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A Dynamic Neural Field Model of Temporal Order Judgments

Lauren N. Hecht
Gustavus Adolphus College

John P. Spencer and Shaun P. Vecera
University of Iowa

Temporal ordering of events is biased, or influenced, by perceptual organization—figure–ground
organization—and by spatial attention. For example, within a region assigned figural status or at an
attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, &
Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich,
& Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection
(Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both
the onset and offset performance for figural and attended regions. The model posits that neural
populations processing the figure are more active, resulting in a peak of activation that quickly builds
toward a detection threshold when the onset of a target is presented. This same enhanced activation for
some neural populations is maintained when a present target is removed, creating delays in the perception
of the target’s offset. We discuss the broader implications of this model, including insights regarding how
neural activation can be generated in response to the disappearance of information.

Keywords: figure-ground organization, temporal order judgments, spatial attention, modeling, onsets and
offsets

One heuristic commonly used to disambiguate information
within a visual scene is figure–ground organization, whereby
information is combined to form a single perceptual group (i.e.,
figure) that falls into the foreground while the surrounding, irrel-
evant information falls into the background (Palmer & Rock,
1994). Image-based cues (e.g., Palmer, 1999, 2002; see also Po-
merantz & Kubovy, 1986; Rock, 1975, 1995, and Rubin, 1915/
1958; Vecera, Vogel, & Woodman, 2002), top–down processes
(e.g., Baylis & Driver, 1995; Driver & Baylis, 1996; Julesz, 1984;
Peterson, 1994, 1999; Peterson & Gibson, 1991, 1993, 1994;
Peterson, Harvey, & Weidenbacher, 1991; Rock, 1975; Vecera,
Flevaris, & Filapek, 2004; Vecera & O’Reilly, 1998, 2000), and
early perceptual processes, such as spatial and temporal perception
(e.g., Klymenko & Weisstein, 1986, 1989a, 1989b; Klymenko,
Weisstein, Topolski, & Hsieh, 1989), influence figure–ground
organization. However, recent research has also demonstrated that
figure–ground organization impacts other perceptual processes,
including shape discriminability (Lazareva, Castro, Vecera, &
Wasserman, 2006; Wong & Weissten, 1982, 1983), choice reac-
tion time (RT; Nelson & Palmer, 2007), perceived contrast (Self,
Mookhoek, Tjalma, & Roelfsema, 2015), and temporal processing
(Hecht & Vecera, 2011; Lester, Hecht, & Vecera, 2009). When

making temporal order judgments (TOJs) regarding the onset of
two targets, the target on the ground must appear before the target
on the figure in order to perceive the events as occurring simul-
taneously, suggesting a perceptual processing advantage such that
figures undergo perceptual processing prior to grounds—a prior
entry effect (Lester et al., 2009). In contrast, targets removed (i.e.,
offsetting) within the figure are perceived as disappearing later
than targets removed from the ground region (Hecht & Vecera,
2011). To accurately perceive the offset of information, it must be
removed earlier on the figure than on the ground, suggesting that
figures are afforded extended durations of processing—a temporal
extension effect.

Although empirical work has led to an understanding of the
consequences of figure–ground organization for temporal process-
ing, a mechanistic account for these effects has not been estab-
lished. Similar behavioral effects have been reported in the atten-
tion literature (e.g., Hein, Rolke, & Ulrich, 2006; Rolke et al.,
2006; Shore & Spence, 2005; Shore et al., 2001; Yeshurun, 2004;
Yeshurun & Levy, 2003), where attended regions have the same
effects as figures, and researchers have proposed accounts to
explain these effects. It is unfortunate that there are currently no
unified accounts that explain the suite of effects observed in TOJ
tasks; rather, different accounts have been proposed to explain the
processes underlying prior entry effects and those underlying
temporal extension results. Although it is possible that each effect
may arise from separate mechanisms, we pursue a comprehensive
account here. In particular, we present a computational model that
captures both the prior entry and temporal extension effects and, in
doing so, provides a neurally grounded understanding of the pro-
cesses underlying TOJs.

