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Embodied cognition vs.

What is this workshop about?

Information processing



Soccer playing contains a lot of cognition

see and recognize the ball and the other 
players, estimate their velocities (perception, 
scene representation)	


select a visual target, track it, controlling 
gaze (attention)	


use working memory when players are out 
of view to predict where you need to look 
to update (working memory)	


plan and control own motion, initiate and 
control kick, update movement plans any 
time (planning)	


get better at playing (learning)	


know goal of the game/rules, how hard the 
ball is, how fast players are (background 
knowledge)



Cognition contains a lot of embodiment

explore scene, recognize screws, while keeping 
track of spatial arrangement (scene representation, 
coordinate transforms)	


plan action, find tools, apply them to remembered 
locations, updated by current pose of toaster 
(working memory, scene representation)	


manipulating cover, taking it off, recognizing spring, 
re-attaching it (goal-directed action plan)	


mounting cover back on, generating the correct 
action sequence (sequence generation) 	


get better at this (learning)	


know about cover, screws, hard to turn (background 
knowledge)

[image: mystery fandom theater 3000]

[image: HowStuffWorks]



Embodied cognition implies constraints

active perception for a purpose through which 
perceptual objects are grounded: sensory autonomy	


cognitive processes continuously updated and 
continuously linkable to motor processes: stability 	


invariance and abstraction must retain this linkage to 
the sensory and motor surfaces 	


cognition is sensitive to behavioral history, 
environmental context: learning, adaptation	


(cognition arises from neural systems)	


build in “back-ground knowledge” (Searle)



The embodiment hypothesis

there is no particular boundary 	


up to which, cognition is embodied	


beyond which cognition loses the properties of embodiment 	


=> all cognition shares properties of embodied 
cognition



Neural dynamics hypothesis

because embodied cognition unfolds 
in time, in interaction among 
processes, including often interaction 
(loop) between organisms and their 
environment 	


=> embodied cognition requires 
dynamics...



neural dynamics is a powerful 
theoretical language with 
which embodied and situated 
cognitive systems can be 
designed and modeled

Neural dynamics hypothesis

u 

du/dt 

resting 
level 



the most conceptually 
consistent branch of this 
language	


which focusses purely on the 
functional significance of 
neuronal activity	


abstracting from the functionally 
insignificant discrete spatial and 
temporal structure of neuronal 
computation 

Dynamic Field Theory 



Autonomous cognitive robots

autonomy: actively generate behavior, 
initiating, selecting, terminating actions 
based on the system’s own perceptual 
processes	


autonomous robots are model systems on 
which ideas of embodied (and general) 
cognition may be tested, evaluated, and 
heuristically expanded	


autonomous robots are also artificial 
embodied cognitive systems of interest in 
their own right. 



… a little history of

dynamical systems thinking	


dynamical field theory	


the attractor dynamics approach to behavior 
generation



connectionism	


graded, distributed representations in 
connectionist networks	


neural principle: only the connectivity 
implements function, generalization 
challenging	


so far: little autonomy, largely feed-
forward stimulus driven	


and: interfaces with sensors/motor 
systems hide important problems .... 
that why you don't see many 
connectionist robots

[Stanford Encyclopedia of Philosophy]

… in psychology



beginnings in ecological psychology: Turvey, 
Kugler, Kelso	


emergency of behavior/coordination from dynamics	


movement coordination: Kelso, Schöner	


evidence that stability is critical

dynamical systems thinking



[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

Stability and loss of stability in 
movement coordination



[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]
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and 2.88 Hz at the pre-transition segment, $4. By $9 
(the end of the run) the frequency range was between 
2.99 and 4.04 Hz. 

Increases in fluctuations immediately before the 
transition appear to reflect an instability of the anti- 
phase coordinative pattern. However, the experi- 
mental and analysis procedure in the wrist experi- 
ment still leaves doubts about the evidence for critical 
fluctuations in two respects: (1) The point estimate 
of relative phase necessarily produces a relatively low 
number of data points within each segment for the 
temporal averages. (2) A possible non-stationarity 
in the data is introduced due to the lack of exact con- 
trol over the rate of frequency scaling. To alleviate 
these problems we performed more refined experi- 
ments on finger movements. In these the relative 
phase was measured continuously, i.e. at every 5 ms 
sample. In this case, each sample estimate was deter- 
mined on the basis of the individual phase of each 

finger's motion defined by (~R=Ian-I(J(R/XR) w h e r e  
XR is the position of the right index finger normal- 
ized to the cycle extrema and J(R is its normalized 
instantaneous velocity. Continuous relative phase is 
just ~R-OL at each sample. In fig. 3 it is possible to 
compare the continuous estimate of relative phase 
(fig. 3C) and the point estimate of relative phase (fig. 
3B) for a representative experimental run (fig. 3A). 

