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Discrete ‘‘neurons’

® or activation variables: how do they arise!?
How do they sample sensory/motor spaces...

M no evidence that neural discreteness matters
for behavior



Continuity in space

® hypothesis: behavior is embedded in continua

M the space of possible behaviors, e.g. space of movements,
percepts, timing structures

M neuronal substrate is continuous (maps, broad tuning)

® (=> need to understand how categorical
behavior may emerge from such continua)



Dynamical Field Theory: space

®in DFT, continuous spaces are dimension over
which activation fields are defined

B homologous to sensory surfaces, e.g., visual or auditory
space (retinal, allocentric, ...)

B homologous to motor surfaces, e.g., saccadic end-points or
direction of movement of the end-effector in outer space

M feature spaces, e.g., localized visual orientations, color,
impedance, ...

M abstract spaces, e.g., ordinal space, along which serial order
is represented



Dynamical Field Theory: space

® fields: continuous activation variables defined
over continuous spaces
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activation fields
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Neurophysiological grounding of DFT
example: movement planning
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mtuning of cells in motor and premotor cortex to
direction of end-effector movement path

Complete Information

-
" mm []
=] L]
[ ——1 1 | I
- ]

el
N"‘"
._MM

AR 1

liliC23-1




Distribution of Population Activation

(DPA)

Distribution of population activation =
2 tuning curve * current firing rate
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Distributions of Population
Activation are abstract

Eneurons are not localized within DPA!

Ecortical neurons really are sensitive to many
dimensions

B motor:arm configuration, force direction

BMyvisual: many feature dimensions such as spatial frequency,
orientation, direction...

m=> DPA is a projection from that high-
dimensional space onto a single dimension
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mathematical formalization

Amari equation
ri(z, ) = —u(z,t) + h+ Sz, 1) + / w(z — 2o (u(@', 1)) do’

where
e time scale is 7
e resting level is h < 0
e input is S(x,1)

e interaction kernel is




=> simulations



solutions and instabilities

Hinput driven solution (sub-threshold) vs. self-
stabilized solution (peak, supra-threshold)

Edetection instability
Hreverse detection instability
Hselection

Mselection instability
Ememory instability

Edetection instability from boost



lllustration: linking to sensors

microphones

\

Robot ™ Microphones

[from Bicho, Mallet, Schoner, Int J Rob Res,2000]



Sensory surface

® each microphone samples heading direction

4 sensitivity cone of each microphone

heading
direction

>



® each microphone provides input to the field

% activation
field heading
direction
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two sound sources



Detection instability induced by increasing
intensity of sound source
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Target selection in the presence of two sources
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Robust estimation in the presence of outliers
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Memory (and forgetting) when sound source is
~ turned off
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lllustration of instabilities




simplest form of

iy \ Dynamic
. 2 field
learning: the E \
memory trace :

, time
stimulus
duration

BWilliam James: habit
formation as the simplest
form of learning

B (habituation: same for inhibition)




mathematics of the memory trace

Tu(x,t) = —u(x,t)+h+ S(z, t)@em(@
1 /d:L" w(x —2') o(u(x))
Tmem Umem(Z,t) = —Umem (T, 1)

+ /dx’ Wiem (T — 2 )o(u(x', 1))

B memory trace only evolves while activation is
excited

| potentially different growth and decay rates



slow memory trace
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categories may emerge ...
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sight -- out of mind”

Piaget’s A not B paradigm:“out-of-

A trial y, 3

o0 A B

A B delay

B trial

A not B error




Toyless variant of A not B task
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Toyless variant of A not B task

reveals that A not B is essentially a

decision task!
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activation field O

A location
\\\ X
B location
[Thelen, et al., BBS (2001)]

task specific preshape
input input  nput

[Dinveva, Schoner, Dev. Science 2007]



Instabilities ‘@

input-driven
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® boost-driven detection:
initiating the action

® memory instability: old infants
sustain during the delay, young
infants do not



Instabilities

® detection: forming and
initiating a movement goal

M selection: making sensori-
motor decisions

H (learning: memory trace)

® boost-driven detection:
initiating the action

® memory instability: old infants
sustain during the delay, young
infants do not

field
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DFT of infant perseverative reaching
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DFT of infant perseverative reaching
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DFT of infant perseverative reaching

activation field
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DFT of infant perseverative reaching

spontaneous

correct on B!

activation field | error

®in spotaneous
errors, activation
arises at B on an A
trial

Bwhich leads to e & B , .
correct reaching i . ’
on B trial
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DFT of infant perseverative reaching

spontaneous

correct on B!

activation field

Mthat is because
reaches to B on A
trials leave
memory trace at B

G
o
e

—
BI . B2
time/trials

[Dinveva, Schoner, Dev. Science 2007]



DFT of infant perseverative reaching

first and second reaches to B
are on two subsequent A trials
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[Dinveva, Schoner, Dev. Science 2007]



DFT is a neural process model

Bmthat makes the decisions in each individual trial, by
amplifying small differences into a macroscopic stable
state

mand that’s how decisions leave traces, have
consequences
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Combining neural and behavioral dynamics

sourceI ﬁ ﬁ source2
g
>




Embodied A not B

& implementing the A not B model on a autonomous
robot with continuous link to sensory and motor
surfaces...

vehicle colored cues

& o9 6

start specific cue delay turns to target




Visual input

H color-based segmentation

® summing color pixels within color slot along the
vertical

| spatially filter at two resolutions
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Dynamic field

® defined over direction in the world

® (requires coordinate transform from retina
based on dead-reckoning)

visual input
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Motor dynamics

® couple peak in direction field into dynamics of
heading direction as an attractor

= threshold
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“Read-out” by generating attractor
dynamics for motor system

B peak specifies value for a
dynamical variable that is
congruent to the field
dimension
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peak position



N specified value
activation

® treating sigmoided field field
as probability: need to
normalize

dimension
>

B => problem when there is no
peak: devide by zero!

peak position

fdz’ o(u(a’,t))a’ $ activation no value specified
Tpeak = ’ field
[ ol 1)

dimension
>




instead:

B create attractor
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B solution: peak sets attractor

B location of attractor: peak location

B strength of attractor: summed supra-threshold activation
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result: reproduce fundamental
age-delay trade-off in A not B
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“young” robot “old” robot




“young” robot with

¢ ’
young” robot memory trace




DFT models can be embodied

M stabilization of decisions is critical

B (when we failed to do so, by just “reading out”
the location with maximal activation after the
delay, that location fluctuate from moment to

moment leading to meandering of the robot in
an averaged direction)



Conclusions

M action, perception, and embodied cognition
takes place in continuous spaces. peaks = units
of representation are attractors of the neural
dynamics

® neural fields link neural representations to
these continua

® stable activation peaks are the units of neural
representation

M peaks arise and disappear through instabilities
through which elementary cognitive functions
(e.g. detection, selection, memory) emerge



The conceptual framework of DFT

DST/DFT
DST/DFT < DFT models for > Robotic DST/DFT
human factors experiment: demonstrations approaches to
models <€» account for of DST/DFT Htechnical
A experimental models autonomous
results $ ¢ robotics
Y \ /
Naturalistic Laboratory robotic
experiment experiment demonstrations
neural <€ )of experimental

behavioral results



