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Perception  Active perception 
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e.g. Active vision 

camera image 

overt 
exploration 

covert 
attention 

Stimuli 

Perception 

Cognition 

Command 

prediction 

sensorimotor loop 

Active perception in humans and robots Introduction 
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Introduction Quick psychological experiment 
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Giraffe Dog 

START MouseTracker (movement  decision) 

[Freeman et al., Front Psychol, 2011] 

non ambiguous ambiguous 

Reaction time 

(RT) 

EyeTracker (saccade  information) 

[Kietzmann et al., PLOS One, 2012]  

+ 

Stick figures (stimuli) from 

[Olman & Kersten, Cognitive Science, 2004] 
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Introduction Predictive decision-making: what for and how? 
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Dynamical decision-making involving prediction 
 Various domains (motor control, categorization, stereotypes…) 

 Various models (neural networks, classifiers, Bayesian, DNF) 

oj fovea(t) 

[Catenacci et al., Neural Network, 2014] 

[Quinton et al., IEEE Trans.on SMC, 2013] 

StickFigureDecision.jar
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Prediction 
(learning/planning) 
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 Introduction Anticipatory mechanisms and DNF 

Environment 
(real or simulated) 

Physical agent 
(camera + motors) 

 Sensations 

Sensory 
flow 

 visual input (external) 

 proprioception (internal) 

 Preprocessing 

 saliency maps (bio-insp.) 

 feature points (artificial) 

 asymmetric connections 

 local  global (trajectory) 

 excitation 

Competition 
(attention/decision) 

 symmetric connections 

 global  local (focus) 

 inhibition 

Motor 
commands 
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Content 

 1. Introduction 

 2. Focus on anticipation 

 3. Predictive Neural Field (PNF) 

 4. Sparse Neural Field (SNF) 

Psycho/robotics section 

Philo/genetic section 

Neural dynamics section 

Mathematics section 

One of many examples ? 

Why bothering so much ? 

How to integrate it in DNF ? 

With many dimensions ? 
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Focus on anticipation Principles in living systems 

Dynamical system 

Far from equilibrium 

Self maintaining 

Implicit anticipation 

 Continuously adapt to the environment 

 Chaotic changes  react to adverse conditions 

 Rhythm/structure  synchronize by predicting changes 
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Focus on anticipation Principles in living systems 

 Continuously adapt to the environment 

 Chaotic changes  react to adverse conditions 

 Rhythm/structure  synchronize by predicting changes 

Dynamical system 

Far from equilibrium 

Self maintaining 

Implicit anticipation 
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Focus on anticipation Principles in living systems 

 Acting in a dynamical environment 

 Perception complexity increases with possible actions 

 Need to take genetically unpredictable choices anytime 

? 
Dynamical system 

Far from equilibrium 

Self maintaining 

Implicit anticipation 
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Focus on anticipation Principles in living systems 

 Acting in a dynamical environment 

 Perception complexity increases with possible actions 

 Need to take genetically unpredictable choices anytime 

? 
Dynamical system 

Far from equilibrium 

Self maintaining 

Implicit anticipation 
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Focus on anticipation Principles in living systems 

 Immersed in a complex environment (because of one’s actions) 

 Full of other complex dynamical systems striving for survival 

 The environment itself becomes genetically unpredictable 

Dynamical system 

Far from equilibrium 

Self maintaining 

Implicit anticipation 

Explicit anticipation 
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Focus on anticipation A bit more on learning 

 Adapting during life rather than evolution 

 Basic set of reflexes to survive with immediate actions 



JC Quinton - Predictive and Sparse Neural Fields 12 

Focus on anticipation A bit more on learning 

 Adapting during life rather than evolution 

 Basic set of reflexes to survive with immediate actions 

 Learning to better anticipate and act accordingly 
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Focus on anticipation Properties 

 Why bothering with anticipation? 

 eliminate lag from purely reactive behavior 

 can be added up on top of reflexive behavior 

 normative value of the prediction (epistemic contact) 

 filter out noise and distractors from complex signals 

 coordination/planning capabilities (in space and time) 

 allows abstracting from sensorymotor signals 

 concepts defined as networks of potential interactions 

 easy to distribute and neurally plausible (population coding) 

 

[Pezzulo, Minds and Machine, 2008] 

[Hawkins, On Intelligence, 2005] 

