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Abstract: Parsing of action sequences is the process of
segmenting observed behavior into individual actions. In
robotics, this process is critical for imitation learning from
observation and for representing an observed behaviorina
form that may be communicated to a human. In this paper,
we develop a model for action parsing, based on our un-
derstanding of principles of grounded cognitive processes,
such as perceptual decision making, behavioral organiza-
tion, and memory formation. We present a neural-dynamic
architecture, in which action sequences are parsed using
a mathematical and conceptual framework for embodied
cognition—the Dynamic Field Theory. In this framework,
we introduce a novel mechanism, which allows us to de-
tect and memorize actions that are extended in time and
are parametrized by the target object of an action. The core
properties of the architecture are demonstrated in a set of
simple, proof-of-concept experiments.

Keywords: action parsing, sequence learning, elementary
behaviors, dynamic neural fields

DOI 10.1515/pjbr-2015-0008
Received March 31, 2014; accepted January 9, 2015

1 Introduction

When artificial cognitive systems are meant to interact
with humans, they require an ability to interpret human
behavior based on their own observations. This may en-
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able such systems to report back to a human about its ob-
servations, to assist a human operator in a joint task by
selecting a complementary or supportive action, and also
to learn new behaviors [1-3]. In natural language process-
ing, parsing is the process of analyzing a stream of spo-
ken or written language according to the rules of grammar.
Here, we will use this term to refer to the decomposition of
a visually observed behavior into a sequence of individual
actions. The range of possible actions is constrained to a
known set.

Action parsing entails detecting individual actions by
determining their beginning and termination in time, and
storing their serial order. Some actions are ‘simply’ move-
ments, which amount to a transition from one state of the
motor system to another, as in “move the left arm up”.
Parsing sequences of such actions requires the segmen-
tation of movements into individual components as well
as the categorization of each component [4]. Other ac-
tions are oriented toward objects in the environment, as in
“grasp the green cup”. For such actions, it is not sufficient
to merely extract and categorize the movement from the
visual stream, but it is also necessary to segment and rec-
ognize the target object and to represent the relationship
between the action and the object.

In this paper, we are interested in this second type of
actions, those directed at objects in the environment. In
this setting, the system needs to perform segmentation of
objects in the visual array, while simultaneously detecting
action boundaries in time and determining the underlying
action intentions. Several difficulties arise when the pars-
ing of such goal-directed action sequences is conducted
in real-time, along with the observed behavior. First, dif-
ferent cues to object-oriented actions may become avail-
able at different moments in time. For instance, a reach-
ing movement may be registered when the hand starts to
move, but the object of this action may become apparent
only later during the hand’s movement. Second, the inter-
pretation of the visual stream may be ambiguous at times.
For instance, an observer may need to distinguish the ac-
tion “move hand forward” from the action “move hand to-
ward the red object”, whereas the two actions look identi-
cal part of the time. Thus, the temporal organization of dif-

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.



120 — David Lobato, Yulia Sandamirskaya, Mathis Richter, and Gregor Schéner

ferent action detectors and object detectors as well as the
process of making decisions based on these detectors be-
come a crucial part of the sequence parsing architecture.

To cope with these challenges, we first introduce a
model that entertains ‘hypotheses’—different possible in-
terpretations of an observed action—which are subse-
quently confirmed or rejected. This amounts to a struc-
tured representation of actions consisting of three parts:
(1) a condition of initiation at which a hypothesis is put for-
ward once the first characteristics of a particular action are
detected, (2) a condition of satisfaction, signaling the con-
firmation of a hypothesis at the end of an action when all
its characteristics are detected, and (3) a condition of fail-
ure that signals the rejection of a hypothesis.

Second, we address the detection of goal-directed ac-
tions, in which an object plays the role that roughly cor-
responds to a slot in the representation of the grammati-
cal structure of a phrase. For instance, a reach action cor-
responds to a verb-object phrase with a representation of
the reaching motor act (a verb in the language analogy)
and the object to which the reach is oriented (the object in
language). In some cases, the effector that generates the
action (the subject), may also need to be specified. For ac-
tions of the hand, which we show in our examples, action
concepts are often effector specific (reaching refers to the
hand, for instance), obviating the need to explicitly repre-
sent the effector system.

We address these challenges of online parsing of the
object oriented action sequences in a neural-dynamic ar-
chitecture that is based on Dynamic Field Theory (DFT) [5,
6]. DFT is a mathematical and conceptual framework, in
which perceptual, motor, and cognitive processes are mod-
eled with Dynamic Fields (DFs). DFs represent continu-
ous feature spaces by fields of activation variables that
evolve continuously in time as described by an integro-
differential equation. Units of representations within these
feature spaces are provided by peaks of activation that are
dynamically stable states of DFs. Instabilities within the
neural dynamics enable the emergence of discrete events
from continuous time, such as the detection of salient in-
formation, selection among alternatives, as well as the for-
mation of working memory. Within DFT, categorical states
may be represented by discrete activation variables that
may emerge from inhomogeneities in DFs.

