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This paper examines the tie between knowledge and behavior in a noun generalization
context. An experiment directly comparing noun generalizations of children at the same
point in development in forced-choice and yes/no tasks reveals task-specific differences
in the way children’s knowledge of nominal categories is brought to bear in a moment.
To understand the cognitive system that produced these differences, the real-time decision
processes in these tasks were instantiated in a dynamic field model. The model captures
both qualitative and quantitative differences in performance across tasks and reveals con-
straints on the nature of children’s accumulated knowledge. Additional simulations of
developmental change in the yes/no task between 2 and 4 years of age illustrate how
changes in children’s representations translate into developmental changes in behavior.
Together, the empirical data and model demonstrate the dynamic nature of knowledge
and are consistent with the perspective that knowledge cannot be separated from the
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task-specific processes that create behavior in the moment.
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1. Introduction

There are numerous examples in the cognitive develop-
ment literature where children’s abilities appear to shift
across ages and tasks in seemingly paradoxical ways. For
example, studies with young infants suggest that 3- and
4-month-old children can use knowledge of physical laws
of continuity and solidity to determine where a ball rolled
down a ramp should stop (Spelke, Breinlinger, Macomber,
& Jacobson, 1992). Yet, when tested in similar paradigms,
2- and 3-year-old children do not seem to have this same
knowledge (Berthier, DeBlois, Poirier, Novak, & Clifton,
2000). Similarly, research suggests that 6- to 8-month-
old infants can detect the numerical equivalence between
sets of auditory and visual stimuli (Starkey, Spelke, &
Gelman, 1990); yet, 3-year-old children fail at a similar
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task (Mix, Huttenlocher, & Levine, 1996). Such examples
leave the field in a difficult position: how are we to know
when a child possesses some bit of knowledge?

This question comes from a view of cognition that sep-
arates knowledge from process. By this view, knowledge
resides in the head of the child, waiting to be accessed by
the appropriate stimuli or task. Thus, developmentalists
design tasks to tap into children’s knowledge; if children
perform competently they are said to have the requisite
knowledge, if children fail they are said to lack the knowl-
edge. One problem with this view is that it pits children’s
competence (i.e., knowledge) against their performance
(i.e., behavior). Consequently, when children fail at a task
it can always be claimed that they have the knowledge,
but that the task did not effectively elicit that knowledge
(see Sophian, 1997, and commentaries for discussion). A
second problem with this view is that it leaves unex-
plained what is critical for acting in the world and for the
unfolding of developmental process—how knowledge is
created and how it is brought to bear in a task.
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An alternative and growing view is that knowledge is
not separate from the processes that create behavior in a
task. That is, knowledge is not a unitary thing that can be
had, rather, it is distributed in and across many processes
(e.g. Barsalou, 1999; Plumert, 2008; Port & VanGelder,
1995; Samuelson & Smith, 2000b; Skarda & Freeman,
1987; Spencer & Schoéner, 2003; Spivey & Dale, 2006;
Thelen & Smith, 1994). By this view, one cannot ask about
knowledge independent of the task that brings that knowl-
edge to bear in a moment in time. Rather, the question to
be asked is how the specifics of the task cohere with the
child’s prior history of perceiving, thinking, and acting to
create behavior in the moment.

Direct support for this view in developmental science
comes from work by Esther Thelen, Linda Smith, and their
colleagues showing how infants’ performance in the classic
Piagetian A-not-B task is influenced by a host of intrinsic
and extrinsic factors (Clearfield, Diedrich, Smith, & Thelen,
2006; Diedrich, Highlands, Thelen, & Smith, 2001; Died-
rich, Thelen, Smith, & Corbetta, 2000; Smith, Thelen, Titzer,
& McLin, 1999; Thelen, Schoner, Scheier, & Smith, 2001;
Thelen & Smith, 1997). Although such studies have con-
tributed foundational support for the idea that knowledge
is bound to behavior in a particular task, the implications
of this work for cognition more generally have been called
into question given that the A-not-B phenomenon is lar-
gely grounded in sensorimotor activity (Freeman, 2001;
Glenberg, Cowart, & Kaschak, 2001; Markman, 2001;
Munakata & McClelland, 2003; but see Spencer & Schoner,
2003). An important question, then, is whether this view
has implications for higher-order cognition.

This question is well illustrated by a current debate in
the word learning literature (see Samuelson & Bloom,
2008). In a typical experimental procedure, a young child
shown a novel solid, rigid object and told a novel name
(e.g., “this is a dax”) will most likely say that only other ob-
jects that share the same shape as the exemplar can be
called by the same name (Imai, Gentner, & Uchida, 1994;
Landau, Smith, & Jones, 1988; Samuelson & Smith, 1999).
Young children are thus said to show a “shape bias” when
generalizing novel names for solid objects. Importantly,
however, children do not always generalize novel names
by shape similarity. Rather, attention to shape and other
object dimensions has been shown to be context, stimulus,
and language specific, and thus exquisitely tuned to the
language being learned (see Smith & Samuelson, 2006;
Yoshida & Smith, 2003). Furthermore, recent studies sug-
gest that children who learn to attend to shape when
naming novel objects subsequently show accelerated
vocabulary development (Samuelson, 2002; Smith, Jones,
Landau, Gershkoff-Stowe, & Samuelson, 2002) and that
development of a shape bias is related to the development
of the early noun vocabulary (Gershkoff-Stowe & Smith,
2004; Samuelson & Smith, 1999).

Nevertheless, there has been sharp debate regarding the
origin of the shape bias (Booth & Waxman, 2002; Diesend-
ruck & Bloom, 2003; Smith, Jones, Yoshida, & Colunga,
2003). At its core, this debate is about the foundational nat-
ure of cognition and whether knowledge/competence can
be separated from performance (Colunga & Smith, 2008;
Samuelson & Horst, 2008; Smith & Samuelson, 2006).

Booth, Waxman, and Huang (2005), and Bloom and col-
leagues (Bloom, 2000; Bloom & Markson, 1998; Diesend-
ruck & Bloom, 2003) argue that children’s biased
attention to shape reflects their conceptual understanding
that shape is an important indicator of object kind. These
arguments stem from a traditional view of cognition that
parses mental activity into discrete and separable pro-
cesses of sensing, thinking, and acting. In contrast, Smith
and colleagues argue that the shape bias is an attentional
bias that itself is the developmental product of the child’s
exposure to a language in which solidity and category
organization by shape are highly correlated (Smith, 2000;
Smith & Samuelson, 2006). This idea stems from the view
of cognition that sees knowledge as embedded in process
and denies a separation between sensing, thinking, and
acting.

Critically, progress in this debate has been hampered by
the fact that little attention has been paid to differences in
the tasks and stimuli used to elicit noun generalizations
in studies that purport to support one view over another. In
this way, then, the word learning literature mirrors the lar-
ger developmental and cognitive science literatures both in
terms of the existing disagreements concerning the nature
of the cognitive system and in the need for a greater under-
standing of how the specifics of a task elicit knowledge in a
moment. In the present paper, we examine these issues via
a case study that probes similarities and differences in chil-
dren’s novel noun generalizations for solid and deformable
things and, critically, how these differences depend on the
details of the tasks that are used to elicit those generaliza-
tions. We show how an understanding of the processes
that support behavior in a task yield insights into the nat-
ure of developmental changes in knowledge.

Our work is inspired by the view that knowledge is not
separate from the processes that create behavior in a task.
Note that this view does not deny a long-term accumula-
tion of information based on specific experiences with ob-
jects and words. As applied to the development of the
shape bias, this view suggests that as children learn
individual name-object pairings, they learn a system of
regularities between linguistic devices, the structure of ob-
ject categories, and perceptual properties (see Smith &
Samuelson, 2006). This information accumulates over the
development of the early noun vocabulary and is the
“knowledge” children bring to the task of generalizing a
novel name from a novel object to new instances. Thus,
when we refer to “knowledge” we are referring to the
child’s accumulated history of experiencing naming con-
texts paired with objects in particular ways.

The critical question is how these prior experiences are
brought to bear in the moment that a child is asked to
make a novel noun generalization. In the current work,
we explore this issue by first experimentally examining
differences in the way children’s accumulated knowledge
of nominal categories is brought to bear in specific task
contexts. We examine the interaction of knowledge with
process by submitting the same knowledge to a model that
concretely specifies critical aspects of these processes, and
find that, as in the experiment with children, different
behaviors emerge across tasks. Systematic manipulations
of the model parameters that specify the input knowledge
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and processes demonstrate that the experimental pattern
of results only obtains when the inputs are processed in
particular ways. This is further illustrated in simulations
of developmental changes in novel noun generalization.
This work thus demonstrates that changes to either the in-
put knowledge alone or the processes alone do not capture
differences in children’s behavior across tasks and develop-
ment—it takes a coherent pattern of change in both to yield
the specific pattern of behavioral change.

1.1. Background: naming deformable things

A bias to attend to shape, although useful for learning
nouns such as table, hammer, and key, that name solid ob-
jects in shape-based categories (Samuelson & Smith, 1999),
may not be appropriate for all nominal categories. In par-
ticular, deformable things such as paper, blankets, and tow-
els provide an interesting test case for children’s attention
to shape because similarity in material may be as impor-
tant to the organization of these nominal categories as
similarity in shape. In fact, studies with adults suggest
deformable things are organized into nominal categories
based on similarity of material (Samuelson & Smith,
1999, 2000a). Further, material substance is often critical
to what can be done with these things. For example, while
both blankets and towels are likely to have a rectangular
shape, it is their particular material composition that dis-
tinguishes one from the other and that influences what
we do with each. Thus, children may be biased to general-
ize novel names for novel deformable things according to
material substance.

On the other hand, many deformable things do have
characteristic shapes (e.g., shirts, pants, and socks) and thus
shape is an important factor in the organization of these
nominal categories. Further, while deformable things can
be folded, balled, squished or otherwise manipulated to al-
ter their shape, they can be returned to their original
shapes following such manipulations. In addition, analysis
of the early noun vocabulary suggests that many of the cat-
egories of deformable things that children learn to name
early are similar to categories of rigid things in that both
are named with count nouns (“a shirt” rather than “+«some
shirt”, Samuelson & Smith, 1999). In the early noun vocab-
ulary, count noun syntax is associated with categories or-
ganized by similarity in shape (Samuelson & Smith,
1999). It is therefore also possible that the similarity in
the syntactic frame associated with rigid and deformable
things may direct children’s attention to shape when nam-
ing deformables (Samuelson, Horst, Schutte, & Dobbertin,
2008; Samuelson & Smith, 2000a).

