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Learning is the act of acquiring new, or modifying and 
reinforcing existing knowledge, behaviors, skills, values, 
or preferences… Learning produces changes in 
organism and the changes produces are relatively 
permanent…	



The phenomenon of learning



Learning in different 
disciplines

• Machine learning: learning to classify entities, learning to approximate 
functions, learning to discover dependencies, learning to discover and use 
regularities 	



!

• Animal learning: classical and instrumental conditioning, habituation	



!

• Infant (and adult) learning: memory, rule learning, perceptual learning, motor 
learning	



!

• Learning new skills and behaviours 



Autonomous learning

• …learning, which co-occurs with behaviour



Behavior is a mess

!

!

• It unfolds in a dynamical, partially unknown 
environment, which is accessed through limited sensors 
and a noisy motor system with its own complexities and 
(a-priori unknown) dynamics	





Autonomous learning and behaviour 
are intimately interwoven 

!

 behavioural variables  are a priory “meaningless” to the 
system	



 to learn to behave, the agent has to behave	





!

• detection and stabilisation of representations of relevant 
states of the environment	


!

• representation and stabilisation in time of the agent’s 
intentions	


!

• making decisions about when to initiate and terminate 
actions 	



!

•           decide when and what to learn	



How may DFT help to clean-up the 
behavioural “mess”?



Learning mechanisms in DFT



Sustained activation and 
detection instability
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Sustained activation and 
detection instability

• the state of the system changes in the detection instability  
!

• new input is received in a different way than before the 
detection instability 
!

• but this change is not of a permanent nature 
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Preshape: memory trace



Example 1
• Learning object representation based on haptic input



Learning object representation 
based on haptic input



Learning object representation 
based on haptic input
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Example 2
• ‘Parsing’ (learning) a sequence of actions
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‘Parsing’ (learning) a 
sequence of actions
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‘Parsing’ (learning) a 
sequence of actions



‘Parsing’ (learning) a 
sequence of actions



‘Parsing’ (learning) a 
sequence of actions



‘Parsing’ (learning) a 
sequence of actions



Preshape in higher-dimensional  
DNFs
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Example 1 
Value representation in a neural-dynamic RL agent
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•Learning CoS by accumulating memory trace
Example 2 



Learning CoS by accumulating 
memory trace



Learning CoS by accumulating 
memory trace



Learning CoS by accumulating 
memory trace



Learning CoS by accumulating 
memory trace



Preshape and adaptive 
weights
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Error-driven Gain-Map 
Adaptation
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Snapshot 1: before looking

Snapshot 2: after gaze shift 1 

Snapshot 3: after gaze shift 2 

Snapshot 4: after gaze shift 3 
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What was not considered 
here….

• Learning lateral connections in DNFs 
!

• SOMs 
!

• RBF 
!

• Asymmetrical inhomogeneous connections 
(memory trace in the interaction kernel) 

!

• Predictive learning



• Structure is needed for learning; structure and behaviour 
co-evolve, bootstrap each other 

!
• representations for intentions, CoS, and CoD 

!
• sensorimotor representations   

!
• Environment, in which learning unfolds, matters  
!

• Teacher guidance may be needed to learn complex 
behaviours 

Conclusions



(More) Questions?

Thanks!