The starting point for our model is to think about TOJs as a type
of change detection task. Change detection consists of comparing
the current state of the perceptual world relative to some prior
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encoded or remembered state to detect whether a change occurred.
In the experiments that first noted prior entry and temporal exten-
sion as consequences of figure–ground organization (Hecht &
Vecera, 2011; Lester et al., 2009), observers determined the tem-
poral order in which 2 stimuli onset (or offset) within the display.
To properly order these temporal events, the state of the visual
scene had to be encoded at the start of the trial and compared with
incoming perceptual information to detect a change in the onset or
offset of information. Thus, the temporal ordering task falls into a
broad class of tasks that probe change detection abilities.

Currently, there is only one model that provides an account of
the neural processes that underlie change detection: the dynamic
neural field (DNF) model proposed by Johnson, Spencer, and
colleagues (Johnson, Spencer, Luck, & Schöner, 2009; Johnson,
Spencer, & Schöner, 2009). This three-layer DNF model is shown
in Figure 1. The perceptual field (PF(u)) is an excitatory neural
layer that is reciprocally coupled to an inhibitory layer (Inhib(v)).
There is also a second excitatory layer—the working memory field
(WM(w))—that is reciprocally coupled to the inhibitory layer.
Each layer is metrically organized according to a functional to-
pography tuned to a particular stimulus dimension such as a
continuous hue dimension or the spatial dimension of the retina.
Within the excitatory layers, above-threshold (�0) neural sites
pass excitation to their neighbors and also stimulate associated
sites in the inhibitory layer. The stimulated sites in the inhibitory
layer then pass inhibition back to the excitatory layers via a
Gaussian projection that spreads inhibition laterally (see Amari,
1977). Input from the visual world is fed into PF. WM also
receives a weaker copy of this input. Stimulation can result in
localized “peaks” of activation which reflect, for instance, percep-
tually encoded stimuli in PF. PF then stimulates WM via a feed-
forward connection to WM which helps consolidate peaks in WM.
Note that excitatory and inhibitory interactions are stronger in WM
than in PF. Consequently, peaks in PF quickly decay once a

stimulus is removed, while peaks in WM can be actively main-
tained during memory delays due to stronger recurrent interac-
tions.

To understand how this network detects changes, consider a
simple version of a change detection task—detecting a shift in the
location of a stimulus on the retina. To examine whether partici-
pants can detect such a change, we might display an initial target
position. This stimulus input would build a peak of activation in PF.
With an input of sufficient strength and duration, this peak in PF
would also give rise to a peak in the WM layer. When the stimulus
is turned “off,” the peak in PF would collapse, both because
recurrent interactions in PF are weak and because PF receives
inhibitory input from the peak that is maintained in WM (due to
the shared inhibitory layer). If we present an item to the network
at the same position, the inhibition in PF can suppress the forma-
tion of a peak. This is the basis of a “same” decision in the
network. If, by contrast, we present an item at a new location, a
peak readily forms in PF and the system actively detects that a
“different” stimulus has been presented.

Conceptually, these two types of responses might form the basis
of TOJs. In particular, if we consider the formation of a peak in PF
as a type of perceptual decision, it is easy to see how this system
could detect the onset of a stimulus. But how does a neural system
detect the offset of information? This is trickier because offsets
naturally lead to a reduction in activation, yet response generation
requires the reverse—the active generation of a neural decision.
Here we explore whether the interaction between PF and WM
might give rise to offset detection. In particular, when a stimulus
has been encoded in WM, the associated sites in PF are sup-
pressed. If an offset event led to the loss of a peak in WM, this
suppression would be removed and other sources of input—such
as input from an attentional system monitoring the offset loca-
tion—would then be free to build a peak in PF and drive an offset
response.
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Figure 1. Basic structure of a three-layer dynamic neural field model. Solid arrows indicate excitation and
dashed arrows indicate inhibition. All neurons are ordered according to functional topography based on a
particular feature dimension (e.g., spatial location). For further details, see Johnson, Spencer, Luck, and Schöner,
2009, or Johnson, Spencer, and Schöner, 2009. See the online article for the color version of this figure.
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In the remainder of the paper, we examine whether the neural
processes that underlie change detection in the DNF model can be
extended to explain TOJs. We begin by describing how we embed the
DNF model in the TOJ task, including the addition of a response field
that generates neural decisions about the order of onsets and offsets.
We then simulate data from Lester et al. (2009) and Hecht and Vecera
(2011). We conclude by discussing the implications of the DNF
model for TOJs and how this model compares to other efforts to
explain prior entry and temporal extension effects in the attention
literature.