Thus, there are reasons to expect that compared to rigid
things, children’s naming of deformables would be more
variable and subject to influences of task structure. There
is some indication of this in the literature. Samuelson
and Smith (2000) found that 3-year-old children general-
ized novel names by similarity in shape in a yes/no task.
In contrast, Gathercole and colleagues (Gathercole, Cramer,
Somerville, & Haar, 1995) found that 4-year-old children
were more likely to attend to substance when naming
deformable stimuli in a forced-choice task (see also
Samuelson et al., 2008). However, direct comparison

between studies is difficult due to differences in the stimuli
used and the specifics of the task (i.e. whether a function or
property of the exemplar was demonstrated prior to nam-
ing). Further, the use of children of different ages across
studies also means that participants differed in vocabulary,
which has been suggested to be a critical determinate to
attention to shape in similar tasks (Gathercole & Min,
1997; Gershkoff-Stowe & Smith, 2004; Samuelson & Smith,
1999).

1.2. Overview of this study

The fact that some factors associated with deformables
may direct children’s attention to similarities in material,
while other factors may direct their attention to similari-
ties in shape provides an opportunity to probe whether
and how the specifics of the task influence children’s noun
generalizations. Toward this end, we present an experi-
ment that contrasts the performance of children the same
age and with the same productive vocabulary across
forced-choice and yes/no noun generalization tasks with
the same stimuli. Data from this experiment suggest
important differences in the specifics of children’s perfor-
mance related to the particulars of the two tasks. We pres-
ent a dynamic field model to formally specify the real-time
processes that turn knowledge of nominal categories into a
forced-choice or yes/no response. The model reveals con-
straints on the structure of the accumulated knowledge
children bring to bear in these tasks. We show that the
combination of the hypothesized processes and knowledge
accurately captures both global qualitative differences in
performance across forced-choice and yes/no tasks as well
as specific quantitative differences.

Next, we quantitatively fit data from 2- to 4-year-old
children from a study using the same stimuli in a yes/no
task. These fits illustrate how changes in children’s accu-
mulated knowledge of nominal categories translate into
developmental changes in behavior in this task. Thus, the
model illustrates how an understanding of process pro-
vides insights both into what children bring to the task
based on their prior history and how this accumulated
prior history changes over time. The model also illustrates
the dynamic nature of knowledge and it’s inseparability
from process, and thus, has important implications for
our understanding of cognition more generally.

2. Experiment 1

Most of the categories of rigid things that young chil-
dren learn to name early provide clear links among solid-
ity, category organization, and syntax—solid, rigid things
tend to be in categories organized by similarity in shape
and tend to be named with count nouns (Samuelson &
Smith, 1999). Moreover, research suggests that children
learn to exploit this regularity in novel noun generalization
(Samuelson, 2002; Smith et al.,, 2002). In contrast, the
deformable things children learn to name early do not
present as regular a relationship (Gathercole et al., 1995;
Samuelson & Smith, 1999, 2000a). Many deformable things
have specific shapes but those shapes can be changed.
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Adults typically judge deformable things, like nonsolid
substances, to be in categories well organized by similarity
in material substance, but deformable things, like rigid ob-
jects, are often named with count nouns (Samuelson &
Smith, 2000a). Given the possibility that young children
could organize deformable things by either shape or mate-
rial, the purpose of this experiment was to directly exam-
ine the extent to which children’s noun generalizations
with deformable things are influenced by the task. We col-
lected novel noun generalizations in forced-choice and yes/
no tasks from groups of children that were the same in age
and productive vocabulary. We tested 2.5-year-old chil-
dren because previous studies suggest developmental
changes in the amount of attention to shape in noun gen-
eralization between 2 and 3 years of age (Gershkoff-Stowe
& Smith, 2004; Landau, Smith, & Jones, 1998; Samuelson
et al., 2008; Smith, Jones, & Landau, 1992), and because pi-
lot testing suggested that children this age could effec-
tively complete both forced-choice and yes/no versions of
the task. In both tasks, we highlighted the rigidity or defor-
mability of the exemplar object before naming it. This was
done to ensure children were aware of the relevant differ-
ences in the stimuli, and because prior studies with these
and similar stimuli had used this procedure (Gathercole
& Min, 1997; Samuelson & Smith, 2000a; Samuelson
et al., 2008).

2.1. Method

2.1.1. Participants

Thirty-two monolingual, English-speaking children (M =
31 m 13 d, range =28 m 16 d-32 m 24 d; 18 girls, 14 boys)
were recruited from local county birth records. All of the
children were from middle-class families. Half of the chil-
dren participated in a forced-choice task (8 females, 8
males) and half in a yes/no task (6 females, 10 males). Chil-
dren in the forced-choice and yes/no conditions did not dif-
fer in age (M=31m 11d and 31 m 16d, respectively),
t(30) =.36, ns, or total noun vocabulary (M=284.8 and
293.5, respectively), t(30)=.88, ns, as measured by the
MacArthur-Bates Communicative Development Inventory:
Words and Sentences (MCDI; Fenson et al., 1994)—a vali-
dated parental checklist of the 680 words commonly
learned by children up to 30-months of age. Data from an
additional four children who participated in the yes/no con-
dition were not analyzed due to experimental error (1), be-
cause the child did not finish (1), or due to a potential
language delay (2). Informed consent was obtained from
children’s parent or guardian prior to the experimental ses-
sion. Children received a small gift for participating.

2.1.2. Stimuli

Nine objects familiar to young children were used on
training trials. The exemplar for these trials was a purple
plastic egg. The test objects were an identical egg, a red
wooden block, a plastic flower, a plastic teapot, a small
basket, a rubber duck, a multi-colored miniature slinky,
and a small stuffed dinosaur. All of the objects were similar
in size.

Four sets of novel objects were used during the test tri-
als (see Fig. 1). Each set consisted of an exemplar and six

test objects. For each set, two of the test objects were the
same shape as the exemplar but were a different color
and were made from a different material, two were made
from the same material as the exemplar but were a differ-
ent shape and color, and two were the same color as the
exemplar but different in shape and material. The exem-
plars for sets 1 and 2 were made from rigid materials.
The exemplars for sets 3 and 4 were made from nonrigid,
deformable materials. The exemplar for set 1 was a
14.0 cm x 3.8 cm barbell-shaped piece of wood painted
green with a bumpy texture. The exemplar for set 2 was
an 8.3 cm in diameter blue clay ball with four clay pegs.
The exemplar for set 3 was a 14.0 cm tall x 5.7 cm wide
piece of yellow sponge cut into a rounded “V” shape. The
exemplar for set 4 was an 11.4 cm x 9.5 cm pink poly-
gon-shaped plastic bean bag. A white tray divided into
two equal sections was used to present the stimuli in the
forced-choice task.

Each exemplar had two different kinds of properties
that could be demonstrated. One kind of property was de-
signed to highlight the shape of the rigid exemplars and
the material of the deformable exemplars. These properties
are referred to as “related” properties because they were
based on the shape of the rigid exemplars and the material
of the deformable exemplars. The related property for sets
1, 2, 3, and 4 were rolling, fitting into a puzzle, squishing
into a cup, and folding, respectively (see Fig. 1). The other
kind of property was not based on the shape, color, or
material of the exemplar. Thus, these are referred to as
“arbitrary” properties. Because children only saw two arbi-
trary properties and because these properties were not
based on any features of the exemplars, the same two arbi-
trary properties—having a small design on that glowed in
the dark or a sticker on the back—were used for all four
sets. Four novel names—Rel, Hux, Kiv, and Gaz—were used.

2.1.3. Design and procedure

The design was identical for the forced-choice and yes/
no conditions. Each child saw all four sets of stimuli. Each
child saw a related property demonstrated for one of the
rigid exemplars and an arbitrary property demonstrated
for the other. Likewise, each child saw a related property
demonstrated for one of the deformable exemplars and
an arbitrary property demonstrated for the other. Which
exemplar had related and which had arbitrary properties
was counterbalanced across children in each condition.

Children sat across from the experimenter at a large ta-
ble. Parents sat next to their child and were asked not to
direct their child’s responses in any way. Parents com-
pleted the MBCDI during the experimental session.

In the forced-choice condition, the experiment began
with a series of training trials to familiarize the child with
the task and experimental setting. On the first training
trial, the child was introduced to a stuffed animal and told,
“Edward is a very picky bear. He only likes things like this”.
The experimenter then showed the child the egg exemplar.
To familiarize the child with the demonstration procedure
the experimenter then said, “This is an egg, and you know
what? It opens”, and opened and closed the egg. The exper-
imenter set the egg by Edward and told the child they were
going to find more eggs for Edward. The experimenter gave
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Stimulus Set Set 1 Set 2 Set 3 Set 4
Related Property rolls fits in puzzle squishes folds
Name Rel Hux Kiv Gaz
Exemplar EQJ U ‘
green yellow pink plastic
bumpy wood blue clay sponge bean bag
Orr)| € G )
Same pink green dk red pillow yellow
Shape sponge sponge sponge
purple I : green mesh- dk green
Styrofoam yellowwax | covered wood clay
Same yellow purple blue cream plastic
Material bumpy wood clay bean bag
blue red pink blue plastic
bumpy wood clay sponge bean bag
S| 1 @ S ; Q
green cloth It. blue yellow pink
Same bean bag Styrofoam Styrofoam wood
Color E
[/L—G * i
green It. blue plastic | yellow cloth pink
Styrofoam bean bag bean bag sponge

Fig. 1. Stimuli used in the experiment.

the child two test objects to explore briefly—a second egg
identical to the named exemplar, and another object that
differed from the egg in shape, color, and material. The
experimenter then retrieved the two test objects, placed
them on the tray, said, “Remember this is an egg, and it
opens (pointing to the exemplar)”. She then asked, “Can
you get another egg?” while sliding the tray towards the
child. Children were praised if they chose the egg and cor-
rected otherwise. The experimenter then gave the child the
test objects for the next trial which proceeded in the same
manner. The experimenter reminded the child that the egg
opened on each training trial. The right/left position of the
egg on the tray alternated across trials. To ensure that chil-
dren understood the task, training trials continued until
the child made four consecutive correct responses or until
they had completed eight trials, at which point the exper-

imenter continued with the test trials. All children an-
swered at least two training trials correctly.

The test trials proceeded in the same manner as the
training trials, with the exception that children’s responses
were neither praised nor corrected. For each of the four
stimulus sets, the experimenter introduced the child to a
new stuffed animal and a novel object, for example,
“Nathan only likes things like this. This is a rel, and you
know what? It rolls”. The experimenter demonstrated the
assigned property and placed the exemplar next to the ani-
mal. In order to reduce the total number of trials, and be-
cause prior studies indicated that children rarely
generalized novel names to color match test objects (Sam-
uelson et al., 2008; Samuelson & Smith, 2000a), children
did not see the color match stimuli in the forced-choice
condition. Thus, on each trial the child was presented with
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a shape match and a material match. Within each set, each
shape match was presented once with each material match
for a total of four trials per set. Before each trial, the exper-
imenter reminded the child of the exemplar’s name and
demonstrated property (e.g., “Remember, this is a rel and
it rolls”). After the child completed the four trials for one
set, they were allowed to choose a sticker to take home be-
fore the experimenter moved on to the next set. Children’s
choices were coded offline from videotape by coders una-
ware of the experimental hypotheses. Intercoder reliabili-
ties were obtained for 25% of the sessions using exact
percent agreement. Agreement between the two coders
was 94%. All disagreements were resolved by review of
the videotapes.