The neural dynamics framework is attractive for on-
line parsing of action sequences because it casts cognitive
processes in the same terms as perceptual processes. Thus,
continuous visual features that are driven by time varying
sensory input may couple directly into the neural dynam-
ics, which then imposes event and category structure on
the perceptual flow. Grounding perceptual decisions in the
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form of the underlying continuous time and feature spaces
enables online updating when sensory input changes on
the fly.

The price to pay for the ease with which DFs link
to low-level online sensory input is the relative complex-
ity of creating sequential transitions. To transition to a
new state, the previous state must be rendered unstable,
while the next state is selected. The sequential activation
of serially ordered action states can be organized through
the concatenation of dynamical instabilities. This was es-
tablished in earlier work on serial order in DFT [7, 8],
which demonstrated the generation of simple action se-
quences that were acquired semi-autonomously by obser-
vation during a learning session. More complex behaviors
may be organized in a neural-dynamic architecture for be-
havioral organization, introduced recently in DFT [9]. In
this architecture, actions may be activated in parallel and
selected flexibly, based on the current situation, rather
than according to a fixed serial order.

The main goal of this paper is to combine the mecha-
nisms for sequence representation, developed in the work
on serial order, with the concept of elementary behavior,
developed in the work on behavioral organization, and ex-
tend the resulting architecture toward a fully autonomous
acquisition of action sequences, which consist of differ-
ent goal-directed actions. We thus move beyond previous
demonstrations of sequence generation in DFT by building
a system that autonomously generates, confirms, or rejects
different hypotheses about the observed actions and their
objects as evidence for their identities arrives from the per-
ceptual decisions. Different factors that contribute to the
evaluation of the hypotheses arise at different times but
are integrated by the neural dynamics through processes
of memory formation and decision making.

In this paper we start the research program in a sim-
ple scenario that involves three action detectors, for reach-
ing, grasping, and dropping, each associated with a repre-
sentation of the object at which the action is directed. The
cognitive architecture detects objects and actions, builds
up hypotheses about the observed actions, confirms or re-
jects them, and learns sequences of successfully accom-
plished actions—all autonomously organized by the time
continuous neural dynamics. In particular, we show how
the system copes with abrupt changes in the perceived ac-
tion sequence both in terms of the perceived action and
in terms of the object at which the action is directed. Only
those actions are committed to memory that were success-
fully accomplished during a demonstration.

The paper is organized as follows. We begin in Section
2 with a brief description of the methods used throughout
the system. The architecture is presented in Section 3. In
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Section 4 we present result of experiments that demon-
strate the robustness and flexibility of the model. The dis-
cussion in Section 5 emphasizes the novelty of this work
in the context of imitation learning.

2 Methods

2.1 Dynamic Field Theory

Dynamic Field Theory (DFT) [5, 6, 10] is a mathematical
framework for modeling embodied cognition. The core el-
ement of a DFT architecture is a dynamic field (DF), an ac-
tivation function u(x, t) € R defined over continuous fea-
ture dimension(s), x, (e.g., color or space). DFs are a math-
ematical idealization of the distributions of population ac-
tivation prevalent in the higher nervous system [11-13].
A DF evolves in continuous time, t, based on an integro-
differential equation:

Tulx,t) =—ulx, t)+ h+S(x, t)

N / Fulx, D) wix - x) dx, )

where 1(x, t) is the rate of change of the activation u(x, t)
at location x and time t. T is a time constant, h < 0 a
negative resting level, and S(x, t) is time-varying exter-
nal input. The last term of the equation formalizes neu-
ral interactions with field locations representing other fea-
ture values, x'. The interaction term integrates the out-
put, f(u(x’, t)), of the DF at every location x” along the fea-
ture dimension, weighted with an interaction kernel, w(x—
x'). The output is determined from activation levels by a
sigmoid function, f(-), that translates negative activation
values to zero and positive values to one, with a smooth
transition for activation values near zero. The Kkernel is
positive (excitatory interaction) for nearby locations x and
x and negative (inhibitory interaction) for locations at
larger distances.

This pattern of lateral interaction together with the
output nonlinearity lead to the formation of localized
peaks of activation. Such peaks are attractors of the neural
dynamics and represent detection decisions about an in-
stance of the feature representation. The detected feature
is indicated by the location of the peak along the dimen-
sion of the DF. A subthreshold pattern of activation near
the resting level is another attractor that exists for suffi-
ciently weak input S(x, t). When localized input is gradu-
ally increased to a critical strength, the subthreshold acti-
vation pattern becomes unstable and the system switches
to a peak attractor that had co-existed bistably with the
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subthreshold solution up to this point. This detection in-
stability [5] is the core mechanism for detecting discrete
events from time-continuous graded changes in input. At
these abrupt changes, activation patterns may switch on
the macroscopic scale that has an impact in a DFT archi-
tecture.

The stability of peak attractors makes it easy to build
cognitive architectures out of multiple DFs [10, 14]. As DFs
within such architectures are coupled, each component
DF retains its attractor solutions, which are structurally ro-
bust and resist the change of the dynamics that coupling
brings about. This is true until an instability switches the
field’s regime. DF architectures require that these instabil-
ities be carefully designed and compared to empirical evi-
dence for transitions.

