time interval was
specified by the function χ(t). This is referred to as the “index
function”, because it is set to one in a given interval, when the
stimulus is on, and zero elsewhere.
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The second layer of the model, Inhib (v), is specified by the
following equation:

sv: x; tð Þ = � v x; tð Þ + hv +
R
cvu x� xVð ÞLvu u xV; tð Þð ÞdxV

+
R
cvw x� xVð ÞLvw w xV; tð Þð ÞdxV: ð5Þ

As before, v̇ (x, t) specifies the rate of change of activation
across the population of feature-selective neurons, x, as a
function of time, t; the constant sets the time scale; v(x, t)
captures the current activation of the field; and hv sets the
resting level of neurons in the field. Note that Inhib receives
activation from two projections—one from PF, ∫cvu (x−x′) Λvu

(u(x′, t))dx′, and one from WM, ∫cvw (x−x′) Λvw (w(x′, t))dx′. As
described above, these projections are defined by the
convolution of a Gaussian kernel (Eq. (2)) with a sigmoidal
threshold function (Eq. (3)).

The third layer, WM (w), is governed by the following
equation:

sw: x; tð Þ = �w x; tð Þhw +
Z

cww x� xVð ÞLww w xV; tð Þð ÞdxV

�
Z

cwv x� xVð ÞLwv v xV; tð Þð ÞdxV

+
Z

cwu x� xVð ÞLwu u xV; tð Þð ÞdxV+ csStar x; tð Þ:

ð6Þ

Again, w˙ (x, t) is the rate of change of activation across the
population of feature-selective neurons, x, as a function of
time, t; the constant τ sets the time scale; w(x, t) captures the
current activation of the field; and hw sets the resting level.
WM receives self excitation, ∫cww (x−x′) Λww (w(x′, t))dx′, lateral
inhibition from Inhib (v), ∫cwv (x−x′) Λwv (v(x′, t))dx′, and input
from PF(u), ∫cwu (x−x′) Λwu (u(x′, t))dx′.

WM also receives direct target, Star(x, t), inputs scaled by cs.
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