As in the force choice condition, the yes/no condition
began with training trials. The same training stimuli were
used. On the first training trial, the child was introduced to
a stuffed animal and told that the animal only liked eggs
and was shown a plastic egg. The experimenter demon-
strated that the egg opened and then brought out a series
of test objects one at a time and, for each, asked, “Is this
an egg?” As in the forced-choice condition, the experi-
menter reminded the child that the egg opened before
each test trial. During training, the experimenter praised
the child for correct responses and corrected incorrect re-
sponses. Each child was presented with up to eight ran-
domly ordered training trials, which included at least
two presentations of the identical egg. To ensure that chil-
dren understood the task, we required that children cor-
rectly answer four consecutive training trials in order to
be included in the analysis (c.f., Samuelson & Smith,
2000a). All children met this criterion.

The test trials proceeded in the same manner as the
training trials with the exception that the experimenter
did not praise or correct the child during these trials and
different stimulus sets were used. The experimenter intro-
duced the child to a stuffed animal, told the child the ani-
mal only “wants things like this”, named the exemplar and
demonstrated the property for the child before placing the
exemplar by the animal. Then the experimenter presented
each test object one at a time. Before presenting each test
object, the experimenter reminded the child of the exem-
plar’s property. For example, the experimenter would say
“Remember, this is a rel and it rolls”, and then present a
test object and ask, “Is this a rel?” After all six test objects
for a set were presented, the experimenter moved on to
the next set. As in previous studies using this task, we re-
quired that children say “no” to at least one test object
during the experimental trials in order to be included in
the final analyses (c.f., Samuelson & Smith, 2000a). All
children met this criterion. This provided an additional
check that children understood the task. The order of
exemplars and test objects was randomly determined
and counterbalanced across children. Children’s yes/no re-
sponses were recorded by the experimenter during the
experiment.

2.2. Results

The left panels of Fig. 2 show the proportion of shape
choices in the forced-choice task for deformable (top

panel) and rigid (bottom panel) exemplars. The right pan-
els of the figure show the proportion of yes responses to
each of the three test objects in the yes/no task for the
deformable (top panel) and rigid (bottom panel) exem-
plars. Analyses revealed no effects of relatedness (i.e.,
whether an arbitrary or related property was demon-
strated); thus, the figure collapses across this factor. The
data in the figure indicate that children’s attention to
shape when naming deformable exemplars was influ-
enced by the task, while attention to shape when naming
rigid exemplars remained uniformly high regardless of
the task. We first examined the patterns of noun general-
ization within each task using ANOVAs. We then per-
formed a set of analyses comparing data from the two
tasks directly.

2.2.1. Forced-choice task

As can be seen in the left panels of Fig. 2, children were
more likely to generalize names for deformable things by
similar material than by similar shape, but systematically
generalized novel names for rigid things by similar shape.
This was confirmed by a rigidity (rigid vs. deform-
able) x relatedness (related vs. arbitrary) repeated mea-
sures ANOVA in which both factors were within subjects.
This analysis revealed a significant main effect of rigidity
F(1,15)=29.25, p <.0001, 172 = .66, but no other main ef-
fects or interactions. t-Tests against chance confirmed that
children chose shape-matching test objects at levels signif-
icantly below chance when exemplars were deformable,
t(15)=-2.145, p<.05, d=.24, but above chance when
exemplars were rigid, t(15)=5.13, p <.001, d = 1.037.

2.2.2. Yes/no task

As can be seen in the right panels of Fig. 2, children
were more likely to generalize novel names for both
deformable and rigid exemplars by shape in the yes/no
task. Children’s yes responses were entered into a rigidity
(rigid vs. deformable) x relatedness (related vs. arbi-
trary) x test object (shape, color, material) repeated mea-
sures ANOVA. There were significant main effects of
rigidity, F(1,15)=6.32, p <.05, nﬁ = .30, and test object,
F(1,30) =28.36, p <.0001, ;712, = .65, and a significant rigid-
ity x test object interaction, F(1,30)=7.36, p<.01,
115 = .33. There were no significant main effects or interac-
tions involving relatedness. Thus, the data were collapsed
across relatedness and further analyzed via simple effects
tests split by rigidity.

For the deformable exemplars, there was a significant
effect of test object, F(1,30)=17.12, p<.0001, n; = .59.
Follow-up Fisher's PLSD tests revealed that the propor-
tion of yes responses to shape-matching test objects
was significantly higher than the proportion of yes re-
sponses to material-matching test objects which in turn,
was higher than the proportion for color-matching test
objects. For the rigid exemplars, there was also a signifi-
cant effect of test object, F(1,30)=27.53, p<.0001,
115 = .65. Follow-up Fisher’s PLSD tests revealed that the
proportion of yes responses to the shape-matching test
objects was higher than the proportions for the material-
and color-matching test objects, which did not differ
significantly.
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Fecioh Cdecro Yes/ No
Deformable
1.0 1.0 -
0.9 0.9 -
0.8 0.8
0.7 0.7
Proportion 0.6 Proportion 0.6 7
Shape 0.5 Yes 0.5
Choices 4 A T Repsonses 0.4 -
0.3 0.3 -
0.2 0.2
0.1 0.1
0.0 - 0.0 -
shape color material
Rigid
1.0 1.0 -
0.9 0.9 -
0.8 - ™ 0.8 - T

0.7 0.7 -
Proportion 0.6 Proportion 0.6
Shape 0.5 Yes 0.5
Choices ¢4 - Repsonses o4 -

0.3 0.3 - T T
0.2 0.2
0.1 0.1 -
0.0 - 0.0 -

shape color material

Fig. 2. Data from the experiment. The left panels show the proportion of shape choices for deformable and rigid exemplars following demonstrations of
related and arbitrary properties in the forced-choice task. The right panels show the corresponding proportions of yes responses to the shape-, color-, and
material-matching test objects in the yes/no task. There were no effects of relatedness so the figure collapses across this factor.

2.2.3. Comparison across tasks

Analyses of responses in each task suggest that 2.5-
year-old children generalized novel names for rigid things
by shape in both the forced-choice and yes/no tasks, but
only systematically generalized novel names for deform-
able things by material in the forced-choice task. To exam-
ine the difference in responding across tasks more directly,
we compared the yes/no and forced-choice data after con-
verting the yes/no data to proportion of shape choices via
the Luce choice rule (Luce, 1963). Specifically, for individ-
ual children the proportion of shape choices for a given
stimulus set was taken to be equal to the proportion of
yes responses to shape-matching test objects divided by
the sum of the proportion of yes responses to shape- and
material-matching test objects.! We collapsed over related-
ness in this analysis because the ANOVAs showed no signif-
icant effects of this factor. Thus, the proportion of shape
choices for the deformable and rigid sets was taken to be

1 One child in the yes/no task said “no” to all the deformable test objects.
This would result in a proportion shape score of 0 by the Luce choice rule,
even though the child did not say “yes” to any of the material-matching test
objects. Thus, to be conservative, we opted to not include data from this
child in this analysis.

equal to the average proportion of yes responses to shape-
matching test objects divided by the sum of the average pro-
portions of yes responses to shape- and material-matching
test objects. These data are shown in Fig. 3, along with the
corresponding data from the forced-choice task.

1.0+ Forced Choice

0.94
B Yes/No

T

0.8

0.7 4

Proportion 0.6+

Shape 0.5
Choices

0.4

0.34

0.2

0.1

0.0

Deformable Rigid

Fig. 3. Comparison of performance in the forced-choice and yes/no tasks
of the experiment. Yes/no data were converted to proportion shape
choices via the Luce choice rule.
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As is clear in the figure, the proportion of shape choices
made when a rigid exemplar was named did not differ
across task. Importantly, however, the proportion of shape
choices made when a deformable exemplar was named
differed markedly across tasks. We analyzed this data at
the level of individual children. Table 1 provides the num-
bers of individual children in each condition whose pro-
portion of shape choices was below chance (<.50), at
chance (=.50) or above chance (>.50) for both the deform-
able and rigid stimulus sets. As is clear in the table, with
deformable stimuli there were more children whose pro-
portion of shape choices was at or below chance in the
forced-choice condition than the yes/no condition. In con-
trast, with the rigid stimuli the numbers of children whose
proportion shape choices was above chance were almost
identical across tasks. Chi-square tests of homogeneity of
proportions revealed a significant difference across condi-
tions with deformable stimuli, »?(2)=11.23, p<.01,
w =.60, but no significant difference with rigid stimuli,
2%%(2)=3.80, ns.

2.3. Discussion

These results indicate that children equated for age and
productive vocabulary generalize names for deformable
stimuli differently when presented with a forced-choice
compared to a yes/no task. Specifically, data from the
forced-choice task suggest that 2.5-year-old children think
that rigid things are named by similarity in shape whereas
deformable things are named by similarity in material sub-
stance. In contrast, data from the yes/no task suggest chil-
dren this age do not distinguish between rigid and
deformable things in naming, and generalize names for
both kinds by shape similarity. In this way, then, data from
the two tasks lead to different conclusions about what chil-
dren know about how deformable things are named. Given
that the same stimuli were used in the two tasks and that
groups were equated for age and vocabulary level, these
data suggest that differences in the processes that bring

Table 1

Numbers of individual children in the forced-choice and yes/no conditions
of Experiment 1 whose proportion of shape choices was below chance
(<.50), at chance levels (<.50) or above chance (.<.50) for the deformable
and rigid stimulus sets. Results of chi-square tests of homogeneity of
proportions comparing the patterns of responding across the two tasks for
each stimulus set are also provided.

Condition
Forced-choice Yes/no
Deformable
Proportion shape <.50 6 2
=50 9 4
>.50 1 9
%*%(2)=11.23, p<.01
Rigid
Proportion shape <.50 2 0
=50 1 4
>.50 13 12

%%(2)=3.80, ns

Note: The total number of children reported for the yes/no task with
deformable stimuli is not equal to 16 because one child said no to all the
deformable test objects.

children’s accumulated vocabulary knowledge to bear in
each task are critical to determining the specifics of their
performance.

There are two critical differences between the forced-
choice task and the yes/no task that seem likely to influ-
ence children’s behavior. First, in the forced-choice task,
children see the two test objects at the same time in close
proximity (i.e., on the same tray), whereas in the yes/no
version of the task, children see each test object one at a
time. Thus, children can make direct comparisons between
the test objects in the forced-choice task, but must make
these comparisons in memory (if at all) in the yes/no ver-
sion of the task. Second, the nature of the forced-choice
task is to force the child to pick one object to the exclusion
of the other, whereas in the yes/no version of the task, the
child is free to say yes (or no) to all of the test items
individually.

