Predictive and Sparse Neural Fields in high dimensional dynamic environments

Jean-Charles Quinton and colleagues!

CM

PASCAL

Pascal Institute Clermont University / CNRS Clermont-Ferrand, France

CLERMONT UNIVERSITÉ

Active perception in humans and robots

Giraffe

Dog

Stick figures (stimuli) from

[Olman & Kersten, Cognitive Science, 2004]

EyeTracker (saccade ≈ information) [Kietzmann et al., *PLOS One*, 2012] +

MouseTracker (movement ≈ decision) [Freeman et al., Front Psychol, 2011]

Introduction

Dynamical decision-making involving prediction

- Various domains (motor control, categorization, stereotypes...)
- Various models (neural networks, classifiers, Bayesian, DNF)

Anticipatory mechanisms and DNF

Content

1. Introduction	One of many examples ?	Psycho/robotics section
2. Focus on anticipation	Why bothering so much ?	Philo/genetic section
3. Predictive Neural Field (PNF)	How to integrate it in DNF ?	Neural dynamics section
4. Sparse Neural Field (SNF)	With many dimensions ?	Mathematics section

- Continuously adapt to the environment
 - Chaotic changes → react to adverse conditions
 - Rhythm/structure \rightarrow synchronize by predicting changes

- Continuously adapt to the environment
 - Chaotic changes → react to adverse conditions
 - Rhythm/structure \rightarrow synchronize by predicting changes

- Acting in a dynamical environment
 - Perception complexity increases with possible actions
 - Need to take genetically unpredictable choices anytime

Immersed in a complex environment (because of one's actions)

- Full of other complex dynamical systems striving for survival
- The environment itself becomes genetically unpredictable

A bit more on learning

Adapting during life rather than evolution

• Basic set of reflexes to survive with immediate actions

A bit more on learning

Adapting during life rather than evolution

- Basic set of reflexes to survive with immediate actions
 - Learning to better anticipate and act accordingly

Why bothering with anticipation?

- eliminate lag from purely reactive behavior
- can be added up on top of reflexive behavior
- normative value of the prediction (epistemic contact)
- filter out noise and distractors from complex signals
- coordination/planning capabilities (in space and time)
- allows abstracting from sensorymotor signals
- concepts defined as networks of potential interactions
- easy to distribute and neurally plausible (population coding)

[Pezzulo, *Minds and Machine*, 2008] [Hawkins, *On Intelligence*, 2005] [Bickhard, *JETAI*, 1998]

Content

1. Introduction	Is it useful to anything?	Psycho/robotics section
2. Focus on anticipation	Why bothering so much ?	Philo/genetic section
3. Predictive Neural Field (PNF)	How to integrate it in DNF ?	Neural dynamics section
4. Sparse Neural Field (SNF)	With many dimensions ?	Mathematics section

Dynamical Neural Field (DNF) + dynamic stimuli

- competition (between distant stimuli)
- non-linear convergence toward a stimulus
- noise/distracters robustness
- → good selection/tracking capabilities

Standard equation and emergent properties

Oscillations when tracking a moving input

focus, assume the stimulus does not move, relax, focus... repeat

Spatiotemporal constraints \rightarrow extension

Computation steps

How to evaluate performance ?

- representative dynamics
- → input scenario(s)

Tracking performance...

- hypothesis : 1 bubble
- compute center of mass
- compute error / inputs
- → expected properties

CNFT model

only access raw data

Evaluation scenarios

Results

External estimation / internal action

Tracking error for various scenarios and predictors (mean distance for a field of 1x1 unit)					
Scenario	No prediction	Correct prediction	Incorrect prediction		
C (alternation)	0.0066	0.0079	0.0407		
D (distracters)	0.0179	0.0095	0.0156		
E (noise)	0.0047	0.0032	0.0081		
F (fixed distracter)	0.0090	0.0036	0.0123		
G (occlusion)	0.0082	0.0041	0.0174		

Qualitative results

- reproduces the DNF properties and add new properties
- lower error with correct predictor (hopefully)
- fallback on the standard version with bad predictor
- → how to deal with an arbitrary trajectory ?