[Bickhard, JETAI, 1998]  
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Content 
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 2. Focus on anticipation 
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 4. Sparse Neural Field (SNF) 
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Is it useful to anything ? 
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With many dimensions ? 
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PNF (no predictor) Tracking capabilities 

 Dynamical Neural Field (DNF) + dynamic stimuli 

 competition (between distant stimuli) 

 non-linear convergence toward a stimulus 

 noise/distracters robustness 

  good selection/tracking capabilities 

Complex/noisy input Focus on a stimulus [Rougier & Vitay, Neur. Net., 2006] 
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PNF (no predictor) Standard equation and emergent properties 

DNF equation: htxsxdtxuxxwtxu
t
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PNF (no predictor) Tracking lag 

Focus bubble 

Stimulus 

Oscillations when tracking a moving input 

 focus, assume the stimulus does not move, relax, focus… repeat 
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PNF (1 predictor) Spatiotemporal constraints  extension 

A-B 

> a < b 

Distraction 
1 

DNF extension: 
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PNF (1 predictor) Spatiotemporal constraints  extension 

A-B 

> a < b 

DNF extension: 
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[Quinton & Girau, IEEE IJCNN, 2011] 

 Possible ways of introducing predictions 

 Asymmetric kernels (e.g. ACNFT [Cerda, 2010]) 

 merge kernels for different predictions? 

 different kernel at each point? 

 keep DNF properties? 

 Bias the field activity 

 (similar problems) 

 Bias the stimulation 

 bottom-up + top-down projections 
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PNF (1 predictor) Computation steps 

Focus 

ut 

 1) Compute prediction (p) 

 transform of ut 

 expected activity ut+dt 

 2) Update the CNFT (ut+dt) 

 competition term 

 integration scheme 

 biased convergence 

ut+dt 

2 

p 1 

Competition 

c 

Stimulation 

s 
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PNF (1 predictor) How to evaluate performance ? 

 Environment… 

 inputs to the model 

 representative dynamics 

 input scenario(s) 

 Tracking performance… 

 hypothesis : 1 bubble 

 compute center of mass 

 compute error / inputs 

 expected properties 

error 

stimuli 

noise 
distracters 

input 

CNFT 
parameters 
+ predictors 

focus 

 CNFT model 

 only access raw data 
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PNF (1 predictor) Evaluation scenarios 

C 

D 

E 

• 2 moving stimuli 
• slight dissymmetry 
• slow alternation 

• 1 moving stimulus 
• distracters at t=1 

• 1 moving stimulus 
• noise at t=0 

• 1 moving stimulus 
• distracter on 
trajectory 

• 1 moving stimulus 
• full occlusion 

F 

G 

Specific scenarios to test the 
predictive capabilities 
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Results PNF (1 predictor) 

Mean tracking error as a function of the 
Gaussian noise standard deviation 

time 

error 

Distractor on trajectory Alternation between targets 

Occlusion 
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PNF (1 predictor) External estimation / internal action 

Linear predictor: 
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Tracking error for various scenarios and predictors (mean distance for a field of 1x1 unit)  

26 

Results 

 Qualitative results 

 reproduces the DNF properties and add new properties 

 lower error with correct predictor (hopefully) 

 fallback on the standard version with bad predictor 

  how to deal with an arbitrary trajectory ? 

Scenario No prediction Correct prediction Incorrect prediction 

C (alternation) 0.0066 0.0079 0.0407 

D (distracters) 0.0179 0.0095 0.0156 

E (noise) 0.0047 0.0032 0.0081 

F (fixed distracter) 0.0090 0.0036 0.0123 

G (occlusion) 0.0082 0.0041 0.0174 

PNF (1 predictor) 
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Pattern discrimination Extending the equation (again) 

A-B 

> a < b 

Generalization 
1 

DNF extension: 
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[Quinton & Girau, CNS, 2012] 
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Pattern discrimination Computation steps 

Focus 

ut 

 1) Confidence update (wk) 

 match prediction 

 to stimulation 

 error committed 

 2) Compute predictions (pk) 

 transform of ut 

 merge in a single field 

 expected activity ut+dt 

 3) Update the CNFT (ut+dt) 

 competition term 

 integration scheme 

 biased convergence 

ut+dt 

3 

p2 

p1 

Predictors 

p0 

1 

2 

Competition 

c 

Stimulation 

s 
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Results 

 Qualitative results 

 reproduces the results obtained with a single predictor 

 fast selection of adequate predictors 

 interpolation in time and space + multi-scale support (hyperacuity) 