Within DF architectures, fields of different dimension-
ality may be combined [14]. The extreme limit case are zero
dimensional fields, that is, activation nodes that have the
following dynamics

V() = -v(O) + h + S(6) + cwf(V(D), @

where v(t) is a discrete (in feature space) activation vari-
able that has self-excitatory coupling of strength, cyv. Such
discrete ‘nodes’ may be thought to arise from inhomoge-
neous fields, which tend to generate peaks only in particu-
lar locations that have become sensitized by learning. Sys-
tems of coupled discrete dynamic activation variables es-
sentially form dynamic recurrent neural networks that go
through analogous dynamic instabilities as do DFs.

In effect, DF architectures are high-dimensional dy-
namical systems. Their time evolution flows from solving
the dynamics, typically numerically in real time. Discrete
events emerge from the continuous dynamics through the
detection instability. They are not imposed by an outside
algorithm.

2.2 Overview of the model

In the parsing architecture, DFs are used to represent
the perceptual features detected in the visual array,
which characterize the parsed actions and the objects at
which they are oriented. The fields provide the perceptual
grounding by receiving direct input from the visual sys-
tem. Peaks of activation in these DFs represent objects in
visual and feature spaces.

Discrete dynamic activation nodes are used to repre-
sent a number of categories of actions. In particular, each
category detector consists of three dynamical nodes (Fig-
ure 1): the condition of initiation node, the condition of sat-
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Figure 1: The parsing model. Lines with arrow heads denote excitatory connections. Lines ending in circles denote inhibitory connections.
Red lines are learned memory traces, black lines are shunting terms controlling learning. See text for details.

isfaction node, and the condition of failure (or withdrawal)
node.

Finally, a set of interconnected dynamical nodes rep-
resents the serial order of the detected actions. These
nodes are interconnected in a way, which ensures their
sequential activation [7]. Each of these ordinal nodes are
connected to the action detector and the representation of
the respective object, at which the detected action is di-
rected. These connections are realized by a set of adaptive
weights, which are modified at a successful detection of an
action (signaled by activation of the condition of satisfac-
tion node). We now present these processing elements and
the couplings between them in detail.

2.3 Sequential organization of actions

Our approach to the representations of actions in a se-
quence builds on earlier work on serially ordered se-
quences [7] and behavioral organization [9] in DFT. The
core element of the sequence generation mechanism, de-
veloped in these previous works, is the structure of an el-
ementary behavior, which consists of a representation of
the action intention and of its condition of satisfaction
(CoS), each implemented as a dynamical node. The inten-
tion node drives the motor system of the agent and pre-
activates the CoS node, which becomes in this case sen-
sitive to the sensory input that corresponds to the accom-
plished action. The CoS node is activated through a detec-
tion instability when it detects a successful accomplish-
ment of the intended action. The activated CoS node in-
hibits the respective intention node. This gives way to the
activation of the next action intention within the network
of activation nodes.

In this paper, we extend this structure of an inten-
tional action (elementary behavior) to enable its use in
the perceptual mode, i.e., when an action sequence is ob-
served. First, we connect the intention node to the percep-
tual system in such a way that a given intention is acti-
vated when the respective action is observed. We call this
extended intention representation a condition of initia-
tion (Col) node. This Col represents the hypothesis that
a given action is now being performed. The hypothesis is
confirmed when the action is successfully terminated as
reflected by the activation of the corresponding CoS node.
The Col and CoS nodes are connected to the intention
and CoS nodes of the action generation system (which re-
sembles the mirror neurons discourse in neuroscience of
action perception), however this coupling will not be in-
vestigated here. Second, in order to reject a hypothesis,
which did not lead to detection of a successfully accom-
plished observed action, we introduce a new element into
the structure of an elementary behavior—the condition of
failure (CoF), which deactivates the Col that was not con-
firmed. Section 3.2.3 describes the resulting action detec-
tors, implemented in this work.

2.4 Serial order memory

To store a parsed sequence of actions in memory, we use a
neural-dynamic model for serial order [7]. In this model,
the order of items in a sequence is represented by a set
of interconnected ordinal nodes (Equation (3)). The ordi-
nal nodes represent ordinal positions in a sequence (i.e.,
first, second, third). Each ordinal node has an excitatory
connection to the respective memory node, which keeps
the position in the sequence in the transition phase, when
all ordinal nodes are inhibited. The memory node in turn
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has an excitatory connection to the next ordinal node, thus
biasing activation transfer toward the node encoding the
next position in a sequence during the transition phase.
At any time, only one ordinal node may be active and rep-
resents the current ordinal position in the observed se-
quence. A sequential transition is triggered by a CoS node
that inhibits all ordinal nodes including the currently ac-
tive one. As a result, input is removed from the CoS node
itself, which is thus deactivated. That in turn releases the
ordinal set from inhibition. The next ordinal node in the
serially ordered array goes through the activation thresh-
old first, because it receives additional activation from the
memory node of the previously active position. In this way,
the ordinal nodes are activated in a sequence by CoS sig-
nals from the action detection system.