These differences have important implications for how
children’s prior history of perceiving and acting is brought
to bear in a moment in time, that is, for how their accumu-
lated knowledge of nominal categories is brought to bear
in different novel noun generalization tasks. For example,
a relatively small bias to favor similarity in material may
be magnified when children are forced to pick between a
test object that matches an exemplar in shape and one that
matches it in material. Likewise, a relatively weak appreci-
ation of the importance of shape for deformable things
may be more robust in a yes/no task because judgments
of the similarity of shape and material test objects are
made independently. To probe these issues in greater de-
tail, we implemented these task differences in a dynamic
field model and simulated performance in the forced-
choice and yes/no versions of the novel noun generaliza-
tion task.

3. Quantitative modeling of performance across tasks

The general goal of these simulations was to examine
the possibility that different patterns of behavior can arise
in the forced-choice and yes/no tasks even when the same
stimuli are used and the same knowledge is accessed. If
this is the case, it suggests that some of the differences ob-
served in the previous experiment may arise from the spe-
cifics of the real-time processes that combine perceptual
inputs with long-term memory of how stimuli are catego-
rized to create responses in novel noun generalization
tasks. The specific goal of our modeling efforts was to
quantitatively fit the data from the experiment, that is, to
produce the particular amounts of attention to shape and
material we found in 2.5-year-olds in a model that cap-
tures the processing differences underlying the forced-
choice and yes/no tasks. Note that we did not simulate
the demonstrations of related and arbitrary properties be-
cause this aspect of the task had little influence on chil-
dren’s performance. Likewise, we did not simulate
performance with the color-matching stimuli because
these stimuli were not included in the forced-choice task.

In what follows, we first present a general overview of
our dynamic field model, including qualitative results from
single representative simulations of performance in each
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task. We then discuss the selection of the particular param-
eters we used. Finally, we present quantitative results from
our simulations of the data from the experiment, followed
by a discussion of the implications of this modeling work.
The details of the model, including the model equations,
can be found in the Appendix.

3.1. The model

The starting point for the model is work by Spencer and
colleagues modeling the dynamics of responses in forced-
choice and discrimination (same/different) tasks (Johnson,
Spencer, & Schoner, 2008; Simmering, Spencer, & Schoner,
2006; Spencer, Simmering, & Schutte, 2006). Our model, pic-
tured in Fig. 4A, is an extension of the Dynamic Field Theory
(DFT), a general theory of spatial cognition and visual work-
ing memory (see Johnson et al. (2008), Spencer, Simmering,
Schutte, & Schéner, 2007). The current work builds on prior
theoretical, computational, and empirical work using DFT to
capture real-time and developmental change in tasks rang-
ing from spatial memory to change detection to habituation
in infancy. Note that by “real-time” we are referring to the
time scale of processes that generate individual responses
within a trial. Previous work has mapped the real-time
generation of peaks in similar dynamic neural field models
to the generation of neural representations in visual cortex
and motor cortex (Bastian, Riehle, Erlhagen, & Schoner,
1998; Bastian, Schoner, & Riehle, 2003; Jancke et al., 1999).
However, this is the first application of DFT concepts to
task-specific behavior in a word learning context (for related
work, see Faubel & Schoner, 2008).

The model consists of an input field (top field in panel
A) and decision field (bottom field Panel A). The x-axis of
each field shows a set of neurons arranged by “similarity”.
Neurons that are tuned to respond to stimuli that are sim-
ilar overall (i.e., with receptive fields tuned to similar val-
ues along particular feature dimensions) would be close
neighbors along this dimension, while neurons that are
tuned to respond to stimuli that are dissimilar overall
would be far from one another along this dimension. The
activation of each neuron is plotted along the y-axis. Time
is shown along the z-axis as the sequence of events in a sin-
gle trial unfolds. Note that many models of similarity and
object categorization compute similarity as the distance
between the high-dimensional representations generated
by, say, the presentation of two objects (e.g., Kruschke,
1992; Nosofsky, 1987; Samuelson, 2002). Our use of simi-
larity capitalizes on this idea, that is, we assume a system
that can represent similarity in this way and pass metric
input regarding the distance between two items to the
decision field probed here (for an additional discussion of
the concept of “similarity” in dynamic field models, see
the Section 5 and Faubel & Schoner, 2008). Importantly,
we assume that the metric similarity input to the model
reflects similarity in the context of a naming task (see dis-
cussion of parameters below). Note also that the strength
of inputs captures the salience of each item. Salience can
be affected by multiple factors such as long-term learning
about which features of objects are important for word
learning, or factors such as whether an item is within
graspable space.

The stimuli were presented to the model via the input
field. Inputs took the form of Gaussians representing the
exemplar (leftmost peak) and two test objects, positioned
according to their relative similarities (see Section 3.2).
The number of test objects presented to the decision field
differed according to the task (see below). The exemplar
was present throughout the trial in both tasks, but its acti-
vation was lower because it is farther from the child.

The time-dependent processes (i.e., the dynamics) that
determine the model’s response occur in the decision
field. Neurons in this field interact according to a local
excitation/lateral inhibition function, a form of interaction
common in neural models of cortical function (e.g., Dur-
stewitz, Seamans, & Sejnowski, 2000). This means that
neurons close to one another along the similarity dimen-
sion excite one another while neurons far apart inhibit
each other. The local excitation/lateral inhibition function
allows the network to form stable peaks of activation that
represent behavioral decisions to, for instance, select a
particular input in a forced-choice task. It is also possible,
however, that the model will fail to form an activation
peak. Whether this occurs depends on the similarity of in-
puts, the strength of neural interactions (i.e., the details of
the interaction function), and the resting level of the neu-
rons in the field. The critical differences between the
forced-choice and yes/no versions of the novel noun gen-
eralization task emerge from differences in the strength
and time structure of the inputs and from the interactive
dynamics of the decision field. These differences are de-
scribed below.

3.1.1. Dynamics of the forced-choice task

In the forced-choice version of the novel noun general-
ization task, the child is presented with two test objects at
the same time and encouraged to pick one on each trial.
Thus, children have the opportunity to compare the test
objects directly and have to make a relatively constrained
response—select one object over the other. As can be seen
in the top field of Fig. 4A, on each trial the model is also
presented with two test objects at the same time and
encouraged to pick one—that is, to form a peak of activa-
tion centered at one input or the other. To capture the
highly selective nature of this task, we made the inputs
strong and the decision field competitive (i.e., neurons
interact strongly). This allows for a detailed “comparison”
between stimuli. Fig. 5 shows the interaction kernels for
each task (see Table 2 for specific parameter values). As
can bee seen in the figure, the parameters that structured
the interaction dynamics in the forced-choice task were
such that the decision field started relatively far from
threshold (see h; in Table 2) and had strong levels of inhi-
bition (see wirc in Fig. 5) with strong excitatory interaction
(Werc in Fig. 5) and strong inputs (x). Consequently, the
decision field reflected the inputs strongly and was highly
competitive. When the tray was moved forward and the
resting level boosted (see h, in Table 2), competition in-
creased and the field was forced to make a selection.
Importantly, this set of parameters put the field in a regime
in which the peak that formed was centered at the location
of one of the two test objects, rather than at an indetermi-
nate location or at the location of the exemplar.
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Fig. 4. Dynamic field model used to simulate differences in performance in forced-choice and yes/no tasks. Model consists of an input field (top field in
Panel A) and decision field (bottom field Panel A). The x-axis of each field represents a set of neurons arranged by “similarity”. Activation of each neuron is
plotted along the y-axis. Time is shown along the z-axis as the sequence of events in a single trial unfolds. Panel A depicts a forced-choice trial. The top two
fields in Panel B depict a yes/no trial with similar inputs, the bottom two fields, a yes/no trial with dissimilar inputs. See text for further details.
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Fig. 5. Interaction functions for the decision field when the model performed the forced-choice (solid line) and yes/no (dashed line) tasks. The solid line at 0
marks the difference between excitatory interactions and inhibitory interactions. Bars indicate magnitude of parameter values given in Table 2. See text for
details.

Table 2

Parameters used in model simulations. Parameters in the upper half of the table structured the interactive dynamics in the response field for the forced-choice
and yes/no tasks. Parameters in the lower half of the table specified the Gaussian inputs for the deformable and rigid test sets. The three values of each
parameter in this section correspond to the exemplar, shape-matching test object, and material-matching test object, respectively. See text for discussion.

Parameters for interactive dynamics

Forced-choice Yes/no Description
Interaction inhibition (wy) 7.0 1.0 How much neurons inhibit each other
Interaction strength (we) 20 8.68 Amount of interaction between neurons
Initial H level (hy) -15.0 -5.0 Resting level of field
Response H level (hy) -2.0 —2.365 Field resting when response requested
Input gain () 6.7 1.0 Strength of input to decision field
Input parameters
Deformable (exemplar, shape, material) =
Input width (op) 60, 20, 22
Input centers (Xcp) 21, 41, 56
Input strength (Ap) 1.0, 1.3163, 1.3623
Rigid (exemplar, shape, material)
Input width (oR) (60, 20, 26) (.80)
Input centers (Xcr) 21, 41, 56 O A
Input strength (AR) 1.0, 1.3690, 1.3670
X
v Y
The course of events as a single forced-choice trial unfolds field at the top) are fed into the decision field (lower field
can be seen in the bottom field of Fig. 4A. At the start of the in panel A). The decision field is given a boost of activation

trial (back of figure), all three inputs (pictured in the input at the point in the trial corresponding to when the tray
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with the test objects is slid towards the child and a request
for a response is made. In the model, this change increases
both competition among the neurons and the overall acti-
vation in the field, thereby forcing the creation of a single,
stable peak centered at one of the test objects. As can be
seen in the figure, on this trial the model formed a peak
at the location of the material-matching test object; thus
it “picked” this test object.

3.1.2. Dynamics of the yes/no task

In the yes/no version of the novel noun generalization
task, the child is presented with each test object individu-
ally and must make a yes or no response for each. Conse-
quently, the judgments children make concerning each
test object are relatively independent in this task—children
can say “yes” or “no” to each test object. Overall then, the
decisions children make in the yes/no task are less con-
strained and are more sensitive to the similarity of an indi-
vidual test object and the exemplar. As can be seen in the
top field of Fig. 4B, the model was also presented with one
test object at a time and made an independent judgment of
each. The formation of a stable peak in the decision field
represented a “yes” response and the failure to form a sta-
ble peak, a “no” response. To capture the greater reliance
on overall similarity in the yes/no task, we made neurons
in the decision field more excitable and less competitive
(see weyy in Fig. 5), thereby allowing more blending across
stimuli with good sensitivity to overlap in the input. In the
yes/no task, the decision field started closer to threshold
(h;) with weaker inhibition (see w;yy in Fig. 5) and weaker
inputs (x). Consequently, inputs (in this case, only one test
object and the exemplar) could blend, and the slight boost
in the resting level (h,) at the time a response was re-
quested allowed for the formation of a stable peak of acti-
vation provided there was enough overlapping activation.