Pattern discrimination 
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Visual attention (overt and covert) 

eye 

field of view 

overt 
exploration 

covert 
attention 

Combining overt and covert predictions PNF (overt + covert) 

Implementation for tracking 

Stimulus movement prediction 

Eye movement prediction 

Stimuli rapidly 
crossing the field of view 

images/Demo_Simulation_vi=[1.4,1.0]_run=1.avi
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Pan-tilt 
camera 

Visual 
environment 

31 

PNF (overt + covert) Computation steps 

Focus 

ut ut+dt 

3 

p2 

p1 

Predictors 

p0 

1 

2 

Competition 

c 

Stimulation 

s 

2 

mt+dt 

4 

Eye movement 

Eye predictor 

pm 

Eye movement 

 saccade (lag) 

 smooth pursuit 

Overshoot ? 

 centered stimuli 

 excit/inhib pred. 

 compensation 



JC Quinton - Predictive and Sparse Neural Fields 32 

Conclusion 

Conclusion 

 DNF as robust competition mechanism (to noise, distracters, occlusions) 

 PNF reproduces the original behavior, but also allows active perception 

 simple extension of the original DNF (inner/outer interactions) 

 compatible with learning methods (e.g. sensorimotor contingencies) 
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Content 

 1. Introduction 

 2. Focus on anticipation 

 3. Predictive Neural Field (PNF) 

 4. Sparse Neural Field (SNF) 
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Philo/genetic section 

Neural dynamics section 
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Is it useful to anything ? 

Why bothering so much ? 
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With many dimensions ? 
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SNF Common ground 

 Dynamic Neural Fields (DNF) 

 mesoscopic distributed model (tissue level, cortical sheet) 

 over a topological manifold (1D / 2D continuous space) 

 spatiotemporal evolution of variables (e.g. mean-field potential) 

 described by (local) equations (same at all points) 
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 Similar constraints… 

 1D-3D manifold  fixed dimensionality 

 matrix computations  fixed resolution 

 convolution  polynomial complexity 

35 

SNF How does it work ? 

 Many implementations... 

 rate coding [Rougier & Vitay, Neur. Net., 2006] 

 spikes  [Chevallier & Tarroux, ESANN, 2008] 

              [Vasquez, Quinton & Girau, IJCNN, 2011] 

Parameters and equation for the potential… 
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1_cnft_demo.lnk
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SNF (sparse space) Curse of dimensionality 

 Dealing with high dimensional data (and the curse of dimensionality!) 

 Brute force 

 Higher order matrix convolution  complexity O(n2d) 

 Numerical linear algebra (SVD, FFT…) SVD  O(nd+1) 

 Fast hardware implementation (GPU, FPGA) connectivity pb 

 Reduce dimensionality 

 Machine learning techniques (SVD, PCA…) meaningfulness ? 

 Self-organizing maps (e.g. projection in 2D) shearing, distortions 

 Combination (e.g. detectors/descriptors) hard tuning 
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SNF (sparse space) Fixed combination : saliency 
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Visual saliency 

 

 

 

 

 

 

 

 

 

 

 
[Itti & Koch, PAMI, 1998] 

Architectures and improvements 

 

 

 

 

 

 

 

 

 

 
[Frintrop & Jensfelt, Trans.Rob., 2008] 

[Fix et al., Cognitive Computation, 2010] 

adaptive weights 

naturally salient 

designed to be salient 



JC Quinton - Predictive and Sparse Neural Fields 38 

SNF (sparse space) Let's handle it! 

 Dealing with high dimensional data (and the curse of dimensionality!) 

 Brute force 

 Higher order matrix convolution  complexity O(n2d) 

 Numerical linear algebra (SVD, FFT…) SVD  O(nd+1) 

 Fast hardware implementation (GPU, FPGA) connectivity pb 

 Reduce dimensionality 

 Machine learning techniques (SVD, PCA…) meaningfulness ? 

 Self-organizing maps (e.g. projection in 2D) shearing, distortions 

 Combination (e.g. detectors/descriptors) hard tuning 

 Couple low dimensional maps 

 Sharing dimensions (i.e. linear projections) binding pb 

 Other projections   lattice + constraints ? 