T#9(0) = - 00 + O+ Cancg(V(0)
~ Cinn Y 8(VP(0) + Comg (VIS (1)
i#l
- Co,cg(Vcos(t))§ 3)
_ Vgnem(t) + hmem + Cexcg(vinem(t))

~Cinn Y 8P + CmogVP(E).  (4)
i#

TYTem(¢) =

The first three terms in Equations (3-4) are the generic
neural node equations for the ordinal nodes, v?rd(t), and
the memory nodes, v{**™(t), respectively, with the resting
level h and a self-excitatory term. i numbers the nodes in
a sequence. The fourth term in both equations is the mu-
tual inhibition between nodes that belong to the same se-
quence. The fourth term in Equation 3 is a pre-activating
excitatory input from the previous memory node, v{"{"(¢),
and the last term is the strong negative input from the CoS
node. In Equation 4, the last term is an excitatory input
from the ordinal node that activates the respective mem-
ory node.

Memory for a particular sequence is stored in connec-
tion weights from the ordinal nodes to the DFs that repre-
sent the actions. Section 3.3 specifies how these connec-
tions are realized in the action parsing architecture.

3 Architecture

We exemplify the DFT architecture of object oriented ac-
tion parsing around a scenario in which a human operator
reaches for colored objects on a tabletop, may grasp these
objects, transport them to another location, and drop them
there (left panel of Figure 2). The parsing architecture con-
tinuously evaluates sensory information about the scene,
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which is obtained from a Kinect sensor. The goal of the sys-
tem is to interpret the observed behavior by detecting and
classifying actions performed by the operator, identifying
the object toward which the action is oriented and mem-
orizing the parsed action sequence in a way that the re-
spective actions and their object representations may be
activated in the same order.

The architecture consists of three modules (Figure 2):
a) The sensory acquisition module segments and classifies
objects, detects motion of the hand, and estimates the mo-
tion direction. Although all of these sensory processing
components have previously been established in neural
dynamics architectures, here we used a simplified version
of this sensory preprocessing stage that employs standard
computer vision techniques. b) The action parsing module
is the central component of the architecture that detects
actions and stabilizes their representation along with the
related target objects. Dynamic Fields process perceptual
inputs obtained from the sensory acquisition module, gen-
erating a representation of the object-oriented actions in
terms of peaks of activation and activation of discrete dy-
namical nodes. ¢) The action memory stores the sequence
of detected actions and the objects involved in a neural dy-
namic representation of serial order. Next, we step through
the structure and function of each of the three modules.

3.1 Sensory acquisition

The sensory acquisition module is a forward stream of sen-
sory data processing and analysis, currently implemented
through fast computer vision algorithms that provide in-
puts to the action parsing module in real time. In the
overview Figure 2, it is illustrated as the leftmost box. The
pipeline of processing steps is shown in more detail in Fig-
ure 3. Following along the steps in this figure from left to
right, we now briefly explain the sensory preprocessing.
The data pipeline shown in Figure 3 continuously
grabs a frame of raw data, an RGB image and a depth im-
age, from the Kinect camera. Using the three coordinates
of this image, we construct a point cloud that represents
the 3D scene in front of the Kinect sensor in world-based
(allocentric) coordinates. To perform this transformation
from image-based to world-based coordinates (anchored
on a point on the table), the Kinect sensor is calibrated us-
ing two coloured markers on the surface of the table. In the
current implementation, the Kinect sensor is stationary,
requiring only an initial such calibration and no further
recomputation of the transformation over the course of ex-
periments. For a moving sensor, the transformation has to
be recomputed, taking into account the sensor movement
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Figure 2: Overview of the architecture. The architecture receives sensory input about the scene from a Kinect (left). This input is fed to the
algorithmic sensory acquisition module (left box). The core of the architecture, the DFT based action parsing system, is illustrated in the

middle box. The right box shows the DFT based action memory system.
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Figure 3: Sensory acquisition module

relative to the calibrated position. A neural-dynamic archi-
tecture for calculating such transformations in real-time
has been introduced recently [15].

For subsequent steps of the analysis we use the open
source ‘Point Cloud Library’ (PCL) [16].

3.1.1 Object detection

We segment the point cloud into points that belong to
the table plane and clusters of points that lie above that
plane that represent objects. The tabletop plane is found
using random sample consensus [17] based on the as-
sumption that the tabletop plane is the largest plane in
the scene. We segment the space above the plane using
Euclidean clustering, which yields a cluster of points for
each object in the scene. This clustering is noisy and will
be refined and stabilized by the perceptual DFs of the
neural-dynamic architecture. Each cluster that contains
more than a threshold number of points (here equal to
100) is classified as either an object or a hand. The bi-
nary classification hand/object derives from a color filter

in the hue-saturation-value (HSV) color space. Clusters,
in which skin-like colors predominate, are classified as a
hand. Skin-like colors are defined by predefined ranges
in HSV color space (H: [2, 15], S: [50, 100], V: [50, 180]).
Clusters containing other colors are classified as objects.

3.1.2 Motion detection

Motion analysis for attentional blobs of activation can be
performed in neural dynamics [18]. To simplify computa-
tion and the overall architecture, we track the 3D position
of each cluster (each segmented object or hand) and esti-
mate their velocities using a standard Kalman filter [19].
Two clusters in subsequent frames are classified as
belonging to the same object when a Euclidean distance
cost function remains below a threshold. This assumes
that the position of an object does not change much from
one frame to the next. Other possible cost functions could
use a combination of other object features, such as class
match or color distance. To solve the assignment problem,
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we use the Hungarian algorithm, also known as the Kuhn-
Munkres algorithm [20, 21].