The top two fields of Fig. 4B show a simulation of a trial
where there is relatively high similarity between the
exemplar and the test object, while the bottom fields show
a simulation with relatively low similarity. As can be seen
in Fig. 4B, when the inputs are close together, the locally
excitatory interactions among neurons in the decision field
cause the activation associated with these stimuli to blend
and increase over time, ultimately combining to form a
single activation profile. If this activation reaches a critical
threshold—an activation level above 0—the model forms a
self-sustaining peak and responds “yes” (second field from
top in Fig. 4B). As can also be seen in the figure, however,
when the inputs are farther apart, activation patterns do
not blend in the decision field. Thus, no above-threshold
peak is formed and the model responds “no” (bottom field
in Fig. 4B).

3.1.3. Summary of qualitative results

Considered together, the simulations in Fig. 4 highlight
that the details of the processes that bring knowledge to
bear in a task have a critical influence on the specifics of
the resulting performance. In particular, note that the exact
same inputs were used in the simulations presented in panels
A and B of Fig. 4. In the forced-choice task, the model picked
the material-matching test object which was slightly
stronger. However, when this same test object was pre-

sented in the yes/no task, the fact that this test object
was relatively far from the exemplar meant that the model
failed to generate a self-sustaining peak and responded
“no”. In contrast, when the input representing the shape-
matching test object was presented in the yes/no task,
the shared similarity caused a self-sustaining peak to form
and the model responded “yes”. Thus, given the exact same
inputs in the two tasks, the model generalized the names
differently, demonstrating a material bias in the forced-
choice task, but a shape bias in the yes/no task. The central
question, then, is whether these qualitative insights can be
extended to provide a quantitative account of the findings
from the experiment.

3.2. Method

3.2.1. Model parameters

Table 2 lists the model parameters organized as “inter-
action” parameters that structured the interactive dynam-
ics in the decision field for the forced-choice and yes/no
tasks, and “input” parameters that specified the Gaussian
inputs for the deformable and rigid stimulus sets. We dis-
cuss constraints on parameter selection below.

Parameters for interactive dynamics: Selection of the val-
ues for the interaction parameters was constrained by the
theoretical proposals reviewed above regarding the nature
of the decision dynamics in the forced-choice and yes/no
tasks. That is, the parameters that specified the interactive
dynamics for each task were selected to implement the
hypothesis that the forced-choice task requires children
to be highly selective while performance in the yes/no task
depends more on the overall similarity between an indi-
vidual test object and the exemplar. If our selected param-
eters then capture differences in children’s performance
between tasks, this will support our theoretical proposal
about the critical processes that underlie performance in
the two tasks.

Note that in the forced-choice task, the model was re-
quired to choose one of the two test objects by building a
peak of activation in the decision field centered on the
location of one of the two input peaks. In contrast, the par-
ticular response made in the yes/no task depends on
whether or not a stable peak of activation forms, not on
the exact location of that peak. Thus, we did not require
that the parameters for the yes/no task place the field in
a regime that constrained peak formation to the location
of an input. We did verify, however, that peaks did not
form outside the range of the inputs to ensure that they
were the result of the interaction of the inputs, not spuri-
ous peaks created by noise.

As can be seen in Table 2, five parameters that deter-
mined the competitive nature of the interactions were var-
ied across tasks. Conceptually, these parameters specify
how children’s attention is modulated by the specifics of
the task (see Section 2.3 for further details).

Input parameters: Selection of the input parameter val-
ues was constrained by the goal of presenting the same ri-
gid and deformable inputs in the two tasks and by the
necessity of finding reasonable parameters given what is
known about children’s attention to shape and material
in novel noun generalization tasks. In addition, we wanted
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to be able to manipulate the inputs to examine possible
constrains on the interface between children’s knowledge
and task performance (see Section 2.3). The inputs that
represented the exemplar, shape-matching, and material-
matching test objects for the deformable and rigid sets
were represented by two sets of three Gaussians. Each
Gaussian was specified by three parameters: (1) input cen-
ter (x), (2) input width (o), and (3) input strength (A). The
final parameter values are given in Table 2. In the table, the
values given for each parameter are for the exemplar,
shape-matching test object, and material-matching test
object, respectively. Differences in relative position,
strength, and width of the inputs within and across input
sets can be taken to capture overall similarity, strength,
and precision of the representational states, respectively,
that were created when children viewed the stimuli in
the context of a novel noun generalization task.

As can be seen in the table, the input width values for
test objects for both the deformable (gp) and rigid (o) sets
were not as broad as the exemplar in either set. This is be-
cause the test objects were always presented closer to the
children than the exemplar and were the focus of chil-
dren’s attention. The fact that the shape-matching test ob-
ject was a bit narrower than the material-matching test
object in each set fits with data suggesting children make
distinctions in noun generalization based on shape similar-
ity before they make similar distinctions based on material
similarity (Gathercole & Whitfield, 2001; Landau et al.,,
1988; Samuelson & Smith, 1999). Note that for the rigid
stimuli, the input width values were scaled by .80. This fits
with the fact that rigid things generally have more precise
featural characteristics than deformable things.

The same input center values were used for the both the
deformable (xcp) and rigid (xcr) sets. In both sets, the
shape-matching test object was more similar to the exem-
plar (i.e., their centers were closer) than the material-
matching test object. For the deformable set, the greater
similarity of the shape-matching test object to the exem-
plar fits with the fact that deformable things have charac-
teristic shapes that they return to following perturbations.
Similarly, for the rigid set, the greater similarity of the
shape-matching test object fits the fact that rigid things
maintain their shape over transformations. The greater
similarity of shape-matching test objects to the exemplar
in both sets also fits with data suggesting that children
have learned an association between the importance of
shape similarity and naming tasks such as the ones we
are modeling (Landau et al., 1988; Samuelson, 2002; Smith
& Samuelson, 2006; Smith et al., 2002).

The input strengths were slightly different for the two
kinds of stimuli. Specifically, for the deformable sets, the
material-matching test object had a slightly higher
strength than the shape-matching one. This reflects the
importance of material for what can be done with deform-
able things, especially in a task in which a demonstration is
used to highlight the material composition of some of the
stimuli. The two test objects were more similar in strength
for the rigid set, though the shape-matching test object
was slightly stronger to reflect the importance of shape
for what can be done with rigid things. It is also important
to emphasize that the particular strength values in Table 2

were multiplied by the input gain (k) for each task. Thus,
the small differences in the strength of the material- and
shape-matching test objects within a set were amplified
in the forced-choice task relative to the yes/no task due
to the greater input gain.

Fig. 6 depicts the inputs for the deformable and rigid
sets that result from the final parameters. This figure high-
lights the similarity of the inputs across sets. Nevertheless,
we will see that these small differences had a substantial
impact on the model’s performance in the context of the
interactive dynamics of the decision field.

3.2.2. Simulation details

Simulations were conducted in MATLAB (Mathworks
Inc.) on a PowerMac G5 with dual 2.7 GHz processors
(the MATLAB code is available from the first author on re-
quest). The dynamic field equation was integrated using
the Euler method. Each run of the model in each task sim-
ulated a single trial. A network with 101 neurons was used
for all simulations. Trials began with the field at the level
specified by h;. The inputs were then presented for 610
time steps. Following this, the resting level was boosted
to the level specified by hj,. The response was determined
after an additional 500 time steps. The response in the
forced-choice task was found by taking the location of
the maximum activation in the decision field at the end
of the simulation and determining which of the two inputs
it was closest to. Individual simulations verified that the
peaks that formed were at the exact location of one of
the test objects. For the yes/no task, the response was ta-
ken as a “yes” if the field formed a stable peak and a
“no” otherwise (responses were checked to ensure that
peaks always formed within the range of the inputs). We
conducted 200 repetitions of individual trials from each
task with each stimulus set (deformable and rigid), and
verified that the model converged on similar values across
10 sets of 800 simulations (200 repetitions x 2 tasks x 2
stimulus sets).

3.3. Results and discussion

We calculated the mean number of times the model se-
lected the material- or shape-matching test object in the
forced-choice task as well as the mean number of “yes”
and “no” responses in the yes/no task for the deformable
and rigid stimulus sets. The data from the model simula-
tions along with the corresponding data from the experi-
ment are presented in Fig. 7. As is clear in the figure, the
model fit the experimental data extremely well. To quan-
tify the fit, we calculated the root mean squared error
(RMS) across the two stimulus sets and two tasks. This va-
lue was .02 for the pictured simulation. We also examined
the average RMS for the 10 sets of 800 simulations we con-
ducted. The average was .04 with a standard deviation of
.014 and a range of .02-.06. Thus, the model’s performance
shown in Fig. 7 was quite robust.

Like the 2.5-year-old children in the experiment, the
model generalized novel names for deformable things by
material in the forced-choice task but by shape in the
yes/no task, and generalized novel names for rigid things
by shape in both tasks. The excellent fit of the model to
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the data even though we used the same stimulus sets
across tasks thus confirms the importance of the task
dynamics in shaping children’s behavior when generaliz-
ing novel nouns. These simulation results support the idea
that the way children are asked to generalize novel names
can create different patterns of performance even when
the same accumulated vocabulary knowledge is accessed.

The robust fit of the dynamic field model to the data
may lead some to question whether the model is actually
too general and whether it could “model anything”. The
answer is no. The dynamic field equations capture strong
theoretical assumptions, for example, that input is local-
ized, that the interaction functions are homogeneous and
symmetrical, and that inputs can be superimposed. Thus,
simulation of any arbitrary input-output mapping is pre-
cluded by the internal structure of the DFT. Put differently,
the DFT implements a form of nonlinear decision making
where only the right convergence of inputs and interaction
dynamics will put the field into a state that creates a stable
peak. Thus, there are real constraints on processing in this
model ensuring that it cannot capture just any input-out-
put mapping.

Another critical question, however, is whether the de-
tails of the quantitative simulations are meaningful in
the context of the extant literature. To evaluate this issue,
we conducted a set of follow-up analyses of the model’s
performance. We first asked whether the ordering of the
inputs on the similarity dimension was critical to the re-
sults. Recall that the shape-matching test object was closer
to the exemplar for both the rigid and deformable input

sets. This configuration implies that the shape-matching
test object is more similar to the material-matching one
in the representational state created when children view
these stimuli in these tasks. To test the necessity of this
similarity relationship for the obtained results, we set up
inputs in which the material-matching test object was
more similar to the exemplar than the shape-matching test
object in the deformable stimulus set. Even though this set
of inputs was otherwise quite similar to the final set, we
were not able to capture the full pattern of results seen
in Fig. 7 with inputs structured this way.

More specifically, we were only able to adequately cap-
ture data from one task at a time with the deformable in-
puts structured in this way. In order to capture children’s
yeses to the deformable shape-matching test object in
the yes/no task, the shape-matching test object must over-
lap somewhat with the exemplar. However, this configura-
tion causes the material-matching test object to be so close
to the exemplar that the model chooses it more than the
children did in the forced-choice task. This is the critical
trade-off seen in children’s performance in these tasks—
they are sensitive enough to importance of shape for
deformable things that they do generalize novel names
for deformable things by shape in the yes/no task. How-
ever, when forced to choose between shape- and mate-
rial-matching test objects, they generalize novel names
by material similarity more often. This trade-off is realized
in the parameters for the deformable set—the shape-
matching test object is necessarily closer to the exemplar,
resulting in “yes” responses in the yes/no task, but the
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Fig. 7. Mean proportion of times the model (white bars) selected the shape-matching test object in the forced-choice task as well as the mean proportion of
yes responses to the shape and material-matching test objects in the yes/no task for the deformable and rigid stimulus sets. The corresponding data from

children in the experiment are also presented (black bars).

material-matching test object is stronger, resulting in its
greater selection in the forced-choice task.