 Other approximations of the continuum 

 Spiking neurons    update potential 

 Mixtures (GMM, RBF…)   robustness ? 
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SNF (sparse space) Why a “sparse” implementation ? 

 From simple observations 

 dynamics converges toward a set of peaks 

 peaks often have spatial and temporal continuity 

 peaks are stereotyped (shape depending on the kernel) 

1_cnft_demo.lnk
1_cnft_demo.lnk
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SNF (sparse space) Why a “sparse” implementation ? 

 From simple observations 

 dynamics converges toward a set of peaks 

 peaks often have spatial and temporal continuity 

 peaks are stereotyped (shape depending on the kernel) 

 architectures with might be many interconnected maps 

 learning method that requires dense mapping (no regression) 

  (only true when the goal is to select/track) 
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SNF (sparse space) How to implement ? 

 Model peaks of activity as point-like elements 

 center coordinates (2D+), (width) and intensity (arbitrary distribution) 

 input as a set of points (use receptive fields and filters) 

 exclusively manipulate point-like elements 

g1=x1,y1,…,w1,i1 

g2 

1_cnft_demo.lnk
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Sparse CNFT Computation steps 

Stimuli 

Focus 

Time t Time t+dt 

u1
t 

u2
t 

s1
t 

s2
t 

- 
- 

2 

Competition 

- 
- 

c1
 

c2
 

1 

u1
t+1 

3 

- c3
 

- 

 1) Competition step 

 between centers only 

 mainly inhibition (-) 

 need to account for si
t 

 2) Integration step 

 all in one sparse map 

 excitatory & inhibitory 

 growing number of elts 

 3) Merging step 

 merge close elements 

 eliminate weak ones 

 convergence 
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SNF (sparse dim) A bit more on drives and values 

Activity in hyperspaces (i.e. lower dimensional fields) 

 binding through attention  prediction / planning or multiple hypotheses? 

 ridges with matrix (DNF)  sparse vectors with arbitrary distributions (SNF2) 

hue 

y 

x 

Sparse vectors 

 [h1] [h2] [x1,y1] [x2,y2] 

 [x1,y1,h1] [x2,y2,h2] 

 

Similarity measure 

 [x1,y1,h1]  [x2,y2,h2] 

 |[x1-x2,y1-y2,h1h1]| 

 [x1,y1,h1]  [x2,y2] 

  |[x1-x2,y1-y2]| 

 [h1]  [x1,x2] 

   0 

h1 

h2 

x2 x1 

y2 

y1 

??? [x2 ,y2 ,h2] 

[x1 ,y1 ,h1] 
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  Iteration time (in µs) for the various versions implemented and tested 

44 

Conclusion 

 Qualitative results 

 low computational cost (even with non parallel hardware) 

 update time depending on the number of elements (quadratic) 

 another approximation of the continuous neural dynamics 

 reproduces the properties of the standard version 

 produces synthetic values for easy interfacing with artificial systems 

 able to simulate multi-dimensional DNF in a single field 

 sparsity in space and in dimensions (abstract adaptive topology) 

 yet, if too few components  reduced robustness 

 except for performance, functionally/theoretically useful? 

Scenario Discrete version Discrete (SVD) Sparse version 

A (alternation 321131 37537 596 

B (distracters) 321084 37724 953 

C (noise) 321003 37491 632 
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 Model Swallowing (autonomy, goal constraints) 
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h (neurohormone) 

eg (throat water) 

pg (throat pos.) 

cg (contraction) 

pb (mouth pos.) 

cb (contraction) 

eb (mouth water) 
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pg 

h  

eb  
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pb  

pg  
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! 

> 0 > 0 
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v1 v2 v3 

Motor situation 

Goal 

Sensory situation 

t t t 

context   consequence 

2 

Command 

[Quinton, 2008] 
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Prediction 
(learning/planning) 

46 

 Introduction Anticipatory mechanisms and DNF 

Environment 
(real or simulated) 

Physical agent 
(camera + motors) 

 Sensations 

Sensory flow 

 visual input (external) 

 proprioception (internal) 

 Preprocessing 

 saliency maps (bio-insp.) 

 feature points (artificial) 

 asymmetric connections 

 local  global (trajectory) 

 excitation 

Competition 
(attention/decision) 

 symmetric connections 

 global  local (focus) 

 inhibition 

Motor 
commands 
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