A DNF Model of Temporal Order Judgments

In this section, we provide an overview of the DNF model,
the simulation method used, and the simulation results. The
goal was to examine whether the change detection model from
Johnson, Spencer, Luck, and Schöner, (2009) could be extended
to capture the insight that TOJs reflect a type of change detec-
tion decision. In addition, we explored whether a single, unified
account could explain both prior entry and temporal extension
effects. To preview our results, we demonstrate below that
sensitivity to a change in the onset of information can be
accomplished by monitoring activation dynamics within the
perceptual field in the DNF model. Detecting a change in the
offset of information, however, results from the interaction
between the perceptual and working memory layers. Finally, a
slight boost in activation associated with target locations on a
“figure” or at an attended location is sufficient to explain both
prior entry and temporal extension effects within the same
neurodynamic model.

Model Architecture

We used the three-layer architecture of the change detection
model (for model equations, see Johnson, Spencer, Luck, &
Schöner, 2009; Johnson, Spencer, & Schöner, 2009). We then
added three inputs to the model to capture the TOJ task. We also
added a response layer because the goal of the task was to identify
which attended location appeared/disappeared first (rather than
indicate “same” or “different”). Although the addition of the
response layer makes the current model different from the Johnson
et al.’s change detection model architecturally, the underlying
processing dynamics used to explain both change detection and
TOJs are the same between the models. Thus, our modeling efforts
suggest that a common mechanism might underlie both change
detection performance and TOJs.

Three sources of input were added to the model to capture the
events on each trial: Segmentation (Seg), Task, and Target. Seg
reflects the segmentation of the two regions present in the
display. This reflects the type of input that might be received
from a process of figure– ground organization (see, e.g., Roelf-
sema, Lamme, Spekreijse, & Bosch, 2002; Vecera & O’Reilly,
1998, 2000). There were three types of Seg inputs to reflect the
task conditions we examined: (a) figure and ground (when two
regions abutted one another) with activation associated with the
figure (i.e., activation at one location, �30°, and not at the
other, 30°), (b) separated figure and ground with activation at
both locations due to ambiguity in the display, and (c) no input
at both locations when the figure and ground were presented as

separated regions. Examples of these types of displays appear in
Figure 2; we have used such displays in our previous research
(e.g., Hecht & Vecera, 2011), and findings from those studies
are simulated here.

The Task input highlighted the relevant target locations, which
consistently occurred at the center of the figure and ground re-
gions. Thus, because these locations were fixed, Task input was
constant at both �30° and 30°. The final input was the Target input.
The Target input grew and/or receded in time to reflect the onset and
offset movements of the target. For onsets, input to PF grew in
strength across 110 ms, and then its strength died out across an
additional 110 ms. For offsets, input to PF started strong to reflect the
initial presentation of the target, and its strength receded across 110
ms in accordance with the disappearance of the targets.

In addition to the inputs, we also added a new response field to
the change detection model. In the change detection model, the
system generated a same or different judgment on each trial
(Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, &
Schöner, 2009). By contrast, in the TOJ task, the model must
provide a localized response to indicate which target onset (or
offset) first. Thus, we added a response field that was reciprocally
coupled to PF but was selective in its response; that is, based on
input received from PF, this field would build a peak at a left
(�30) or right (30) location indicating which location was asso-
ciated with the first target onset or offset. Note that the response
field had strong global inhibition, making this field operate as a
“winner-take-all” field (see kr_inhib in Table 1). This decision
mechanism was realized by the equation:

Figure 2. Examples of stimuli. See the online article for the color version
of this figure.
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� ṙ(x, t) � �r(x, t) � hr � qh�(t) � � cr_excite(x � x�)�r_excite(r(x�, t))dx�

�� cr_inhib(x � x�)�r_inhib(r(x�, t))dx� � � cru(x � x�)�ru(u(x�, t))dx�

�Tr(x, t) � q� cn(x � x�)�(x�, t)dx�

(1.1)

where r˙(x, t) is the rate of change of the activation level for each
neuron across the spatial dimension, x, as a function of time, t. The
first factor that contributes to the rate of change of activation in the
response layer is the current activation in the field, -r(x, t). This
component is negative so that activation changes in the direction of
the resting level, hr. Next, activation is influenced by noise in the
resting level as well as by local excitation and lateral inhibition.
The next term in the equation is input from PF(u). Finally, the
response layer receives activation from the target input as well as
spatially correlated noise (for details, see Johnson, Spencer, Luck,
& Schöner, 2009).

The final modification to the change detection model was the
addition of coupling between the response layer and PF. In par-
ticular, the response layer fed back onto PF according to the
modified Equation 1 taken from Johnson, Spencer, Luck, &
Schöner (2009):

� u̇(x, t) � �u(x, t) � hu � . . . � cur(x � x�)�ur(r(x�, t))dx�

(2.1)

Modeling Onsets: An Example

An example of an onset simulation is presented in Figure 3. At
the start of the trial, the TOJ model was provided 50 ms to relax
into a stable state. As task-relevant information (e.g., figure–
ground display) is presented, these events are input to the three-
layer model for 500 ms. In particular, Seg and Task inputs pro-
jected activation to the PF and WM fields, building activation at
the corresponding spatial location of the two regions (e.g., figure
and ground). As shown in Figure 3B, the activation of the peak
building at the location of the figure (left) was stronger than at the
ground location (right) due to the stronger Seg input for the figure.

Note, however, that these inputs were relatively weak; thus, acti-
vation in PF remained below threshold.

After 550 ms, the target events were introduced to the model via
the Target input. The target inputs were presented at varying
stimulus onset asynchronies (SOAs: 26, 50, 100 and 150 ms),
following those from previous research (e.g., Lester et al., 2009).
As the first target began to onset, the strength of the input at this
location (left) began increasing to its full strength over the course
of 110 ms. Upon reaching full strength, the Target input began
decreasing in strength over an additional 110 ms. After the desig-
nated SOA, the second target location received the same growth
and recession of activation.

As can be seen in the figure, the convergence of the Target, Seg,
and Task inputs built a peak of activation in PF (i.e., activa-
tion �0). Once a peak pierced the threshold in PF, activation
began projecting more strongly into the response field at the
location of this peak (“left” in Figure 3C). As a consequence,
activation at the left location in the response field raised above
threshold generating a “left” response. In this example, the figure
was on the left; thus, the figural input and the temporal input
cooperated to generate a decision that the “figure” target led the
“ground” target. By varying the location (figure vs. ground) of the
leading stimulus and the SOAs between the target inputs, we can
simulate psychophysical curves that allow us to compute the points
of subjective equality for leading targets that appear on different
regions (e.g., figure vs. ground regions or the two regions in an
ambiguous display).

Modeling Offsets: An Example

As above, the model began by relaxing into its stable state for
the first 50 ms. Next, in addition to the Seg and Target inputs, an
initial boost of activation was provided by the Task input (see
Figure 4). This initial boost in activation generated a large peak of
activation in PF, capturing the encoding of the task relevant
stimulus locations. Because the targets were presented at the
beginning of the trial for sufficient duration, this information
built peaks in WM, with the peak at the “figure” location (left)
growing to a greater strength due to the stronger input at this