There is another element of children’s responses, how-
ever, that the model is also able to capture—the fact that
children’s responding is variable. In particular, children
do not always pick the material-matching test object with
the deformable stimuli in the forced-choice task, and do
not always say “yes” to the shape-matching test object in
the yes/no task. Our use of noisy inputs (see Appendix) is
critical to this result. This noise model implies that the rep-
resentational states created when children view these
stimuli in these tasks are somewhat variable, although,
importantly, this noise is coherent across individual inputs.
This means that in the highly-selective forced-choice task,
for instance, the (typically) weaker test object may be cho-
sen if noise boosts it’s activation above the level of the
(typically) stronger input. At the same time, noisy inputs
mean that sometimes test objects that are relatively close
to the exemplar are weakened such that they cannot sup-
port the formation of a stable peak and a “yes” response.
Thus, the fit seen in Fig. 7 only emerges when the right

set of inputs are given to a model with just the right inter-
active dynamics. This fact serves to further validate the rel-
ative positioning of the test objects and exemplar shown in
Fig. 6, and highlights the importance of the interaction be-
tween the specific inputs and the task dynamics in creating
behavior.

One final issue with respect to the modeling work pre-
sented thus far is the relation between the different inter-
action functions used to model the two tasks and the
participants in our experimental task. In particular, do dif-
ferences in the interactive dynamics used to capture per-
formance in the two tasks correspond best to different
sets of processes in two different children, or can they be
seen as task-related differences that emerge on-line in an
individual child engaged in a specific task? A close exami-
nation of the five interaction parameters that changed
across the two tasks suggests the latter. In particular, these
parameters may be best viewed as arising from a real-time
attentional modulation of the neural circuits responsible
for decision making in these two tasks. For example, the
large value of the input gain parameter, x, in the forced-
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choice task can be thought of as an attentional boost re-
lated to the amount of stimulation provided by having
multiple inputs simultaneously present. Prior work has
demonstrated such changes can occur via attentional sys-
tems in real-time in individual participants (Desimone &
Duncan, 1995).

The task differences in the initial resting level, h;, and
the resting level boost during the response, h,, can be
viewed in a similar way. The parameter, h, is a constant
added equally to all locations in the field. Thus, rather than
specifying where a peak should form, this parameter mod-
ulates the possibility that a peak will form by moving the
decision field closer to the peak-formation threshold. Con-
ceptually, the shift in h during the trial reflects the boost in
children’s attention to the test objects as the tray is slid
forward in the forced-choice task or the children are asked
to give a response in the yes/no task. Note that from this
perspective, the smaller boost in the yes/no task corre-
sponds to the fact that the stimuli are never moved within
reach of the child.

The between-task differences in the final two parame-
ters, interaction inhibition, w;, and interaction strength,
We, are captured in Fig. 5. As can be seen in the figure,
the interaction functions for the two tasks are actually very
similar, but the function for the forced-choice task has
been lowered and stretched. The lowering is due to the
higher inhibition value used in the forced-choice task.
The stretching of the forced-choice function is due to the
greater interaction strength used in this task, which cre-
ates a greater degree of interactivity overall. Importantly,
both of these changes can be produced in a more neu-
rally-realistic dynamic field model with separate excit-
atory and inhibitory layers by changing the resting levels
(h) of both layers (Schutte & Spencer, in press; Spencer
et al., 2007). Because these changes can be created through
the modulation of global resting levels, they can also be
thought of as arising via an attentional modulation of the
neural populations involved in decision making in these
tasks.

4. Quantitative modeling of developmental changes

Our dynamic field model captures important differences
in the processes that underlie performance in forced-choice
and yes/no novel noun generalization tasks. The excellent
fit of the model to the data from 2.5-year-old children in
these tasks confirms that the interaction of the input and
task dynamics can result in different patterns of noun gen-
eralization when the same knowledge representations are
processed in two different tasks. Thus, the experimental
and simulation results thus far support the perspective that
knowledge cannot be separated from the processes that
bring it to bear in a task, and helps explain why what chil-
dren appear to know can look different from task to task. In
this section, we extend the modeling work further by
exploring another important finding in the literature on
children’s novel noun generalization—developmental
changes in noun generalization from 2 to 4 years of age.
We focus on one recent set of experiments that demon-
strate changes in noun generalization in a yes/no task.

Samuelson et al. (2008) examined novel noun general-
ization in 2-, 3-, and 4-year-old children using the same ri-
gid and deformable stimuli used in Experiment 1. The data
are shown in Fig. 8 (black bars) along with the data from
2.5-year-old children in the current paper. As is clear in
the figure, these data suggest differences in the proportion
of “yes” responses across rigid and deformable stimulus
sets, shape- and material-matching test objects, and age.
Our modeling work thus far has captured differences in
the amount of shape responding for rigid and deformable
sets in the yes/no task, as well as differences in the propor-
tion of yes responses to shape- and material-matching test
objects. Our question, then, was whether the DF model
could capture developmental differences in responding in
the yes/no task as well.

Three developmental effects stand out in Fig. 8. First,
the proportion of yes responses to test objects that match
rigid exemplars in shape increases from 2 to 3 years of
age and remains high (see A in Fig. 8). Second, the propor-
tion of yes responses to test objects that match both rigid
and deformable exemplars in material drops over this per-
iod of development (see Bs in Fig. 8). Finally, 3-year-old
children demonstrate a higher rate of yes responses to test
objects that match deformable exemplars in shape (C in
Fig. 8; see also Samuelson & Smith, 2000a), compared to
2- and 4-year-old children (see Samuelson et al. (2008)
for statistical analysis and replication of the high shape
responding in 3-year-old children).

To capture these developmental differences in the
model, we instantiated two hypotheses about changes
over development in how children actively represent
stimuli in a naming context captured by the input array:
(1) that the association between shape and naming in-
creases over development and (2) that stimulus represen-
tations become less noisy (i.e., more stable) over
development. The first hypothesis fits with a number of
studies in the literature on early word learning that sug-
gest children’s attention to shape when naming novel ob-
jects becomes stronger over development (Gershkoff-
Stowe & Smith, 2004; Landau et al.,, 1988; Samuelson &
Smith, 1999; Smith et al., 1992). The second hypothesis
fits with recent arguments concerning the nature of
developmental change and work using similar DF models
(Schoner & Dineva, 2007). For example, Schutte and
Spencer (in press) captured the pattern of developmental
change in young children’s spatial memory via changes in
the specifics of the local excitation/lateral inhibition func-
tion in a DF model of spatial cognition. These changes in
neural interaction resulted in more stable representations
of items in working memory, that is, reduced noise in
how children actively represented stimuli as hypothe-
sized here. The critical question is whether the complex
pattern of results would emerge when these two devel-
opmental changes to children’s representations interact
with the real-time decision processes captured in the
model.

4.1. Methods

The model was identical to that used previously except
where noted below. That is, we used the same interactive
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Fig. 8. Mean proportion of yes responses by 2-, 2.5-, 3-, and 4-year-old children (black bars), and the DF model (white bars) to shape- and material-
matching test objects in the yes/no task for deformable and rigid stimulus sets. Thirty-two month-old data are from the current paper. Two-, 3- and 4-year-

old data are from Samuelson et al. (2008).

dynamics parameters for the yes/no task and the same in-
put parameters for the rigid and deformable stimuli. To
simulate development (2-, 3-, and 4-year-old children),
we scaled the noise strength, ¢, and varied the strength
of the shape inputs relative to the values used previously
for our simulations of the data from 2.5-year-old children.
Specifically, noise strength (q) decreased systematically
over development, while the strength of the shape inputs
increased over development. The differences in noise and
shape strength relative to the prior simulations are de-
picted in Fig. 9.

Simulations were conducted in MATLAB (Mathworks
Inc.) on a PowerMac G5 with dual 1.8 GHz processors.
Otherwise, the simulations were identical in detail to the
previous set. Each run of the model simulated a single trial
with a given stimulus set. We conducted 200 repetitions
with each stimulus set (deformable and rigid) at each
developmental level, and verified that the model con-
verged on similar values across 10 sets of 400 simulations
(200 repetitions x 2 stimulus sets) at each developmental
level.

4.2. Results and discussion

We calculated the mean number of times the model
made “yes” and “no” responses for the deformable and ri-
gid stimulus sets at each developmental level. Data from
the model simulations are presented in Fig. 8 (white bars).
As is clear in the figure, the model fit the data very well. To
quantify the fit, we calculated the root mean squared error
across the two stimulus sets and three developmental lev-
els. This value was .04 for the pictured simulation. We also
examined the average RMS for the 10 sets of 400 simula-
tions we conducted at each age level. The average was
.05 with a standard deviation of .014 and a range of .03-
.08. Thus, the model’s performance shown in Fig. 8 was
quite robust.

These simulations, then, suggest that changes in young
children’s attention to shape and material from 2 to 4 years
of age are related to changes in the strength of the link be-
tween naming tasks and attention to shape, and the preci-
sion of the representational states created when children
view the stimuli in these tasks. Both of these developmen-
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Fig. 9. Change in noise strength (q) and shape strength parameters across simulated developmental levels relative to simulations of 2.5-year-old children.

tal hypotheses have support in the literature. Nevertheless,
an important question is whether both of these changes are
necessary to create the observed pattern in the data. To
examine this issue, we attempted to capture the pattern
of results seen in Fig. 8 in two additional sets of simulations
that included changes to either noise strength or shape in-
put strength separately. In the simulations that manipu-
lated noise strength only, the best parameter values were
.05, .045, and .038 for the 2-, 3-, and 4-year-old simulations,
respectively. These values resulted in a average RMS of .05
for the best single run at each developmental level, but an
overall average RMS of .078 (SD=.039, range .02-.14)
across 10 sets of 400 simulations at each developmental le-
vel. A two sample t-test revealed that the RMS values for
the noise-only simulations were significantly poorer than
those for the main simulations reported above, t(58)=
—3.65, p <.001. This poor performance is due to the fact
that reducing noise in the model serves to reduce the num-
ber of “yes” responses overall, which is not the develop-
mental pattern children show between 2 and 4 years of
age. Four-year-old children do show an overall reduction
in yes responses compared to 3-year-old children. How-
ever, between 2 and 3 years of age, the number of yes re-
sponses increases for shape-matching test objects while
decreasing for material-matching test objects (compare A
and B in Fig. 8). Thus, while changing noise strength alone
results in relatively low RMS values, there is no consistent
set of changes to this parameter alone that can simulta-
neously capture children’s responding to the shape- and
material-matching test objects.