Extending the equation (again)

Computation steps

Results

Qualitative results

- reproduces the results obtained with a single predictor
- fast selection of adequate predictors
- interpolation in time and space + multi-scale support (hyperacuity)

Combining overt and covert predictions

Computation steps

Conclusion

- DNF as robust competition mechanism (to noise, distracters, occlusions)
- PNF reproduces the original behavior, but also allows active perception
- simple extension of the original DNF (inner/outer interactions)
- compatible with learning methods (e.g. sensorimotor contingencies)

Content

Dynamic Neural Fields (DNF)

- mesoscopic distributed model (tissue level, cortical sheet)
- over a topological manifold (1D / 2D continuous space)
- spatiotemporal evolution of variables (e.g. mean-field potential)
- described by (local) equations (same at all points)

Parameters and equation for the potential...

Many implementations...

- rate coding [Rougier & Vitay, Neur. Net., 2006]
- spikes [Chevallier & Tarroux, ESANN, 2008] [Vasquez, Quinton & Girau, IJCNN, 2011]

Similar constraints...

- 1D-3D manifold \rightarrow fixed dimensionality
- matrix computations \rightarrow fixed resolution
- convolution \rightarrow polynomial complexity

Dealing with high dimensional data (and the curse of dimensionality!)

- Brute force
 - Higher order matrix convolution
 - Numerical linear algebra (SVD, FFT...)
 - Fast hardware implementation (GPU, FPGA) connectivity pb
- Reduce dimensionality
 - Machine learning techniques (SVD, PCA...)
 - Self-organizing maps (e.g. projection in 2D)
 - Combination (e.g. detectors/descriptors)

meaningfulness ? shearing, distortions hard tuning

complexity $O(n^{2d})$

SVD \rightarrow O(nd+1)

Fixed combination : saliency

Visual saliency

[Itti & Koch, *PAMI*, 1998]

Architectures and improvements

adaptive weights

[Frintrop & Jensfelt, *Trans.Rob.*, 2008] [Fix et al., *Cognitive Computation*, 2010]

Let's handle it!

Dealing with high dimensional data (and the curse of dimensionality!)

- Brute force
 - Higher order matrix convolution
 - Numerical linear algebra (SVD, FFT...)
 - Fast hardware implementation (GPU, FPGA) connectivity pb
- Reduce dimensionality
 - Machine learning techniques (SVD, PCA...)
 - Self-organizing maps (e.g. projection in 2D)
 - Combination (e.g. detectors/descriptors)
- Couple low dimensional maps
 - Sharing dimensions (i.e. linear projections)
 - Other projections
- Other approximations of the continuum
 - Spiking neurons
 - Mixtures (GMM, RBF...)

complexity $O(n^{2d})$ SVD $\rightarrow O(nd+1)$ connectivity pb

meaningfulness ? shearing, distortions hard tuning

binding pb lattice + constraints ?

update potential robustness ?

From simple observations

- dynamics converges toward a set of peaks
- peaks often have spatial and temporal continuity
- peaks are stereotyped (shape depending on the kernel)

From simple observations

- dynamics converges toward a set of peaks
- peaks often have spatial and temporal continuity
- peaks are stereotyped (shape depending on the kernel)
- architectures with might be many interconnected maps
- learning method that requires dense mapping (no regression)
- (only true when the goal is to select/track)

Model peaks of activity as point-like elements

- center coordinates (2D+), (width) and intensity (arbitrary distribution)
- input as a set of points (use receptive fields and filters)
- → exclusively manipulate point-like elements

Sparse CNFT

Computation steps

SNF (sparse dim)

Activity in hyperspaces (i.e. lower dimensional fields)

- binding through attention \rightarrow prediction / planning or multiple hypotheses?
- ridges with matrix (DNF) → sparse vectors with arbitrary distributions (SNF²)

Iteration time (in μ s) for the various versions implemented and tested				
Scenario	Discrete version	Discrete (SVD)	Sparse version	
A (alternation	321131	37537	596	
B (distracters)	321084	37724	953	
C (noise)	321003	37491	632	

Qualitative results

- low computational cost (even with non parallel hardware)
- update time depending on the number of elements (quadratic)
- another approximation of the continuous neural dynamics
- reproduces the properties of the standard version
- produces synthetic values for easy interfacing with artificial systems
- able to simulate multi-dimensional DNF in a single field
- sparsity in space and in dimensions (abstract adaptive topology)
- yet, if too few components \rightarrow reduced robustness
- except for performance, functionally/theoretically useful?

Model

Swallowing (autonomy, goal constraints)

Anticipatory mechanisms and DNF

JC Quinton - Predictive and Sparse Neural Fields