The slow component of phase fluctuations is 
apparent in both figs. 3B and 3C, though a finer fluc- 
tuational structure emerges from the continuous 
estimate. Because of the anharmonicities present in 
the individual finger movement trajectories, the con- 
tinuous relative phase also contains an oscillatory 
component. Due to the controlled, stepwise increase 
of cycling frequency explicit stationarity checks could 
be made by averaging over a 0.5 s window that was 
moved through the 4 seconds of data at each fre- 
quency. Stationarity was guaranteed less than 1 s after 
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"i1 
C. CONTINUOUS ESTIMATE OF RELATIVE PHASE 
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Fig. 3, (A) Representative time series showing position over t ime of right (solid line) and left (dashed line ) finger abduction-adduction 
movements  as the control parameter F is systematically scaled every 4 s. (B) The corresponding point estimate of  relative phase, i.e. the 
phase of one finger's oscillatory peak relative to the other. (C) The continuous estimate of  relative phase measured every 5 ms (see text 
for details) of the same time series data. 
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Stability and loss of stability in 
movement coordination



[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

Stability and loss of stability in 
movement coordination



extending dynamical systems thinking into 
cognition	


Kopecz Schöner: saccade selection (1995)	


Erlhagen Schöner: movement preparation (1997, 2002)	


Spencer Schöner: formalizing the developmental 
approach (2003)

Dynamic Field Theory



development: Thelen, Smith, Schöner (2001)	


A not B.. emergence of competence during development

dynamical systems thinking

independently of the infants’ actions; younger infants,
lacking such a hypothesis, reach to the place where their
actions previously led them to find the object [11,12].

Experimental data favor an alternative, emergentist
account of performance in the A-not-B task that has been
developed within Dynamic Field Theory (DFT) [13,14].
This account explains the error through general processes
of goal-directed reaching (and indeed is a variant of one
model of adult reaching behavior). The model consists of a
dynamic field, shown in Figure 1, which corresponds to the
activation within a population of neuron-like units, each
dynamically representing the direction of a reach. The field
integrates multiple sources of relevant information: the
immediate events (e.g. hiding the toy), the lids or covers on
the table, and the direction of past reaches. The internal
activations that produce a directional reach are themselves
dynamic events, with rise times, decay rates, amplitudes
and varying spatial resolution. Consequently, the model
predicts – and experiments have confirmed – fine-grained
stimulus, timing and task effects [13,14]. Because the
explanation derives from general models of goal-directed

action that are not specific to this task nor to this devel-
opmental period, the model makes predictions (tested and
confirmed) about similar phenomena (and perseverations)
at ages younger than, and considerably older than, the
typical age range examined in the standard task [15,16].
Indeed, using this model as a guide, experimenters can
make the error come and go predictably: by changing the
delay, by heightening the attention-grabbing properties of
the covers or the hiding event, and by increasing and
decreasing the number of prior reaches to A [13,14,16,17].

The DFT-based model accounts for a wide range of
findings showing that variables unrelated to beliefs about
the existence of objects can affect the A-not-B error. The
model has also been used to predict (correctly) that a reach
back to A will occur in some situations when there is no toy
hidden [17]. Furthermore, because the dynamic field is
viewed as a motor planning field, and thus is tied to the
body-centric nature of neural motor plans [17], the model
also makes the novel prediction that perseverative errors
should disappear if themotor plan needed for reaching to B
is distinctly different from that for reaching to A [18]. One

[(Figure_1)TD$FIG]

Figure 1. On the A trials, an experimenter hides an object repeatedly in one location, for example under a lid to the infant’s right. The infant watches the object being hid, a
delay of several seconds is imposed, and then the hiding box is pushed close to the infant and the infant is allowed to reach to the hiding location and retrieve the object.
This is repeated several times: hiding under the rightmost lid, delay, infant retrieval of the object. On the crucial B trial, the experimenter hides the object in a new adjacent
location, under a second lid to the infant’s left. After the delay, the infant is allowed to reach. Bottom left: a DFT simulation of activation in the dynamic field on a B trial. The
activation rises at the B location during the hiding event, but then, because of the cooperativity in the field and memory for previous reaches, activation begins to rise at A
during the delay and the start of the reach inhibits the activation at B resulting in a simulated reach to A. Bottom right: a baby in a posture-shift A-not-B task.
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Schöner, Dose, 92	


behavioral variables	


stable states	


instabilities at decision points	


similar: Christensen, Large 	


related to, but different from 
potential field approach

Attractor dynamics approach



first elements of 
representation: discrete 
neurons select 
representative obstacles