Table 1
Parameter Values Used in Model Simulations

Layer hinit hon hoff Self-excitation
Excitatory
projections

Inhibitory
projections

Scaled input
strength �

u (PF) �19 (�7) �14 cuu � 3.15 (2.0) cur � 1.0a cuv � 1.85 Iu � 1.0 80
�uu � 3 �ur � 5a �uv � 24 (26)

kuv � .05
v (Inhib) �8.5 (�12) �8.5 cvu � 2.0 10

�vu � 10
cvw � 1.95
�vw � 5

w (WM) �13 (�4) �13 cww � 3.15 cwu � 1.5 cwv � .325 Iw � .2 80
�ww � 3 �wu � 5 �wv � 42

kwv � .08
r (RESP)a �30 �7 �8 cr_excite � 5 cru � 1.0 kr_inhib � 3 Ir � .2 80

�r_excite � 5 �ru � 5

Note. PF � perceptual field; Inhib � inhibitory layer; WM � working memory field; RESP � response field. a All parameters associated with the RESP
field were new relative to Johnson, Spencer, Luck, and Schöner (2009). Other parameters that differed relative to Johnson et al. are indicated in parentheses.
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location. Note that the initial boost of activation from Task was
removed after 200 ms, reflecting the completion of the encoding
process.

The sustained activation of peaks in WM decreased activation in
PF until it fell below threshold due to activation from the shared
Inhib layer. Target input then began to diminish at the target

locations at varying SOAs (26, 50, 100 and 150 ms), starting 550
ms after the beginning of the trial. As the first target began to
offset, the strength of the input at this location (left) began de-
creasing from its full strength over the course of 110 ms. After the
designated SOA, the second target input began to recede with the
same time course.

Figure 3. Depiction of a single onset trial presented to the model during the simulations and the three-layer
model’s activation over time. Panel A: The progression of trial events over time as presented to the participants
and the corresponding activation in the model appears in the panel below. Activation is plotted along the y-axis,
with time plotted on the x-axis. Starting at the top of the y-axis, the black lines crossing the y-axis at 0 indicate
the Target input over time. Going down the y-axis, the blue (medium gray) lines indicate activation in the
working memory (WM) field for Time 1 (T1; figure) and for Time 2 (T2; ground). The green (light gray) lines
indicate activation in perceptual field (PF) for T1 and T2, and the red (dark gray) lines indicating activation in
the response field. For all lines, the solid lines indicate activation in response to T1 and the dotted lines are
activation levels in response to T2. Panel B: Activation at the end of the presentation of the figure–ground
display prior to the targets’ appearances. Panel C: Activation in PF is higher for the figure location (left) at the
end of the initial presentation of the figure target and the stimulus onset asynchrony (SOA; 150 ms). Panel D:
Activation levels after the onset of T2. See the online article for the color version of this figure.
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In the absence of the Target input, peaks in WM began to
decrease in activation, eventually destabilizing as noise caused
local activation to fall below threshold (�0). With the WM peaks
no longer above threshold, PF was released from inhibition and

was free to build a peak of activation in response to the
continued Seg and Task inputs. Activation in PF then projects
into the response layer to generate a “left” or “right” response.
As can be seen in the figure, the peak pierced threshold in PF

Figure 4. Depiction of a single offset trial presented to the model during the simulations and the three-layer
model’s activation over time. Panel A: The progression of trial events over time as presented to the participants
and the corresponding activation in the model appears in the panel below. Activation is plotted along the y-axis,
with time plotted on the x-axis. Starting at the top of the y-axis, the black lines crossing the y-axis at 0 indicate
the Target input over time. Going down the y-axis, the blue (medium gray) lines indicate activation in the
working memory (WM) field for Time 1 (T1; figure) and for Time 2 (T2; ground). The green (light gray) lines
indicate activation in perceptual field (PF) for T1 and T2, and the red (dark gray) lines indicate activation in the
response field. For all lines, the solid lines indicate activation in response to T1 and the dotted lines are activation
levels in response to T2. Panel B: Activation in the three-layer model at the end of the initial boost with the
figure–ground display. Panel C: Activation at the end of the presentation of the figure–ground display prior to
the targets’ disappearances. Panel D: Activation in PF is higher for the figure location (left) at the end of the
initial offset of the figure target and the stimulus onset asynchrony (SOA; 150 ms). Note that activation in WM
is below threshold for the left (figure) location. Panel E: Activation levels after the offset of T2. Now both peaks
in WM are below threshold. See the online article for the color version of this figure.
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at the figure’s location (“left” in Figure 4D). Consequently,
activation at that location in the response field rose above
threshold, generating a “left” response and indicating that the
“figure” target offset first.

