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Multi-dimensional fields

 extension to multi-dimensional feature spaces mathematically straightforward

 requires interaction kernel of the same dimensionality
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Multi-dimensional fields

 multi-dimensional fields retain the same 
qualitative instabilities and stable states as one-
dimensional fields

 specifically:

 activation peaks stabilized by interactions

 detection and selection decision

 self-sustained peaks as working memory



Multi-dimensional feature spaces

position x

 some feature spaces are inherently multi-dimensional, simple example: 
visual space (2D)

 neural representations e.g. in superior colliculus (saccade planning)
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[Marino, Trappenberg, Dorris, Munoz 2012]



Multi-dimensional feature spaces

 multi-dimensional feature spaces can also combine qualitatively different features

 example: early visual cortex, neurons with localized spatial receptive fields and 
sensitivity to surface features (orientation, spatial frequency, color, …)

 3D representation (2D space + 1D surface feature) mapped onto 2D cortical 
surface

orientation map in tree shrew visual cortex [Alexander et al. 1999]



Combining features in multi-dimensional fields

position

 neural fields defined over 
combinations of feature spaces

 requires to define metrics for 
lateral interactions in combined 
space

 fields ignore spatial arrangement 
of neurons on the cortical surface
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Combining features in multi-dimensional fields

position

 visual stimuli can provide 
localized inputs

 ideally from feature detectors 
(like neurons in retina/visual 
cortex), in robotics often from 
algorithmic feature extraction
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2D fields from camera input

 representation of full camera 
image/retinal input would require 3D 
field: two spatial and one color 
dimension

 can ignore one spatial dimension 
when only horizontal object position 
is relevant (e.g. for control of robot 
orientation on a planar surface)



visual scene

Reading out from 2D fields
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 2D fields can interact with 
1D fields

 first operation: read out 
of one feature dimension: 
integrate over discarded 
dimensions, e.g. 

𝐼𝑠 𝑥 =  𝑓 𝑢𝑣 𝑥, 𝑦 𝑑𝑦

 often additional Gaussian 
convolution in projection 
for smoothness
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Projections to 2D fields

 projection from 1D to 2D: 
ridge input

 does not specify a 
location in the 2nd 
dimension, does not 
typically induce a peak 
(although field can be 
forced to form a peak)
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Projections to 2D fields

 intersections of ridges 
can induce a peak and 
produce a combined 
representation of 
multiple features
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Combined vs. separate representations

separate low-dimensional representations

 are much more compact (computationally less 
expensive / fewer neurons) – at sampling rate of 
100 neurons per dimension, 200 neurons for two 
1D fields, 10000 neurons for one 2D field) 

 can represent individual feature values with the 
same precision/reliability as a 2D field

So why use 2D fields at all?



Feature conjunctions

 low-dimensional 
representations do not 
capture feature 
conjunctions (binding 
problem)

 multiple ridge inputs can 
produce spurious peaks
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Combined vs. separate representations

 multi-dimensional field are needed to represent 
feature conjunctions

 combining low-dimensional and high-dimensional 
fields can yield powerful architectures

 example: visual search, determine the location of 
an object with specified features



visual scene

Visual search

 if localized peaks are 
present in the 2D field, 
ridge input can be used 
to select one of them 

 read-out along the 2nd 
dimension then allows to 
determine the associated 
feature
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visual scene

Visual search

 if multiple items match 
the specified feature 
value, all are amplified

 gradual strengthening for 
partial match

 further operations on 
output dependent on 
task: selection or 
representations of 
multiple results
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visual scene

Joint selection with bidirectional projections
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 bidirectional projections 
allow coupled selection 
in 1D fields

 can be biased by input to 
either 1D field
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visual scene

 once a single item is 
selected jointly in both 
1D fields, ambiguity in 
feature conjunctions is 
resolved

 object features can then 
be processed in separate 
pathways

 sequential processing for 
multiple items
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Ridges and feature associations

Demonstration: ridge inputs, 
peaks from intersections,

associations



Case Study: VWM Biases Saccade Behavior
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Case Study: VWM Biases Saccade Behavior
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Case Study: VWM Biases Saccade Behavior

Video



Case Study: VWM Biases Saccade Behavior

[Schneegans, Spencer, Schöner, Hwang, Hollingworth, in preparation]
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Operations in higher-dimensional fields

 projections between fields can implement simple mappings if 
they meet certain conditions (e.g. continuity)

 what about operations that combine two different inputs? 
projections from two sources to a common field only allow 
additive combination of inputs

?



Operations in higher-dimensional fields

 combining/expanding representations into a single high-
dimensional field allows arbitrary mappings to an output field 
(as long as mapping is continuous)



Example: Reference frame transformation

 eyes/camera only provide spatial information in retinal 
reference frame

 for orientation, gaze-invariant locations often more relevant



Reference frame transformations

 gaze-invariant (e.g., body-centered) location information can be 
determined from combination of gaze direction and retinal 
locations

 for pure rotation and angular positions, reference frame 
transformation is simple shift

 can be expressed arithmetically as addition of vectors: 
𝑝𝑖𝑛𝑣 = 𝑝𝑐𝑎𝑚 + 𝑝𝑔𝑎𝑧𝑒

 but DNF representations based on population codes instead of 
numeric vectors, and fixed synaptic connections instead of 
arithmetic operations



Spatial transformations
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 for transformation of 1D location information: 2D field over retinal space and 
gaze direction



Spatial transformations

ga
ze

 d
ir

ec
ti

o
n

activation

ac
ti

va
ti

o
n

retinocentric stimulus position



Spatial transformations

 in angular coordinates for pure rotations: ego-centric stimulus position shifts by 
inverse of orientation change

 → points corresponding to the same location lie on a diagonal in the combined 
representation
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Spatial transformations

 can be mapped onto gaze-invariant 
(body-centered) representation: diagonal 
read-out
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Spatial transformations

 reverse projection can be used to predict 
retinocentric location (e.g. to orientate 
to memorized location), or estimate 
orientation by matching retinal and 
body-centered representations (e.g. 
Denève, Latham, Pouget 2001)
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Case Study: Saccadic Remapping Model

Video



Case Study: Saccadic Remapping Model
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Case Study: Saccadic Remapping Model
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[Schneegans, Schöner 2012; experimental results by Duhamel et al. 1992]



Spatial alignment for orientation estimation
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Conclusions

 higher-dimensional fields can represent multiple feature 
dimensions in a combined fashion

 more costly than low-dimensional fields, but needed to 
represent feature conjunctions rather than separate feature 
values

 associations between feature dimensions via higher-
dimensional fields, e.g. for visual search

 higher-dimensional fields can implement complex mappings 
between feature dimensions, e.g. for spatial transformations


