Object recognition in Dynamic Field Theory

Oliver Lomp – Neural Dynamics Summer School 2014 – 27. 8. 2014

Why We Need Object Recognition

- Complexity of Interaction
- Object knowledge

- 2D image of a 3D object
- Features vary with each new view
 - \rightarrow same object never looks the same

Common Solution: Invariance

- Trade-off: invariance vs. discriminance
- Invariance loses information

 \rightarrow Know what, but not necessarily where

Object pose

- Pose: orientation, location, size of object (in world or image)
 - Can be useful (e.g., for grasping)
 - Can be a clue for background segmentation

A different approach

• Instead of poseinvariant features: estimate pose, use it

A DFT implementation of Arathorn's map-seeking circuits

Arathorn's map-seeking circuits

from Arathorn (2004)

(b) source image

(c) input image - blurred

Pose parameter encoding

- How can pose be represented?
 - \rightarrow Space code
- Example: position as 2d peak, rotation as 1d peak

Label encoding

- What is the output of recognition?
 - Categorization decision (binary or graded response)
 - Conflicts with continuous nature of fields
- Categorization in dynamic neural fields

Label fields

- Discrete nodes (cf. grandmother neurons)
- Only global interaction / no metric
- Activity corresponds to presence of label

The principle: 1D shift

view

input

input

input

Known objects

Input image

Input image

Input image

Combining the recognition and pose matching

Implementation

Feature channels

- Full system has several feature channels
 - Spatial pattern (shape)
 - Localized histograms

Transformations

Transformations

Transformations

Matching views

Matching poses

$$cross(f,g,x) = \int \overline{f}(y)g(x+y)dy$$

- Similar to transformation, different direction
- Normalized, mean-free
- Requires shunting synapses

Other transformations

- Shift in log-polar space is uniform scaling and rotation
- Log-polar is neurally plausible (retinal space)

Cascading transformations

from Faubel, Schöner (2009)

- Shape alone (as presented before) is not very powerful for recognition
- Additional feature channels: localized histograms (color, edge orientations)
- All channels provide information about pose, object
- Scale cannot be estimated

Results

- Recognition rates on COIL (with shape + localized histograms):
 - 85% with one training view
 - 94% with four training views
 - See Faubel, Schöner (2009)

Results II

- Recognition rates on "BOIL" (with shape + localized histograms):
 - 90% with one training view/single object
 - See also Faubel, Schöner (2009)

Video

Two-Layer Structure

- Layer 1 detects
- Layer 2 selects

Masking: what is it good for?

• Masking input allows to focus on single object

Masking: what (else) is it good for?

(from Faubel, Schöner 2009)

Applications

- Grasping
 - Determine grasp parameters for robot arm
 - Use shape templates instead of stored views
- Integration with scene representation
 - Scene representation pre-segments
 - Recognition system estimates exact pose
 - Label information passed to scene representation

Summary

- Object recognition is difficult due to 3D to 2D projection, environment
- Shift estimation via recursive system, weighted superpositions
- Matching via correlation
- Cascaded transformations for rotation, scale estimation
- Localized histograms for more discriminative power
- The benefit of pose estimation

Thank you for your attention!

Questions?

For more: Faubel, C., & Schöner, G. (2009). *A neuro-dynamic architecture for one shot learning of objects that uses both bottom-up recognition and top-down prediction*. In Proc. of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009. IEEE Press.