Simulation Method

Simulations were conducted in MATLAB 7.2 (Mathworks, Inc.,
http://www.mathworks.com). Each time step within the simulator
was equated to 1.33 ms. The conditions simulated were separated
by task (onset or offset TOJs) and display type (figure–ground,
ambiguous, separated). Within each task and display type, we
conducted 500 trials at 4 different SOAs (26, 50, 100, 150 ms).
Each SOA occurred twice for each display condition to simulate
figure-first and ground-first trials. Therefore, each batch of simu-
lations included a total of 24,000 trials. We ran five batches of
simulations to examine the robustness of the simulation results
across repetitions of the entire design.

To parameterize the response field, we included a low resting
level (�30) initially to suppress responding until after the figure–
ground assignment was established. The remaining parameters
were adjusted such that the field operated as a winner-take-all field
(strong global inhibition, see kr_inhib in Table 1), and received
sufficient input from PF to generate responses (see cru in Table 1).
Note that the final parameters had slightly different resting levels
for the onset versus offset events (see hon and hoff in Table 1).
Conceptually, this reflects our hypothesis that there is a greater
need for selective responding in the offset condition (i.e., less
excitatory resting level) given the difficulty of this task.

The remaining model parameters were taken from Johnson,
Spencer, Luck, and Schöner (2009) and adjusted as needed to
enable the model to make TOJs. Several changes were made to the
PF parameters. In the model, all decisions pass through this layer;
thus, the model parameters have to be precisely tuned relative to
the strength of input and the strength of the suppression from WM.
Thus, we decreased the resting level relative to Johnson et al. to
make this layer more selective overall (hon and hoff in Table 1). We
also decreased excitation in PF (cuu) and increased the width of the
inhibitory projection (�uv). Relatedly, we made the target inputs
weaker and a bit broader (ctarg, �targ) so they would not dominate
activation in the model, enabling PF to detect more subtle differ-
ences.

In addition to these changes, we decreased the resting levels (h)
of the inhibitory and WM layers. In the latter case, this brought the
WM layer closer to threshold, enabling the system to detect
offset by losing a WM peak. The final changes involved the
noise sources in the model. We increased the strength of spa-
tially correlated noise (cnoise) and decreased the spatial spread
of this noise (�noise). We also added two noise sources: noise on
the resting levels (ch_noise see Table 2) and noise on the Target
input (cinput_noise). The former helped destabilize WM peaks in
the offset detection conditions. The latter helped ensure that
sometimes the model would make errors, even in conditions
were onset/offset detection was relatively easy.

Results

Data from the simulations are plotted in Figure 5, with the left
panels displaying the average performance of the simulations and the

right panels displaying empirical data from Lester et al. (2009) for
onset judgments and Hecht and Vecera (2011) for offset judgments.
Visual comparison of the onset and offset data suggests a substantial
overlap between the simulation and the empirical data. In both tasks,
the figure–ground functions show approximately the same direction
and amount of shift. Additionally, the model replicated the differences
between slopes of the functions for all conditions, demonstrating its
ability to capture the behavioral effects.

To quantify the fit of the model to the behavioral data, we
calculated the root-mean-square error (RMSE) between the simu-
lations and empirical data across experiments. For each batch of
simulations, the RMSE was calculated for each condition and then
averaged to determine the overall fit of the simulated to the
behavioral data (see Table 3). Thus, we compared a total of 96
means (and an additional 6 means determined by curve fits, see
below) between the model and the empirical data. The average
RMSE across each of the five simulations was 0.0447 (range:
0.0423–0.0491). The model provided an excellent fit to the behav-
ioral data.

After determining the best fit of the model, the logistic curve for
each simulation was calculated (see Figure 5). These logistic
curves were then used to calculate two performance measures for
TOJs. First, we calculated the point of subjective simultaneity
(PSS; i.e., 50% “ground first” responses), which is the primary
measure of the prior entry and temporal extension effects within a
TOJ paradigm. Second, we used the best-fitting curves to calculate
the just noticeable difference (JND), which is half of the difference
between the SOA values required to produce 75% and 25%
“ground first” responses. The JND provides an estimate of the
slope of the function as it is monotonically related to the function.
See Tables 4 and 5 for a summary of each run of the simulation’s
PSS and JND as well as the behavioral averages for these values.

