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Why We Need Object Recognition

● Complexity of Interaction
● Object knowledge



  

What is difficult about object recognition?
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What is difficult about object 
recognition?

● 2D image of a 3D object
● Features vary with each new view

→ same object never looks the same



  

Common Solution: Invariance

● Trade-off: invariance 
vs. discriminance

● Invariance loses 
information

→ Know what, but 
not necessarily where



  

Object pose

● Pose: orientation, 
location, size of object 
(in world or image)
– Can be useful (e.g., for 

grasping)

– Can be a clue for 
background 
segmentation



  

A different approach

● Instead of pose-
invariant features: 
estimate pose, use it



  

A DFT implementation of Arathorn's map-seeking 
circuits



  

Arathorn's map-seeking circuits



  

Pose parameter encoding

● How can pose be 
represented?

→ Space code
● Example: position as 2d 

peak, rotation as 1d 
peak

angle

u(angle,t)

shift



  

Label encoding

● What is the output of recognition?
– Categorization decision (binary or graded response)

– Conflicts with continuous nature of fields

● Categorization in dynamic neural fields

feature
space

Label 1 Label 2

Activation
Preshape



  

Label fields

● Discrete nodes (cf. grandmother neurons)
● Only global interaction / no metric
● Activity corresponds to presence of label

feature
space

Label 1 Label 2

Activation
Preshape

Label 1 Label 2



  

The principle: 1D shift
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Estimating (horizontal) shift

1D Shift
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Recognizing an object

Known objects

Input image
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Recognizing an object

Known objects

Input image
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Combining the recognition and pose matching



  

Input image

1D 
Shift

?

?

Recognition and pose estimation

Object matching

Shift matching

?
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Implementation



  

Feature channels

● Full system has several 
feature channels
– Spatial pattern (shape)

– Localized histograms



  

Transformations

...

Shift estimate
x

sum

x x

x

p(s)

s



  

Transformations

...

Shift estimate
x

sum

x x

x

I ' (x , y)=I (x+s1, y ) I ' (x , y)=I (x+s2, y ) I ' (x , y)=I (x+s3, y ) I ' (x , y)=I (x+s4, y)

I s(x , y )=∑
i

p (si)I (x+si , y )

p(s)

s

I s(x , y )=∫ p (x ') I (x+x ' , y )dx '



  

Transformations

Neural implementation: 
shunting synapses
OR: transformation 
fields (cf. Schneegans 
lecture)

( f ∗g )( x )=∫ f ( y )g ( x−x ' )dx '



  

Matching views

Pattern 1
(normalized,
 mean-free)

Pattern 2
(normalized,
 mean-free)

Piecewise
product

Sum is positive => match

Pattern 1
(normalized,
 mean-free)

Pattern 2
(normalized,
 mean-free)

Piecewise
product

Sum is negative => mismatch



  

Matching poses

cross ( f , g , x)=∫ f ( y )g ( x+ y )dy

● Similar to transformation, 
different direction

● Normalized, mean-free

● Requires shunting synapses



  

Other transformations

● Shift in log-polar space 
is uniform scaling and 
rotation

● Log-polar is neurally 
plausible (retinal space)



  

Cascading transformations
known patterns

labels

scale

rotation

shift

(log polar)

(log polar)



  

Localized Histograms

● Shape alone (as presented before) is not very powerful for 
recognition

● Additional feature channels: localized histograms (color, edge 
orientations)

● All channels provide information about pose, object
● Scale cannot be estimated



  

Results

● Recognition rates on COIL (with shape + localized histograms):
– 85% with one training view

– 94% with four training views

– See Faubel, Schöner (2009)



  

Results II

● Recognition rates on “BOIL” (with shape + 
localized histograms):
– 90% with one training view/single object

– See also Faubel, Schöner (2009)
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Video



  

Two-Layer Structure

● Layer 1 detects
● Layer 2 selects



  

Masking: what is it good for?

● Masking input allows to focus on single object



  

Masking: what (else) is it good for?

(from Faubel, Schöner 2009)



  

Applications

● Grasping
– Determine grasp parameters for robot arm

– Use shape templates instead of stored views

● Integration with scene representation
– Scene representation pre-segments

– Recognition system estimates exact pose

– Label information passed to scene representation



  

Summary

● Object recognition is difficult due 
to 3D to 2D projection, 
environment

● Shift estimation via recursive 
system, weighted superpositions

● Matching via correlation
● Cascaded transformations for 

rotation, scale estimation
● Localized histograms for more 

discriminative power
● The benefit of pose estimation

known patterns

labels

scale

rotation

shift

(log polar)

(log polar)



  

Thank you for your attention!

Questions?

For more: Faubel, C., & Schöner, G. (2009). A neuro-dynamic architecture for one shot 
learning of objects that uses both bottom-up recognition and top-down prediction. In 
Proc. of the 2009 IEEE/RSJ International Conference on Intelligent Robots and 
Systems, IROS 2009. IEEE Press.


