Scene Representation for Robots: From Elementary Behaviors to Autonomous Grasping

Stephan Zibner

Outline

- Representing Scenes
- Building Blocks
 - Saliency
 - Elementary Cognitive Units
 - Change Detection
- Autonomous Behaviors
 - Exploration
 - Maintenance
 - Query
- Reaching and Grasping

Representing Scenes

Scene Representation

- internal representation of environment
- foundation for every higher cognitive operation and action
- stable despite eye and body movements
- limited capacity, link to long-term memory

DFT Model

- humans solve tasks in scenes effortlessly (in normal life)
- model of human visual working memory based on dynamic neural fields
- decomposition of features, binding through shared space

Johnson, Spencer, Schöner (2008)

Robotic Scenario

- apply to table-top scenario and human interaction
- use the internal representation for behavior generation (e.g., grasping)
- interact with humans ("hand me the red screwdriver", "what's to the left of the pliers?")

Robotic Scenario: Behaviors

- explore the environment and store objects and their features internally
- maintain the internal representation
- query the representation to create autonomous action based on the representation

Robotic Scenario: Challenges

- real sensory input
- moving sensors
- limited field of view
- 3D space
- dynamic scenes
- multiple behaviors
- computational constraints
- and many more ...

Building Blocks

Saliency

Saliency

- on-/off-center responses
- uniform regions result in zero responses
- objects fitting into on-center region produce non-zero responses
- these lead to detection decision in fields

Space-Feature Links

Feature estimates are linked to spatial positions.

Autonomy of Behaviors

- elementary cognitive units (ECU)
- intention node boosts fields
- CoS node detects completion of behavior in fields
- sequences or exclusion through precondition nodes

Change Detection with Fields

Autonomous Behaviors

Architecture Overview

Exploration Behavior

Autonomy of Exploration

Video

Maintenance Behavior

working memory vs. updating

Video

Query Behavior

representation

Autonomy of Query

Reaching and Grasping

Challenges

Behaviors Involved in Grasping

From Camera to a Height Map

From Height Map to Grasp Parameters

Grasp Execution

Grasp Execution

Video

Take-home Message

- exploration, maintenance and query are the core behaviors of scene representation
- change detection is a driving force for autonomy
- integration with other DFT architectures yields complex behaviors such as grasping
- integration is facilitated by DFT framework

Thanks for your attention!