Attractor dynamics approach



DFT for obstacle 
avoidance: Engels, 
Schöner, 95

Dynamic Field Theory



neural dynamics for behavioral 
organization: Steinhage, Schöner, 97: 
competition to select behaviors

Attractor dynamics approach
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attractor dynamics on low 
level vehicles: Bicho, Mallet, 
Schöner 97-2000	


2nd order dynamics	


first order dynamics, wheelchair 

Behavior based attractor dynamics



DFT on low level 
system: Bicho, Mallet, 
Schöner	


target representation in 
phono-taxis 

Behavior based attractor dynamics



Attractor dynamics for 
arms: Jokeit, Reimann, 
Schöner	


multi-degree of freedom arm 
trajectory formation

toward complex action



DFT for sequence 
generation: 
Sandamirskaya	


DFT for behavioral 
organization: => 
Mathis Richter, 
Sandamirskaya

…toward cognition



DFT for perception 	


scene representation: => Stephan Zibner, Faubel	


object learning: Faubel => Oliver Lomp

toward cognition

file://localhost/Users/gregor/Movies/robotics/scene_representation/multiitem_tracking.ogg


spatial language 
[Sandamirskaya, 
Schneegans, Lipinski]	


=> Jonas Lins

… toward cognition

[Lipinski, et al., 2012]

file://localhost/Users/gregor/Movies/robotics/scene_representation/multiitem_tracking.ogg


imitation, action 
understanding [Bicho, 
Erlhagen]

… toward cognition

Frontiers in Neurorobotics www.frontiersin.org May 2010 | Volume 4 | Article 5 | 8

Bicho et al. Natural communication in HRI

In the third example (Figures 6 and 7) the robot’s action moni-
toring system detects a sequence error and the robot reacts in an 
appropriate manner before the failure becomes manifested. The 
robot observes a reaching towards the short slat (S1) and commu-
nicates to the user that it infers the short slat as the user’s goal (S2). 
The input to the AEL (Figure 7C) triggers at time T0 the evolution 
of an activation pattern at A6 representing the preparation of a 

pointing to the medium slat in the user’s workspace. However, this 
pattern does not become suprathreshold since at time T1 the user 
request the yellow bolt in the robot’s workspace (S3). By internally 
simulating a pointing gesture the robot understands the request 
(S4) which in turn causes an activity burst of the population in AEL 
representing the corresponding complementary behavior (A3). 
However, also this pattern does not reach the decision level due to 

FIGURE 4 | First example: (1) goal inference when gesture and speech contain incongruent information (ASL), and (2) anticipatory action selection (AEL). (A) 
Video snapshots. (B) Temporal evolutions of input to ASL (top) and activity in ASL (bottom). (C) Temporal evolutions of input to AEL (top) and activity in AEL (bottom).



Bicho, Soares, 
Monteiro 

Present: robot 
cooperation

5

(other authors also use the name conductor (Fredslund and
Matarić, 2002)) and several (at least one) follower robots.
The purpose of the Lead robot is to act as a team leader.
It knows where the team final destination, or target, is and
heads toward it. All the other robots, the followers, follow
the Lead robot, either directly or indirectly (through another
team mate, that, on its turn, follows the Lead robot).

Consider the example in figure 1, where a team with six
robots is organized in a hexagon formation. Here, robot R1,
is the Lead robot and all the other are followers. Robots R2,
R3 and R6 directly follow the Lead robot. R4 follows R2 that,
on its turn, follows R1, so, it follows the Lead robot indi-
rectly. One step down in the chain of leadership is robot
R5 that follows R4. So, in our formations we have a chain
of leaderships, where one robot can be a leader to another
robot, while at the same time it is following another one. In
this type of organizational architecture we can envisage that
all robots are connected in leader–follower pairs, and we can
reduce the problem of formation control at team level to a set
of formations with only two robots. Here only the follow-
ers have the responsibility to maintain the formation (it is a
unidirectional relationship). One of the benefits is that com-
munication and sensorial requirements are highly reduced.
If each set is in formation, i.e. if each follower is in the ex-
act location regarding its leader, then a global formation is
achieved. In the next subsections we show the behavioural
dynamics to build a formation with only two robots (i.e. we
derive the vector fields in equations 1 and 2), and then gen-
eralize to a formation with N–robots.

R1

R2 R3

R4 R5
R6

Fig. 1: Example of hexagon formation, showing the leader–follower
structure. Lead robot is the darker one.