The PSS for onsets was 15.9 ms for figure–ground trials, �1.0
ms for separated region trials, and �3.3 ms for ambiguous trials
(see Table 4). These values are a close approximation to the
average behavioral data for all three trial types (10.1, �0.5,
and �2.7 ms, respectively). The positive PSS for figure–ground
trials indicates that the point at which the stimuli would be per-

Table 2
Additional Parameter Values Used in Model Simulations

Description of parameters Parameter value

Strength of spatially correlated noise to fields cnoise � .1 (.04)
Width of spatially correlated noise �noise � .45 (1.0)
Strength of noise on resting level (h) ch_noise � 3a

Strength of noise on target input cinput_noise � .6a

Slope of sigmoid � � 5.0
Field size n � 151
Segmentation inputs cseg � .6a

�seg � 5a

cseg_amb � 3a

�seg_amb � 5a

Target input ctarg � 20 (30)
�targ � 5 (3)

Task input ctask � 15a

�task � 5a

a Parameters that were new relative to Johnson, Spencer, Luck, and
Schöner (2009). Other parameters that differed relative to Johnson et al. are
indicated in parentheses.
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ceived as simultaneous requires the ground target to lead, similar
to the behavioral data. No shift was observed in the ambiguous and
separated region trials, as evidenced by the near-zero PSSs. There-
fore, the model obtained a prior entry effect for figure–ground
trials.

Upon calculating the JNDs, the model yielded estimates of 62.3
ms for figure–ground trials, 48.2 ms for separated regions, and
73.1 ms for ambiguous displays. Again, the ordering of these data
is similar to the findings in the behavioral data (see Table 4),

although the absolute fit with the behavioral data is not as strong
as the PSS results. It is interesting to note that the model was able
to predict the shallower slope for the ambiguous trials, relative to
both figure–ground and separated region trials.

Analysis of the PSS for offsets indicated a PSS of �10.6 ms for
figure–ground trials, compared with �10.1 ms in the behavioral
data (see Table 5). In contrast, the separated region and ambiguous
trials yielded a PSS of �2.7 ms and �1.1 ms, respectively,
mirroring the behavioral data (1.8 ms and �1.3 ms, respectively).

Figure 5. Model simulations (left panels) and empirical experiments (right panels) data for both the (A) onset
tasks and the (B) offset tasks. SOA � stimulus onset asynchrony. The onset empirical data (A; right panel) first
appeared in Lester, Hecht, and Vecera (2009; Figure 2A) and are replicated with kind permission from Springer
Science and Business Media. The offset empirical data (B; right panel) is replicated from Hecht, L. N., & Vecera,
S. P. (2011). Delayed offset detection on figures relative to backgrounds. Journal of Vision, 11, 15. Copyright
belongs to the Association for Research in Vision and Ophthalmology (© ARVO).
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The negative PSS for figure–ground trials suggests the model
requires the figure target to lead the ground target in order to
accurately order the offset events, as did the participants in the
behavioral experiments (i.e., a temporal extension effect). Again,
the near-zero PSS for separated regions and ambiguous trials
replicates the effects observed in the data.

The JNDs also fell close to the behavioral data (see Table 5).
Figure–ground trials (29.3 ms), separated regions (29.8 ms), and
ambiguous trials (30.7 ms) were identical. Likewise, the behav-
ioral data had not differed between these display types (36.4 ms,
42.6 ms, and 39.6 ms, respectively). This suggests that the slopes
of the functions were equivalent, as was sensitivity to the offset
events across display types, though there was a greater range and
generally higher SOAs in the empirical results.