Based on the estimated velocities of the objects, we an-
alyze the motion of all objects in the scene. For each object,
we compute the norm of its velocity vector which indicates
if and how fast the object is moving.

For each possible pair of a hand, A, and an object, B,
in the scene, we determine whether the hand is approach-
ing the object or moving away from it. We define a Gaus-
sian function over the angle between the velocity vector,
vy, of the hand and the vector between the locations of A

,AB>2
and B: G®Pr = (||VAH LAt n
* “AB

Bt €)exp 202 . The strength of the

Gaussian is inversely proportional to the distance between
the objects and proportional to the norm of v4. The width,
o = 0.3, of the Gaussian controls how accurately v, and
ABneed to be aligned to signal an approach toward the ob-

ject. An analogous function is used to assess how strongly
(m-<v ,AB>)2

i ; . caway _ ¢ [[vall A

Aismovingaway from B: G, ;7 = (HABH+e)exp 20 s

where the angle is simply inverted to account for the oppo-
site direction.

3.1.3 Output of the detectors

The outputs of the sensory acquisition system are contin-
uous streams of values that include the color and height
of all objects and of the hand, their degree of motion, and
a measure of the extent to which the hand is approaching
or moving away from each object (see Figure 3). All values
in the stream are defined over and bound by visual space.
To reduce computational effort, we represent that stream
in two dimensions defined on the table surface by project-
ing orthogonally from the 3D scene onto the tabletop. This
projection is computed using a prior calibration that has
determined the orientation of the tabletop plane relative
to the camera.

3.2 The DF action parsing system

The neural dynamics of the parsing system has three com-
ponents: (1) A set of sensory DFs receive sensory raw data
from the sensory acquisition module and detect and stabi-
lize representations of objects and events. (2) Attentional
DFs selects the object that is the target of the currently hy-
pothesized action. (3) The neural dynamics of activation
nodes classifies sequences of detected events and objects
into one of three actions, reach, grasp, or drop. We step
through these three components and their interactions.
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3.2.1 Sensory DFs

The sensory DFs act as detection fields and are defined
over the 2D spatial dimensions of the tabletop plane. In the
overview Figure 2, they are illustrated in the second box
from the left, on the left side. These fields filter noisy input
data and stabilize representations of locations with salient
sensory information. Peaks of activation in these DFs sig-
nal the presence of information about objects (target ob-
ject or hand) or the detection of events (motion, approach,
or away signals). Lateral inhibition in these fields is weak
to enable multi-peak solutions. Therefore, these fields do
not select the single most salient object or event but merely
stabilize detected candidates.

The object detection DF receives height as an input
from the sensory acquisition subsystem. Those locations
in the tabletop scene at which height readings exceed a set
threshold (2cm), induce peaks in the object detection DF.
The locations of those peaks mark detected objects on the
table.

The hand detection DF works in a similar fashion: It re-
ceives raw input from the sensory acquisition system. The
detection instability in the field dynamics creates stable
peaks of activation at locations in which hand color is per-
ceived by sufficiently many samples in a cluster. Figure 4
shows the sigmoided activation pattern in the object and
hand detection fields.

The object movement DF, approach DF, and away DF
all receive as input the output of the motion analysis pro-
cess. In each of these fields, input is placed at the location
of each object that is perceived to move, to be approached
by the hand, or from which the hand moves away. Again,
inputs are effectively thresholded through the detection in-
stability and the resulting peaks are stabilized by the DF
interactions to filter out noise and subthreshold values.

3.2.2 Object selection

The hypothesized target object of an action is selected from
all available objects by an attentional DF. This mechanism
is illustrated in the top right corner of the middle box in
Figure 2. To enforce a selection in the attentional DF, it is
set in a dynamic regime in which only one peak may be
stable at any time (through global inhibition). The atten-
tional DF receives input from the object detection DF and
a combination of inputs that bias the selection of one of
the available objects. Such inputs include the hand detec-
tion field that biases the selection decision toward objects
close to the hand, and the approach detection field that
biases the selection decision toward objects that are be-
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Figure 4: Detection of hand and objects. The top row shows the
camera image. The middle row shows the segmented objects (left)
as well as the hand (right). The bottom row shows the activation of
the object (left) and hand (right) detection DFs.

ing approached by the hand. Thus, if the hand is moving
toward an object, this object may be the target of the un-
folding action. The selection of the target object is contin-
uously updated while the human operator demonstrates
actions in the scene. The initial selection may thus occur
before the decision about the observed action is finalized.
However, the selection process may change the selection
toward an object that becomes more likely to be the tar-
get in the further course of the action. Figure 5 shows a se-
quence, in which an actor moves his hand from one object
to another and thus induces a switch of the object that is
selected by the attention mechanism.