A similar pattern emerged in the simulations that manip-
ulated shape input strength only. The best parameter values
for this set of simulations were 1.00000001, 1.00036, and
.9995 for the 2-, 3-, and 4-year-old simulations, respectively.
Because the difference in 2.5- and 3-year-old children’s

responding was captured in the main simulations with a
change in the noise strength parameter alone, we used the
main simulations for 2.5-year-olds in this follow-up. These
values resulted in a average RMS of .08 for the best single
run at each developmental level, and an overall average
RMS of .088 (SD =.026, range .04-.13) across 10 sets of 400
simulations at each developmental level. A two sample
t-testrevealed that the RMS values for the shape-multiplier-
only simulations were significantly poorer than those for the
main simulations reported above, t(58)= —6.87, p < .001.
This poor performance is due to the fact that increasing the
strength of the shape input does not influence responding
to the material-matching stimuli which contrasts with re-
sults shown in Fig. 8. Thus, while changing shape strength
alone results in relatively low RMS values, it does not cap-
ture the full pattern of results. In particular, there are no con-
sistent set of changes to the shape input strength alone that
can capture both the increase the number of yeses to test ob-
jects that match exemplars in shape and the decrease in the
number of yeses to test objects that match exemplars in
material that children show over development.

Overall, then, these simulations suggest that our dy-
namic field model can capture important developmental
differences in children’s noun generalization from 2 to 4
years of age with relatively modest and conceptually
appealing changes to two parameters. These parameters re-
flect the strength of attention to shape in naming tasks and
the amount of noise in the representations children form
when viewing the stimuli in a naming context. Thus, these
changes correspond to prior hypotheses concerning the
nature of developmental change in novel noun generaliza-
tion (Jones & Smith, 1993; Samuelson, 2002; Smith, 2001;
Smith & Samuelson, 2006; Smith et al., 2002) and the stabil-
ity of children’s representations (Schéner & Dineva, 2007). To-
gether with the prior simulations of performance differences
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in forced-choice and yes/no tasks, the DFT provides novel
insights into how knowledge is brought to bear in a mo-
ment and how that knowledge changes over development.

5. General discussion

The goal of this paper was to examine the processes
that bring young children’s knowledge of nominal catego-
ries to bear as they generalize novel nouns. As in prior
studies, we found that children robustly generalize novel
names for rigid objects by similarity in shape, and that this
bias appears in both forced-choice and yes/no novel noun
generalization tasks (Booth et al., 2005; Landau et al,,
1988). Nevertheless, we found that children generalized
names for deformable things by material in a forced-choice
task, but not in the yes/no task, even though the children’s
age and vocabulary size were equated across tasks, and all
children saw the same stimuli and demonstrations high-
lighting the material of deformable exemplars. This task-
dependent performance when generalizing names for
deformable things fits both with prior studies of noun gen-
eralization (Gathercole & Min, 1997; Samuelson et al.,
2007; Samuelson & Smith, 2000a), and adult judgments
of the similarity structure of categories of deformable
things (Samuelson & Smith, 1999, 2000a). The current
work makes a contribution by showing how the interaction
of represented knowledge and task processes can result in
consistent performance across tasks in some cases (rigid
stimuli) and variable performance in others (deformable
stimuli).

A dynamic field model that captured critical differences
in the decision processes in the forced-choice and yes/no
tasks provided a demonstration that processing differences
can yield behavioral differences between tasks even when
the same vocabulary knowledge is accessed. This model
also provided an excellent quantitative fit to the experi-
mental data from both the rigid and deformable stimulus
sets. Further, the model was able to capture developmental
changes in children’s performance in the yes/no task. In
this way, then, the model provides a window onto both
the real-time processes that can produce different patterns
of responses in different task contexts, and what changes
developmentally to produce different performance at dif-
ferent ages (see also Plumert, 2008).

5.1. Real-time processes

The DF model presented here is the first processed-
based model of the real-time noun generalization behav-
iors that form the basis of current theories of early word
learning. As such, one key contribution of our DF model
of children’s naming behaviors comes from the real-time
specification of the processes that bring children’s knowl-
edge of nominal categories to bear in different noun gen-
eralization tasks. Studies of the early noun vocabulary
have documented a clear and systematic association be-
tween nominal categories of rigid things and the impor-
tance of shape for category organization (Samuelson,
2000; Samuelson & Smith, 1999; Samuelson et al., 2008).

These studies also suggest a more complex relationship
between nominal categories of deformable things and
the importance of shape and/or material for category
organization. We contend that the more complex relation-
ship between category organization and naming for
deformable things allows signatures of real-time pro-
cesses to be seen in children’s noun generalizations—chil-
dren generalize names for deformable things by shape in
yes/no tasks, but by material in forced-choice tasks (see
also Gathercole & Min, 1997; Samuelson et al.,, 2007;
Samuelson & Smith, 2000a). Our DF model suggests that
the key processing difference reflected in these behavioral
data is grounded in the competitive nature of the forced-
choice task that allows for direct comparison of the test
objects and asks the child to pick one object relative to
the yes/no task that does not. In the DF model, decisions
in the forced-choice task are based on which input peak
wins the competition and suppresses other competitors
to enter a self-sustaining state. In contrast, decisions in
the yes/no task are based on the similarity of each individ-
ual test object input to the exemplar; if the input is similar
enough it will blend with the exemplar’s input in the deci-
sion field and will create a self-sustaining peak (a “yes”
response). The excellent fit of the simulations presented
here to children’s data support our proposal regarding
the differing processes at work in the two tasks. In addi-
tion, the simulations support the proposals that attention
to material is slightly stronger for categories of deform-
able things, resulting in generalization by material in the
forced-choice task, but that things that match in shape
are more similar overall, resulting in generalization by
shape in the yes/no task.

This modeling work suggests that further exploration of
these real-time processes could help clarify some of the
discrepancies in the literature on early noun learning. For
example, Gershkoff-Stowe and Smith (2004) found that it
was not until children had 50 nouns in their productive
vocabulary that they began to demonstrate a shape bias
with rigid stimuli. In contrast, Booth et al. (2005) found
that 18-month-olds with an average of 19 count nouns in
their productive vocabulary generalized novel names for
novel rigid objects by shape. The work presented here sug-
gests that these differences may reflect the importance of
real-time comparison processes in determining how chil-
dren’s accumulated knowledge of nominal categories man-
ifest in the particulars of young children’s noun
generalizations. Gershkoff-Stowe and Smith (2004) used
a five-item forced-choice task. In contrast, Booth et al.
(2005) used a three-item forced-choice task that included
multiple named exemplars and vignettes describing the
exemplars as artifacts. More test objects means that chil-
dren have more items to attend to and more comparisons
to make when generalizing a novel name. In the DFT, the
presentation of multiple choice items increases competi-
tion among the choices. This would reduce the influence
of the small differences in the strength of inputs to the
model that were critical to capturing the current data,
and would thus lead to more chance responding by the
model (for evidence that the number of choices influences
behavior in the DFT see Spencer et al. (2006)). This
suggests then, that children may be able to demonstrate
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a reliable shape bias based on weaker underlying
representations of the stimuli in a three-item forced-
choice task compared to a five-item forced-choice task.
Likewise, the supports Booth et al. (2005) added to their
task (e.g., presenting multiple exemplars and a contrast
item, and naming exemplars multiple times in vignettes)
may have also helped younger children make decisions
based on weaker underlying knowledge.

Thus, this modeling work serves as a reminder that
when children acquire 50 nouns, it is not the case that a
switch flips in their head turning on a shape bias. Rather,
the behavior we call the shape bias is the emergent prod-
uct of children’s accumulating knowledge of how things
are named and the real-time processes of the task (Sam-
uelson & Smith, 2000b). As children acquire more and
more words, they learn more and more about the regular-
ities inherent in the language they are learning. For chil-
dren learning English, one of these regularities is that
many count nouns refer to solid things in categories orga-
nized by similarity in shape (Gathercole & Min, 1997;
Samuelson & Smith, 1999). This accumulating knowledge
can serve as the basis of novel noun generalizations and
subsequent word learning as captured by the Attentional
Learning Account proposed by Smith and colleagues to ex-
plain the development and realization of the shape bias
(Smith, 2000; Smith & Samuelson, 2006; Yoshida & Smith,
2003). What the current work adds to this is a demonstra-
tion of the importance of the real-time processes in mak-
ing that connection between the child’s prior word
learning history and the here-and-now of a novel word
in a novel situation with novel stimuli. In this sense, our
model highlights that differences in the specific results
of individual studies are not problems, but rather, impor-
tant windows onto the underlying real-time processes
that have received relatively little attention in work on
early word learning.

Another key contribution of the model in this context is
that it is, to our knowledge, the first real-time process
model of the comparison processes in word learning tasks
(for other process models of comparison see, e.g. Gold-
stone, 1994; Larkey & Love, 2003). Based on studies in in-
fant categorization, early word learning, and the
development of analogical reasoning, a number of authors
have argued recently for the importance of comparison in
cognitive processing and early word learning (Gentner &
Medina, 1998; Gentner & Namy, 2006; Namy & Gentner,
2004; Oakes & Madole, 2003; Sandhofer, 2001). However,
the nature of the comparison process in this literature
has been underspecified. The model presented here takes
a first step towards greater specification by detailing the
nature of the comparison process—interaction of a set of
neurons according to a local excitation/lateral inhibition
function—as well as the result—a stable peak of activation
at a particular location on an ordered dimension. Further,
the modeling work presented here explicitly ties behavior
in novel noun generalization tasks to a more general
theory of decision processes and a theoretical frame-
work—the DFT—that is grounded in neural principles (see
Simmering, Schutte, & Spencer, 2008; Spencer, Dineva, &
Schéner, in press; Spencer et al., 2007). Thus, our compar-
ison process is neurally plausible.

These contributions notwithstanding, it will be impor-
tant in the future development of this model to incorporate
a more rigorous representation of similarity. The model
presented here used a very basic notion of similarity—a
single dimension where distance along that dimension
captures overall similarity—akin to the use of distance
metrics in other models (e.g., Kruschke, 1992; Nosofsky,
1987; Samuelson, 2002). Although the similarity structure
of our inputs was well grounded in the literature, a more
complete model should include separate dimensions for
particular feature dimensions such as shape, material, size,
color, and so on. Adding a more complex representation of
different object properties would enable fine-grained dis-
tinctions between the relative importance of features such
as rounded corners and straight edges for rigid vs. nonrigid
or nonsolid things. Further, such a representation would
allow for easier manipulation of the relative importance
of such features with changes in the nominal categories
in the productive vocabulary.

Towards this end, Faubel and Schéner (2008) have
used coupled, multi-dimensional dynamic fields in an
autonomous robot that quickly learned to name 30 ob-
jects (see also Johnson et al., 2008). Importantly, this work
suggests that the similarity structure of nominal catego-
ries—that is, the fact that things called “banana” are more
similar to each other and to things called “squash” than
they are to things called “stapler”—is emergent from the
system’s prior history of naming, and correlations be-
tween particular names and activation of relevant feature
dimensions in a given task context. Incorporating a more
complex representation of similarity in our model will
also require, however, corresponding advances in our
understanding of how children represent similarity. This
has been limited in the past by procedural constraints
such as the small number of trials an individual child
can perform in a single experimental session. We are cur-
rently working on a new method for eliciting similarity
judgments in children that will overcome some of these
limitations.