4.1 Formations with two robots

When we only have two robots travelling in a formation,
where the distance between them should be kept constant,
one of three situation occurs: they should either travel one
behind the other, or side by side or diagonally at a desired
angle. To these three situations we call, respectively, column
formation, line formation and oblique formation.

In order to try to avoid communication, and make the
task easier for real world implementations, we will attempt
to build the controllers only with information that each robot
can directly (and easily) collect. Information about others
behaviour, like velocity and, specially, heading direction is
highly restricted. This is why heading direction controllers
will not be dependent on the leader’s heading.

Before we proceed we will introduce the notation used
throughout this paper (figure 2 shows an example for clar-
ity):

Robot j: leader robot;
Roboti: follower robot;
li: the actual distance of Roboti to its leader (li,d is the de-

sired distance);
φ j: heading direction of the leader;
φi: heading direction of the follower;
ψobs: direction at which an obstacle is sensed;
Δψobs: angular difference between the leader heading di-

rection, φ j, and the direction at which it senses obstacles,
ψobs;

ψi: direction at which the follower sees the leader;
Δψi,d : desired angular difference between heading direc-

tion of the follower, φi, and the direction at which it sees
the leader, ψi;

ψi,d : desired follower heading, i.e., the heading that keeps
the follower in formation.

Obstacle

Roboti
(follower)

Robot j
(leader)

x

x

li

ψobs

Δψobs

φ j

Δψi,d

ψi

ψi,d

φi

Fig. 2: Example of notation used in this paper.

All the angles are measured with respect to the robot ex-
ternal reference frame, which is fixed, but can be arbitrarily
chosen. Please note that the robots in the team do not need
share the same reference frame.

Now, we continue by detailing, for each formation type,
how to design the controller dynamics.

4.1.1 Column formation

Roboti is said to drive in column formation with Robot j if it
drives behind it at a desired distance (see figure 3).
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(a) t = 0 sec: they start near a col-
umn formation

(b) t = 10 sec: the follower stabi-
lizes the oblique formation

(c) t = 15 sec (d) t = 27 sec: the leader turns to
avoid the wall, and breaks the for-
mation

(e) t = 34 sec (f) t = 40 sec

(g) t = 45 sec: the follower tries to
catch up with the leader, but does
not have enough space

(h) t = 53 sec

(i) t = 66 sec (j) t = 77 sec: near stabilizing the
formation

(k) t = 93 sec (l) t = 107 sec: almost in forma-
tion, but the leader is again near
the walls

Fig. 44: Snapshots of the oblique formation stabilization experiment
(parameters are Δψi,d = 45deg and li,d = 100 cm). The blue robot is
the leader. Arrows were added to each snapshot to indicate each robot’s
heading direction.
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Fig. 45: Position error evolution when a follower navigates in an
oblique formation with its leader (with snapshots in figure 44). Dur-
ing the first 10 seconds the leader remains in the same spot. Between
t = 27 and t = 32 sec the follower moves backwards, because the dis-
tance to the leader is smaller than the desired one (this was caused by
the leader’s wall avoidance maneuver, that caused it to approach the
follower.

D
eg
re
es

Time (s)

φi
Attractor 1
Attractor 2

0

0 20 40 60 80 100

180
135
90
45

-180
-135
-90
-45

Fig. 46: Fixed point evolution of the follower robot when stabilizing
an oblique formation (with snapshots in figure 44). During the first
10 seconds the leader remains in the same spot.

tion. A consequence is that only when all the robots have the
same heading direction, which only happenswhen the leader
is moving in a linear path, the formation error can really
converge to zero. However, even when that is not the case
the geometric shape exhibited by the formation approaches
closely the desired one, except for the formation orientation.
Another consequence, of not knowing the heading direction
of the leader/lead, is that the team of robots is not able to
performmaneuvers that absolutely require the knowledge of
the leader’s heading. Such a maneuver is e.g. the formation
acquisition problem (Arai et al, 2002): the lead robot stands
still in an assigned position and the remaining robots have
to position themselves in specific positions (the vertices of
the geometric configuration that defines the formation) and
with a specific orientation (i.e. the orientation of the lead
robot). To the best of our knowledge this is a common prob-
lem to all approaches that do not rely on the leader’s heading
direction. Certainly, if we would have used the lead’s head-

[Monteiro, Bicho, 2010]



Braitenberg vehicles: give an intuition for 
why dynamics is important	


Attractor dynamics approach: formalizes 
how behavior emerges in closed loop	


Neural dynamics: formalizes recurrent 
neural networks	


Dynamic Field Theory: introduce the core 
notions

What I’ll do in my core lectures