3.2.3 Action detectors

The DF action detectors are the central part of our archi-
tecture. In this work, we have implemented three action
detectors: for the reach, grasp, and drop actions. Figure 1
illustrates how the dynamics of an exemplary action de-
tector is organized. At the core of each action detector are
three dynamical nodes: the condition of initiation (Col)
node, the condition of satisfaction (CoS) node, and the
condition of failure (CoF) node.
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The Col node receives input from one of the sensory
DFs that signals that an action is probably being executed.
An active Col node thus represents a hypothesis about the
currently observed action. In particular, a hand approach-
ing an object (activation in the approach DF) activates Cols
of the detectors for ‘reach’ and ‘grasp’, whereas a hand
moving away from an object activates Col of the ‘drop’ de-
tector.

The Col is kept active by self-excitation of the Col node
until it is inhibited by either the CoS node, which detects
successful accomplishment of the action or the CoF node,
which signals that the hypothesis about the current action
should be withdrawn. Stopping on top of the object acti-
vates the Col for the ‘reach’ action and touching the ob-
ject activates the Col for the ‘grasp’ action. When that hand
stops before reaching the object, the CoF for the ‘reach’ de-
tector is activated.

Each action detector receives inputs to its constituting
nodes—Col, CoS, and CoF—from different sensory DFs. The
connectivity among these nodes is identical for all detec-
tors and defines the general processing structure that au-
tonomously parses observed actions. Activation of the CoS
node triggers a learning process in the serial order system,
in which the action class and the features of the target ob-
ject are stored. At the same time, the CoS node triggers a
transition to the next action in the serial order system, en-
abling it to detect and store the next upcoming action.

3.3 Action memory

As described in Section 2.4, we use a neural dynamic ar-
chitecture to represent serial order and to memorize an ob-
served sequence of actions. Each ordinal node within the
ordinal set may potentially be coupled to any of the ac-
tion or target object representations within DFs by a set of
adaptive weights. These weights are strengthened for the
currently detected action (which Col is activated), but only
when the CoS of this action is active at the same time. This
provides for a temporally limited learning window, when
both nodes are activated (remember that the active CoS
node inhibits the respective Col node).

During the learning window, the connection weights
are strengthened from the active ordinal node to the ac-
tive Col node as well as to the object DFs (color or space).
The learning rule is similar to the memory trace formation
equation used in DFT as an elementary form of learning
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Figure 5: Object selection: Movement toward the green object (left column) triggers the selection of this object as the target. Movement
away from the green object (center column) also triggers the selection of this object. Movement toward the blue object (right column) trig-
gers selection of the blue object as target.

[6]:

TWi o(t) = f(Veos,a(8) f(vi(1)) ®)
(- Wial® + Fva() ).
TR0, ) = 3 f(Veas,a() Fi(0) ©

( - WP(x, t) + f(u®(x, t))).

The weight W; 4(¢) connects the i ordinal node to the
action detector a, where a € {reach, grasp, drop}. The
weight grows (in a bounded way), if both the ordinal node,
vi(t), and the Col node of the action detector, vx(t), have
positive activation. The shunting term f(vcos, 4(t)) limits
learning to time intervals when the CoS signal is emitted.
The weights, WY (x, t), connect the ordinal nodes with the
object color field, u°(x, t). Those weights are strengthened
that connect the active ordinal node to an active region in
this DF.

Once the whole sequence has been observed, the
weights from each ordinal node point to one of the action
detectors and a region in the object color field. Each ordi-
nal node together with the associated connection weights
thereby represent the observed action and the color of the
object that action was directed at. The ordinal set may be
reactivated and will generate the observed sequence of ac-
tions (not investigated in this paper, but see [7]).

4 Results

The architecture is essentially a large structured dynami-
cal system that receives input from its Kinect sensor. We
realized the process of object-oriented action parsing by
solving the set of integro-differential equations on a digi-
tal computer while feeding the real-time sensory input into
the equations. Here we first demonstrate the overall func-
tionality of the architecture in a commented run of this
kind. We then highlight a few of its core properties in other
demonstration runs.

4.1 Autonomous parsing of an
object-oriented action sequence

In the demonstration shown in Figures 6 and 7, the system
observes an action sequence in which a human operator
performs each of the actions that are in the architecture’s
repertoire, that is, reaching, grasping, and dropping.

As the scene unfolds, the architecture autonomously
parses the continuous stream of sensory inputs into dis-
crete actions and stores them in memory. Key events that
emerge from these processes are illustrated in Figure 6 for
the activation nodes and feature fields and in Figure 7 for
the memory nodes and fields. In Figure 6, the column on
the left shows the evolution in time of the activation levels
of the nodes associated with each action (first three rows).
Plotted are the activation values (dashed lines) and sig-
moided activation values (solid lines) for the Col (blue),
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Figure 6: Time courses and activation snapshots of the architecture for a demonstration in which an actor moves its hand above a red
object, stops on a green object, and transports it away. The activation in the DF on the bottom left is color coded with blue denoting sub-
threshold and red denoting suprathreshold activation. See text for details.

