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Multi-dimensional fields
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interaction kernel

= extension to multi-dimensional feature spaces mathematically straightforward
= requires interaction kernel of the same dimensionality



Multi-dimensional fields

" multi-dimensional fields retain the same
gualitative instabilities and stable states as one-
dimensional fields

= specifically:
= activation peaks stabilized by interactions
= detection and selection decision
" self-sustained peaks as working memory



Multi-dimensional feature spaces
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= some feature spaces are inherently multi-dimensional, simple example:
visual space (2D)

" neural representations e.g. in superior colliculus (saccade planning)



Multi-dimensional feature spaces

"= multi-dimensional feature spaces can also combine qualitatively different features

= example: early visual cortex, neurons with localized spatial receptive fields and
sensitivity to surface features (orientation, spatial frequency, color, ...)

= 3D representation (2D space + 1D surface feature) mapped onto 2D cortical
surface

orientation map in tree shrew visual cortex [Alexander et al. 1999]



Combining features in multi-dimensional fields

visual scene

= neural fields defined over
combinations of feature spaces

= requires to define metrics for
lateral interactions in combined
space

= fields ignore spatial arrangement
of neurons on the cortical surface
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Combining features in multi-dimensional fields

visual scene
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= visual stimuli can provide
localized inputs

= jdeally from feature detectors
(like neurons in retina/visual
cortex), in robotics often from
algorithmic feature extraction



2D fields from camera input

= representation of full camera
image/retinal input would require 3D
field: two spatial and one color
dimension

" canignore one spatial dimension
when only horizontal object position
is relevant (e.g. for control of robot
orientation on a planar surface)

I



Reading out from 2D fields

visual scene

= 2D fields can interact with
1D fields

= first operation: read out
of one feature dimension:
integrate over discarded
dimensions, e.g.

I;(x) = jf(uv(x,y))dy

color

= often additional Gaussian
convolution in projection
for smoothness

<
«

activity

n

i

NN

n
»

activity

20° 10° 0° 10° 20°
position



Projections to 2D fields

= projection from 1D to 2D:
ridge input

= does not specify a
location in the 2nd
dimension, does not
typically induce a peak
(although field can be
forced to form a peak)
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Projections to 2D fields

. " intersections of ridges
can induce a peak and
produce a combined
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Combined vs. separate representations

separate low-dimensional representations

= are much more compact (computationally less
expensive / fewer neurons) — at sampling rate of
100 neurons per dimension, 200 neurons for two
1D fields, 10000 neurons for one 2D field)

= can represent individual feature values with the
same precision/reliability as a 2D field

So why use 2D fields at all?



Feature conjunctions

= |ow-dimensional
representations do not
capture feature
conjunctions (binding
problem)
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= multiple ridge inputs can
produce spurious peaks
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Combined vs. separate representations

" multi-dimensional field are needed to represent
feature conjunctions

= combining low-dimensional and high-dimensional
fields can yield powerful architectures

= example: visual search, determine the location of
an object with specified features



Visual search

visual scene

= if localized peaks are
present in the 2D field,
ridge input can be used
to select one of them

= read-out along the 2nd
dimension then allows to
determine the associated
feature
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Visual search

visual scene

= if multiple items match
the specified feature
value, all are amplified

= gradual strengthening for
partial match

color

= further operations on
output dependent on
task: selection or
representations of
multiple results
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Joint selection with bidirectional projections

visual scene

= bidirectional projections
allow coupled selection
in 1D fields

= can be biased by input to
either 1D field
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Joint selection with bidirectional projections
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" once asingleitem s
selected jointly in both
1D fields, ambiguity in
feature conjunctions is
resolved

= object features can then

be processed in separate
pathways

= sequential processing for

multiple items



Ridges and feature associations

Demonstration: ridge inputs,
peaks from intersections,
associations



Case Study: VWM Biases Saccade Behavior
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Case Study: VWM Biases Saccade Behavior
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Case Study: VWM Biases Saccade Behavior

Video



Case Study: VWM Biases Saccade Behavior

Selection behavior for distant distractor Averaging behavior for close distractor
Distractor Target + Target
Distractor
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[Schneegans, Spencer, Schoner, Hwang, Hollingworth, in preparation]



Operations in higher-dimensional fields

" projections between fields can implement simple mappings if
they meet certain conditions (e.g. continuity)
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= what about operations that combine two different inputs?
projections from two sources to a common field only allow
additive combination of inputs
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Operations in higher-dimensional fields

= combining/expanding representations into a single high-
dimensional field allows arbitrary mappings to an output field
(as long as mapping is continuous)
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Example: Reference frame transformation

= eyes/camera only provide spatial information in retinal
reference frame

= for orientation, gaze-invariant locations often more relevant



Reference frame transformations

= gaze-invariant (e.g., body-centered) location information can be
determined from combination of gaze direction and retinal
locations

= for pure rotation and angular positions, reference frame
transformation is simple shift

= can be expressed arithmetically as addition of vectors:
Pinv = Pcam T Pgaze
= but DNF representations based on population codes instead of

numeric vectors, and fixed synaptic connections instead of
arithmetic operations



Spatial transformations

retinocentric stimulus position
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= for transformation of 1D location information: 2D field over retinal space and
gaze direction



Spatial transformations

retinocentric stimulus position
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Spatial transformations

retinocentric stimulus position
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= in angular coordinates for pure rotations: ego-centric stimulus position shifts by
inverse of orientation change

= - points corresponding to the same location lie on a diagonal in the combined
representation



Spatial transformations

retinocentric stimulus position
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= can be mapped onto gaze-invariant
(body-centered) representation: diagonal
read-out



Spatial transformations

retinocentric stimulus position
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= reverse projection can be used to predict
retinocentric location (e.g. to orientate
to memorized location), or estimate
orientation by matching retinal and
body-centered representations (e.g.
Deneve, Latham, Pouget 2001)



Case Study: Saccadic Remapping Model

Video



retinocentric field

transformation field

Case Study: Saccadic Remapping Model
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Case Study: Saccadic Remapping Model

Condition
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Stimulus in RF turned on
stimulus position into RF

and off of RF

Experimental results (average spike rate of single-cell recording in LIP)
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[Schneegans, Schoner 2012; experimental results by Duhamel et al. 1992]



Spatial alignment for orientation estimation
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Conclusions

* higher-dimensional fields can represent multiple feature
dimensions in a combined fashion

= more costly than low-dimensional fields, but needed to
represent feature conjunctions rather than separate feature
values

= associations between feature dimensions via higher-
dimensional fields, e.g. for visual search

" higher-dimensional fields can implement complex mappings
between feature dimensions, e.g. for spatial transformations