5.2. Toward developmental process

The fact that we were able to use the same model to
capture differences in children’s naming of deformable
and rigid things from 2 to 4 years of age suggests that
understanding processes at the level of individual trials
can aid in understanding developmental change. The
developmental simulations presented here point to two
critical changes in knowledge representations over this
age range: (1) an increase in the strength of the association
between naming tasks and shape similarity and (2) a
reduction in the amount of noise in the representational
states created when young children view stimuli in these
tasks. These relatively simple developmental changes are
well supported in the literature. The critical insight from
the model is that the complex pattern of responding we
see across this age range emerges when these two simple,
quantitative and systematic developmental changes are
combined and brought to bear in a moment.

Further understanding of the complexities of perfor-
mance in these tasks and over development will come
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from future work that “closes the loop” between real-time
performance and development. We need to understand
how individual behaviors on the real-time scale accumu-
late to create the differences in performance seen in chil-
dren of different ages and vocabulary levels. According to
the Attentional Learning Account proposed by Smith and
colleagues (Smith, 2001; Smith & Samuelson, 2006),
biases such as the shape bias are learned products of the
child’s experiences with language. Thus, the very early
word learning experiences of the child influence future
word learning via accumulation of regularities over multi-
ple individual exposures to words and categories. Impor-
tantly, the DFT provides a process by which individual
experiences can build upon each other to influence the
dynamics of future real-time behavior and thereby create
biases. Specifically, in their work on spatial cognition,
Spencer and colleagues (Spencer et al., 2007) have used
decision fields, similar to the ones used here, coupled to
long-term memory fields (see also Faubel & Schoner,
2008). In these models, self-sustaining working memory
peaks generated over the course of individual trials leave
activation traces in long-term memory that can feed back
and influence working memory (implementing a form of
Hebbian learning; for discussion, see Spencer et al., in
press). This system, then, provides a concrete process by
which statistics of past decisions can accumulate over
multiple individual trials and, in turn, can be brought to
bear on current behavior.

These neurally grounded models have been used to
capture changes on the intermediate timescale of biases
that accumulate over the course of an experiment as well
as differences in children’s spatial memory abilities from
6 months to 6 years of age (see Spencer et al. (2007) for
a review). For example, Hund and Spencer (2003) found
that if adult participants are asked to recall three loca-
tions but one location is responded to more often than
the others, memory responses come to be biased towards
the more frequently responded to-location. Similarly,
Divena and colleagues (Dineva, 2005) have found that in-
fants’ trial-by-trial responses in the classic Piagetian A-
not-B task impact their subsequent performance. In fact,
infants who early on in the task spontaneously reach to
what will be the correct location later, are less likely to
make search errors on the critical test trials. In the DF
model used to capture this finding, it is the individual
decisions made on each trial that are the critical influence
on long-term memory and thus subsequent behavior. We
have found a similar behavioral result in recent work on
24-month-old children’s generalizations of names for
nonsolid substances. As reported in Samuelson and Horst
(2007), these young children become less likely to gener-
alize a novel name for a novel solid rigid object by shape
if, over the course of the experimental session, they have
previously seen many nonsolid substances and solid
things broken into pieces. A critical question will be
whether this trial-by-trial effect, like those found in pre-
vious reports that tap spatial and sensorimotor systems,
is necessarily based on the naming decisions children
make over the course of the experiment. Answering this
question will have clear implications for the nature of

the process by which vocabulary statistics accumulate
to create biases. More generally, incorporating a coupled
long-term memory system into the current model will
provide a means to further explore how the development
of word learning biases might arise from individual nam-
ing experiences.

5.3. Conclusions

The goal of the current work was to examine an issue at
the core of modern developmental science and cognitive
psychology: is it useful to think of knowledge and process
as separate or must we move towards a view in which
knowledge is understood in conjunction with, and relative
to, the processes that bring it to bear in a moment in a task.
Our work is clearly inspired by this second perspective
which acknowledges that our only window onto knowl-
edge is via the behaviors we study and thus necessarily
through the pane of the processes that create those behav-
iors. This is clearly illustrated in the data from our first
experiment in which the influence of real-time process
on “knowledge” is seen in the differing generalizations of
children equal in age and vocabulary knowledge when
doing different tasks. It is also clearly seen in the modeling
work presented here which demonstrates the dynamic
interaction of represented knowledge and decision pro-
cesses in creating the patterns of children’s behavior seen
in specific tasks and over development. And because we
used an authentic process model that generated individual
responses on individual trials just as children do (rather
than mapping simulated activation levels onto response
probabilities) the DF model presented here demonstrates
the critical nature of real-time processes in children’s indi-
vidual naming behaviors.

In this respect, this work follows the lead of pioneers
such as Gibson (1969) and Thelen and Smith (1994) in
examining how far the real-time processes of the system
can take us in understanding behavior and behavioral
development. Note, however, that this is not to say that
the underlying knowledge must be as limited as the repre-
sentations used in the current work. Rather, the point is
that far less may be required from underlying knowledge
than might have been expected because the dynamic inter-
action of that knowledge in a task in real-time is so critical
in shaping behavior. Additionally, the developmental sim-
ulations presented here suggest the importance of under-
standing these real-time behaviors when considering the
nature of developmental change. Thus, the model points
to important generalizations that can be made about the
role of comparison, stimulus similarity, noise, and acquired
knowledge in directing children’s behavior at a given point
in development. However, this work also makes clear the
necessity of future work examining individual differences
for a full understanding of knowledge, behavior, and pro-
cess in word learning and cognitive development more
generally.

Future expansion of the model within the more general
DF framework offers the additional possibility of bridging
the gap between the real-time performance seen in our
experiment, and captured in our task simulations, and
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the long-term changes captured in our developmental sim-
ulations. In particular, because this model is inspired by a
line of theoretical, computational, and empirical work
examining a range of behaviors from spatial memory, to
change detection, habituation, discrimination and spatial
language, it ties children’s noun generalization behaviors
to this larger picture of cognitive process. In this way, the
current model provides a means to generalize insights
about cognition gained in relatively simple sensorimotor
examples (like the A-not-B task) to tasks that tap higher-
level cognition, categories, and linguistic systems. Towards
this end, the current data and model demonstrate the
importance of considering behavior in a task, and support
a view of knowledge as created in the moment from the
interaction of the child’s history and real-time, task-spe-
cific dynamics.
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Appendix

The Dynamic Field Theory is in a class of bi-stable neu-
ral networks where “on” and “off” states coexist (Amari &
Arbib, 1977; Erlhagen & Schoner, 2002; Thelen et al., 2001).
Thus, these networks can capture stable decisions—the
“on” state—as well as cases where stable decisions are
not reached—the “off” state. The continuous evolution of
activation in the decision fields shown in Fig. 4 is specified
by a differential equation that determines a rate of change,
du(x,t)/dt, for every activation level, u(x,t), at every field
location, x, and any moment in time, t. The basic stabiliza-
tion mechanism of the field is modeled by an inverse rela-
tionship between the rate of change and the current level
of activation, u(x,t). This means that at high levels of activa-
tion, negative rates of change drive activation down, while
at low levels, positive rates of change drive activation up.
The activation level that emerges is a function of the bal-
ance of different inputs and interactions in the field. For
example, when a negative resting level, h < 0, coexists with
a source of excitatory input, S > 0, then the resulting stable
state of the activation dynamics:

tdu(x,t)/dt = —u(x,t) + h + S(x,t)

is u(x,t) = h + S(x,t), the level at which positive and negative
rates of change balance so that du/dt=0. Note that 1, a

parameter that fixes the time scale of the activation field,
was set to 75.2

When the rate of change of activation at a field site, x,
depends not only on the activation level, u(x,t), and current
inputs, S(x,t), but also on the activation levels, u(x't), at
other field sites, ¥/, then activation dynamics are interac-
tive. Locally excitatory/laterally inhibitory interactions
are described by an interaction function, w(x — x’), such

that
We exp (x=x)’ w;
V2T 20"2,v !
In the reported simulations, this interaction a,, was always
set to 12.0. Only sufficiently activated sites, X', contribute

to the interaction. This is expressed by passing activation
through a sigmoidal function:

fux,6) =1/(1 + exp(—pu(x’, 1))

Such threshold functions are necessarily nonlinear and are
the basis for bi-stability. For the simulations reported here
B was set to 5.0. This creates a relatively sharp threshold
function and thus allows for the strong nonlinearities
needed to create stable activation peaks (i.e., stable
decisions).

Thus, the full model took the form:

wix-—x) =

tdu(x,t)/dt =—u(x,t) +h+1S(x,t) + /dx/w(x —X)f(u(x,t))

where kK was a general gain factor that modulated the
strength of the input, S(x,t).

Inputs to the model took the form of Gaussians repre-
sented by the following equation:

S(x,t) = Aexp [— %}

where A is the amplitude or strength of the input, x. is the
central position of the input along the similarity dimen-
sion, and ¢ determines the precision of the input. The spe-
cific inputs to the model varied depending on the task and
the stimulus set. For the forced-choice task, the exemplar
and both the shape-matching and material-matching test
objects were all presented at once. Thus, the input equa-
tion for this task was:

SFC (X7 t) = SExemplar (Xa t) + SShape (X7 t) + SMaterial (X, t)

In the yes/no task, each test object was presented individ-
ually with the exemplar. Thus, for one trial of this task the
equation was:

SYN_l (X7 t) = SExemplar (X, t) + SShape (X7 t)

2 We assume that one time step is roughly equivalent to 4 ms, thus
making the time between stimulus onset and response request about 2.5 s,
and thus giving the model 2 s to respond (see Section 3.2.2). One advantage
of process-based models such as this one is the ability to make predictions
about reaction time. Unfortunately, however, standard procedures for these
tasks are not controlled enough to obtain reaction time measurements in
the young children studied here. We are currently pursuing the develop-
ment of procedures that would overcome this limitation.
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and for the other it was:

SYN_2 (X7 t) = SExemplar(x7 t) + 5‘Material (X7 t)

The stimuli for the deformable and rigid sets varied in the
strength, precision, and location of the test objects (the
exemplar was always in the same location). Details of
these stimulus sets are discussed below.

Noise was added to the model using fluctuating ampli-
tudes for all inputs. This introduces a form of spatially cor-
related noise that is consistent with neural principles
(Dineva, 2005; Schutte, Spencer, & Schoner, 2003). Thus,
the generic equation for the inputs including noise was:

2
S(x,t) = (A+q&(t)) exp —%

The noise strength, g, was set to .05 for all simulations. ¢&
was a normally distributed random number. Different ran-
dom numbers were selected at each time step and for each
component of the input (e.g., shape-matching test object
vs. material-matching test object) independently.
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