CoF (red), and CoS (green) nodes. On the bottom, the sig-
moided activation level in the object color field is shown
using a color code (blue below threshold, dark red above
threshold). The center column shows snapshots of the
visible scene at the moments in time marked by vertical
bars numbered 1 through 7. The rightmost column shows
the two-dimensional object selection field at these same
points in time. In Figure 7, the column on the left shows
the evolution of the action condition of satisfaction nodes
(CoS), the memory nodes (top two panels), and the color
memory field (bottom panel) in time. The numbered mo-

ments in time and the associated snapshots depicted on
the right are the same as in Figure 6.

We now go through these numbered moments in time
and explain what is shown in Figures 6 and 7. (1) Initially,
the hand is not moving. The green object is still selected
from a previous action. This can be seen from the object
selection field shown on the top right. (2) When the hand
starts a reaching action toward the red object, the condi-
tions of initiation of ‘reach’ and ‘grasp’ are activated (Fig-
ure 6, top two panels on the left, look for Col, dashed blue).
This activation pattern represents the hypotheses that the
currently observed action is either a reach or a grasp. Note
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Figure 7: Time courses of the action detectors (top left) and contents of the action memory system (middle and bottom left) for the same

demonstration as shown in Figure 6. See text for details.

that the object selection field and the object color field
switch to the red object, toward which the hand is moving.
(3) When the hand has passed over the red object and then
stops above the green object, the system has switched back
to the green object as seen from the object selection field
on the right. The color field at the bottom shows that the

switch from red (low end of the scale near 0) to green (near
13) occurs between the events 2 and 3, just as the hand
passes over the red and moves toward the green. Once the
hand stops above the green object, the condition of sat-
isfaction (CoS) for the reaching action is fulfilled (green
trace in the top panel) and the system stores connections
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to the ‘reach’ action detector in memory (middle panel in
Figure 7 at event number 3) together with the connections
to the green color value in the object DF (bottom panel of
Figure 7). (4) The hand touches the green object. As a re-
sult, the CoS for the grasp action is activated (red lines in
top panel of Figure 7 at event number 4). The grasp action
is then stored in memory (green line in the middle panel
of Figure 7) together with the associated color value (bot-
tom panel of Figure 7). Note that the condition of initia-
tion for grasp is deactivated as this happens (blue lines in
middle panel of Figure 6). (5) The hand pulls the green ob-
ject to a new location. (6) When the hand lets go of the ob-
ject, the Col for the drop action is activated (blue lines in
third panel of Figure 6). (7) When the corresponding CoS of
drop is activated (green line in same panel), the hand be-
gins moving away from the green object. At this point the
drop action is stored in memory (red line in middle panel
of Figure 7) together with the color value (bottom panel of
Figure 7).

4.2 Successful detection of an action:
Condition of Satisfaction (CoS)

The hypothesis about the type of action that is currently
being observed can either be true or false. We now show
in detail how the architecture confirms such a hypothe-
sis. We use a reaching action as an example. Other actions
are detected analogously. Figure 8 shows time courses (left
column) of all dynamic elements that make up an action
detector together with a sequence of snapshots (right col-
umn) taken from the camera stream at key moments. Plot-
ted are activation values (dashed lines) and sigmoided ac-
tivation values (solid lines) for the Col, CoF, and CoS nodes
of the ‘reach’ detector. (1) Initially, the hand is not yet mov-
ing and all nodes are below the threshold. (2) As the hand
is approaching the green object, the condition of initiation
(Col) for ‘reach’ is activated. This represents the hypothesis
that the human operator is reaching for the green object.
(3) When the hand stops on top of the green object, the
condition of satisfaction (CoS) of the reach action is acti-
vated. Thus, the hypothesis is confirmed and the system
signals that it has detected a reaching action for the green
object. This activates the reach node in the memory sub-
system as well as the associated features of the object (i.e.,
the color green). The Col is inhibited by the CoS.
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4.3 Failure to detect an action: Condition of
Failure (CoF)

How does the architecture reject a false hypothesis about
an observed action? Again, we use a reaching action as an
example. Figure 9 shows time courses similar to those be-
fore but now in a scenario in which the reaching action is
aborted halfway. (1-2) The first two events are similar to the
same events in the previous demonstration of Figure 8: the
hand moves toward the green object. As before, this estab-
lishes the hypothesis that the observed action is a reach
toward that object. (3) As the hand stops before actually
reaching the green object, the condition of failure (CoF) is
activated. This inhibits the Col and resets it to its initial
state. (4) Once all nodes have relaxed, the system is ready
to detect new actions.

Figure 10 shows time courses of a similar demonstra-
tion for a grasping action. (1-3) The reach for the green ob-
ject is successfully detected and the action stored across
these first three events in time. At the third event, the ar-
chitecture establishes a hypothesis that it is observing a
grasping action of the green object. (4) When, however,
the hand begins to move away from the object instead and
then stops far away from the object, the condition of fail-
ure (CoF) of the grasp detector is activated, leading to the
rejection of the grasp hypothesis.

