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Activation

how to represent the inner 
state of the Central Nervous 
System? 	


=> activation concept

source1 source2



Activation

neural state variables	


membrane potential of neurons?	


spiking rate? 	


... population activation... 



Activation

activation as a real number, abstracting from 
biophysical details	


low levels of activation: not transmitted to other systems (e.g., 
to motor systems)	


high levels of activation: transmitted to other systems	


as described by sigmoidal threshold function 	


zero activation defined as threshold of that function 
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Activation

compare to connectionist notion of activation: 	


same idea, but tied to individual neurons	


compare to abstract activation of production 
systems (ACT-R, SOAR)	


quite different... really a function that measures how far a 
module is from emitting its output... 



Activation dynamics

activation evolves in continuous time	


no evidence for a discretization of time, for spike timing to 
matter for behavior	


evidence for continuous online updating target jumps

trajectory is
adjusted
online



Activation dynamics

activation evolves continuously in continuous 
time	


no evidence for a discrete events mattering... 	


evidence for continuity: visual inertia

http://anstislab.ucsd.edu

http://anstislab.ucsd.edu


Activation dynamics

activation variables u(t) as time continuous 
functions... 	


!

!

what function f? 

⌧ u̇(t) = f(u)

du(t)/dt

u(t)



Activation dynamics

start with f=0

⌧ u̇ = ⇠t

time, t

u(t)

resting
level

du/dt

u
resting level

probability distribution
of perturbations



Activation dynamics

need stabilization

⌧ u̇ = �u+ h+ ⇠t.

time, t

du/dt

u

u(t)

resting level

resting
level



Neural dynamics

In a dynamical system, the present predicts the future: given 
the initial level of activation u(0), the activation at time t: 
u(t) is uniquely determined

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)

du/dt = f(u)
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Neural dynamics
stationary state=fixed point= constant solution	


stable fixed point: nearby solutions converge to the 
fixed point=attractor

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)

du/dt = f(u)
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Neural dynamics

exponential relaxation to fixed-point attractors	


=> time scale

⌧ u̇(t) = �u(t) + h

du/dt = f(u)
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Neural dynamics

attractor structures ensemble of solutions=flow

⌧ u̇(t) = �u(t) + h

du/dt = f(u)

u

resting
level

vector-field
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Neuronal dynamics

inputs=contributions to 
the rate of change	


positive: excitatory	


negative: inhibitory	


=> shifts the attractor	


activation tracks this 
shift (stability)

⌧ u̇(t) = �u(t) + h + inputs(t)

u
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=> simulation



⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation

stimulus

input

output

self-excitationu c
s



⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation
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du/dt 

resting
level, h
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=> this is nonlinear dynamics!

Neuronal dynamics with self-excitation

u 

du/dt 

resting
level, h



stimulus input

Neuronal dynamics with self-excitation
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du/dt 

resting
level, h

input strength



bistable regime at intermediate stimulus strength	


=> essentially nonlinear! 

Neuronal dynamics with self-excitation

u

du/dt

time, t

u(t)<0

u(t)>0



with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability

Neuronal dynamics with self-excitation
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with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability

Neuronal dynamics with self-excitation
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input strength



detection instability

u 

du/dt fixed point

unstable

stable
stimulus
strength
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Neuronal dynamics with self-excitation



with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability

Neuronal dynamics with self-excitation
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reverse detection instability

u 

du/dt fixed point 

unstable

stable 

stimulus
strength

stimulus
strength

Neuronal dynamics with self-excitation



signature of instabilities: hysteresis

time, t

u(t)

detection 
instability
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Neuronal dynamics with self-excitation



=> simulation



Neuronal dynamics with competition

stimulus

input

output

u1
inhibitory coupling

output

u2

⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2



the rate of change of activation at one site 
depends on the level of activation at the other 
site	


mutual inhibition

⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2

sigmoidal nonlinearity

Neuronal dynamics with competition



to visualize, assume that 
u_2 has been activated by 
input to positive level	


=> then u_1 is suppressed
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Neuronal dynamics with competition



why would u_2 be positive 
before u_1 is? E.g., it grew 
faster than u_1 because its 
inputs are stronger/inputs 
match better	


=> input advantage 
translates into time 
advantage which translates 
into competitive advantage
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Neuronal dynamics with competition



vector-field in the 
absence of input
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vector-field (without 	

interaction) when both 
neurons receive input
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only activated neurons participate in interaction!
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Neuronal dynamics with competition
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site 1 inhibits site 2
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Neuronal dynamics with competition



vector-field with strong	

mutual inhibition: 

bistable
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Neuronal dynamics with competition
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=>biased competition
stronger input to site 1: 	


attractor with activated u_1 stronger, 	

attractor with activated u_2 weaker, may become unstable
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Neuronal dynamics with competition
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=> simulation



`

where do activation variables come from? 	


how do discrete activation variables reflect 
continuous behaviors? 	


=> DFT lecture