4.4 Updating the objects of the parsed
action

Finally, we highlight how the system selects an object
when it establishes a hypothesis about an observed ac-
tion (see Figure 11). (1) Initially, the hand does not move
and the green object is selected from a previous action.
(2) When the hand starts to move toward the red object,
the Col for ‘reach’ is triggered while the attention switches
to the red object (right panel, second row). (3) When the
hand begins to move away from the red object and starts
to move toward the green object, attention switches back
to the green object. (4) When the hand stops on top of the
green object, this triggers the CoS of the reach action. The
initial hypothesis ‘reaching for the red object’ is updated
to ‘reaching for the green object’ before it is confirmed and
stored in memory.
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Figure 8: Detection of a successful reaching action: condition of satisfaction (CoS).
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Figure 9: Detection of a failed reaching action: condition of failure (CoF).
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Figure 10: Detection of a failed grasping action.

5 Discussion

In this paper, we have presented a proof-of-concept neural-
dynamic architecture for action parsing based on dynamic
fields (DFs). Our choice of the DFT framework, on the one
hand, allows us to use the principles for building cogni-
tive architectures coupled to a sensory system, developed
in this framework [5, 6, 10, 14]. On the other hand, we have
extended the principles of DFT for detecting and represent-
ing events (actions), which are extended in time.

In particular, the DFs in our architecture serve the fol-
lowing functions. First, DFs create stabilized memory rep-
resentations of transient perceptual states or events. This
enables the higher-level action detectors to use informa-
tion that is collected at different points in time and con-
served until the final decision may be made about the iden-
tity of the observed action. Second, the continuous dimen-

sions of DFs allow to keep graded information about the
features of the target object as well as its location and spa-
tial arrangement in memory. In the demonstrations pre-
sented here, only the color of the target object is used as
the parameter of the actions. However, we are currently
working on incorporating more complex features for ob-
ject representation [22].

The parsing architecture presented here adds the fol-
lowing functionality to DFT: first, we extend the inten-
tional structure, introduced in DFT in the context of be-
havioral organization for action generation [9], to account
for autonomy of action perception. Here, it is critical that
actions perceived by the agent are not instantaneous but
have a temporal structure. This includes the moment when
the action is perceived to be initiated (Col), is unfolding,
and is perceived to be finished (CoS). In the parsing archi-
tecture, the pairs of Col and CoS nodes accomplish detec-
tion of such extended events. Detection of the successful
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Figure 11: Continuous update and reselection of the hypothesized target object of an action.

accomplishment of the observed action triggers the learn-
ing process, which stores the action and its parameters
in memory. The condition of failure node detects when
the hypothesized action is not perceived and thus is with-
drawn. The proof-of-concept architecture presented here
can be extended to encompass a larger action repertoire,
based on our work on behavioral organization and hierar-
chical serial order [9, 23, 24]

Other approaches to action parsing often lack the
capability to autonomously detect and represent criti-
cal events from the sensory flow. For instance, Lee and
Demiris use low-level action detectors to analyze move-
ments of the hand relative to the object, as well as the pres-
ence of objects, and the distance between the hand and
the object [25]. The output of these detectors is analyzed
with an HMM and context-free grammars, each represent-
ing different actions, known to the agent. Although it is
hard to compare our proof-of-concept architecture with
this elaborate system, our action parsing architecture fea-
tures stability of the representation of the detected events
and an online decision making mechanism, which leads
to increased autonomy. Indeed, in order to construct an

HMM, the system by Lee and Demiris needs an external
signal to decide which observations are valid. The parsed
actions may only be interpreted in the context of the whole
sequence. In the architecture presented here, on the other
hand, the outputs of the detectors are stored in a neural-
dynamic memory of the system and the hypotheses about
the action identities are confirmed or rejected on the fly as
the behavior unfolds. In that regard, our architecture dif-
fers from other action parsing architectures that focus on
movement segmentation and do not tackle the problem of
parsing actions in terms of their intentional structure and
target objects (e.g., [26]). Thus, not only the label for the
action is stored in our system in the serial order memory,
the features of the target object, at which the action is di-
rected, are also selected and stored autonomously. The ar-
chitecture is flexible and our demonstrations show how an
initial hypothesis about the currently observed action and
its target object may be changed.

This architecture is the first step toward a fully-fledged
action parsing architecture, which should include a much
richer vocabulary of available actions [1]. For each new
action in the agent’s repertoire, its action detector needs
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to be coupled to the sensorimotor system. Understand-
ing how this coupling can be achieved in a learning pro-
cess and thus how action detectors may be organized au-
tonomously is part of our research program [27]. We are
currently also working on exchanging the computer vi-
sion preprocessing stages of our architecture with neural-
dynamics versions, in particular, incorporating a neural-
dynamic model for the motion analysis [18].

An obvious application of the action parsing architec-
ture is imitation learning [28, 29]. In imitation learning,
the representation of the parsed sequence needs to be cou-
pled to the agent’s own sensorimotor system so that the
observed sequence may be reproduced. In the architecture
presented here, the observed sequence is stored in connec-
tions from the ordinal nodes to the intention nodes of the
action detectors and the DF, which represents colors of the
target object. During sequence replay, the ordinal nodes
may be activated in a sequence and, through the learned
connections, activate the intention nodes and the target
field. Linking both of these structures to the sensorimotor
system of the agent has been demonstrated in our previous
work [8, 9] and consequently, the stored sequence may be
replayed by the agent, leading to action imitation based on
visual observation.
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