Denser SOA Sampling

An additional set of simulations (five batches) was conducted
with a denser sampling of SOAs (13, 26, 39, 50, 65, 80, 100, 125,
and 150 ms) to provide a closer estimate of the PSS and JND
statistics. The best-fitting logistic curve fits are dependent upon
how SOAs are sampled; adding data points increases the precision
of the curve fit due to a decreased influence of potential outliers.
Although the behavioral experiments require sparse sampling of
SOA due to time and other constraints (e.g., fatigue), we can
readily sample the model across many SOAs. Thus, we conducted
a second set of simulations to examine whether denser SOA
sampling would yield less variation in the estimates of the PSS and
JND, which are both calculated on the best-fitting curve, resulting
in better fits with the PSS and JND values obtained in the behav-
ioral experiments.

Figure 6 illustrates the curve fits for these simulations, and
Tables 6 and 7 contain the PSS and JND values for all runs of the
simulations. For onsets, the average PSS was now 14.1 ms for
figure–ground trials, �0.5 ms for separated regions, and �1.9 ms

for ambiguous trials. These estimates are less variable among runs
of the simulation, and they are closer estimates of the behavioral
data. The JNDs for figure–ground (44.7 ms), separated regions
(47.2 ms) and ambiguous (70.0 ms) trials show a similar trend: the
estimates are more stable and better approximate the data.

The same reduction in variance of estimates was found in the
case of offsets. The PSS values were now �10.3 ms, �0.4 ms,
and �0.7 ms for figure–ground, separated regions, and ambiguous
trials, respectively. These estimates are all within 2.5 ms of the
behavioral data. Once again, the JNDs did not vary across trials;
figure–ground (29.8 ms), separated regions (31.7 ms) and ambig-
uous (30.1 ms) trials did not demonstrate differences in the slopes
of the function.

Discussion

In the present report, we demonstrated that a DNF model of
change detection could be extended to explain the prior entry and
temporal extension effects. To date, these effects have not been
explained within a unified framework. Thus, the modeling work
reported here makes a substantive contribution. Of course, com-
mon processing dynamics between change detection and TOJs
does not imply common neural mechanisms; the visual system
could, for example, use the same processing dynamics in different
regions for different tasks. Nevertheless, two very different tasks
on the surface need not rely on radically different mechanisms.

It is interesting to note that the model not only captured the shifts
in temporal perception as a result of figure–ground organization, but
it also was able to produce the differences in sensitivity (i.e., slope
differences) in the onset judgments while retaining the lack of differ-
ences in the offset judgments. Even more, the model accomplished
this with relatively modest changes to the parameters used by Johnson
and colleagues (Johnson, Spencer, Luck, & Schöner, 2009; Johnson,
Spencer, & Schöner, 2009), even though the TOJ task, at face value,

Table 4
Statistics for Onset Simulations

Statistic Trial type Behavioral data

Simulations

Run 1 Run 2 Run 3 Run 4 Run 5 Average

PSS Figure–ground 10.1 17.9 14.5 13.2 16.4 17.7 15.9 (2.0)
Separated regions �0.5 �4.2 �2.1 0.6 1.9 �1.5 �1.0 (2.4)
Ambiguous �2.7 �0.1 �7.6 �1.4 �4.4 �3.3 �3.3 (2.9)

JND Figure–ground 41.6 66.5 58.9 58.8 62.9 64.1 62.3 (3.3)
Separated regions 39.8 52.5 47.4 46.6 46.3 48.2 48.2 (2.5)
Ambiguous 82.0 76.9 76.8 70.6 71.5 69.6 73.1 (3.5)

Note. Parentheses indicate standard deviations. PSS � point of subjective simultaneity; JND � just noticeable difference.

Table 3
Root-Mean-Square Errors for All Simulations

Simulation

Simulations

Run 1 Run 2 Run 3 Run 4 Run 5 Average

SOAs match empirical studies 0.0491 0.0423 0.0444 0.0446 0.0430 0.0447 (0.0027)
Denser sampling of SOAs 0.0457 0.0459 0.0430 0.0409 0.0403 0.0432 (0.0026)

Note. Parentheses indicate standard deviations. SOAs � stimulus onset asynchronies.
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is quite different from the one-shot change detection task typically
used in working memory experiments.

One critical component that underlies the model’s TOJ perfor-
mance is the structure of the segmentation input. When conducting
initial tests of the parameters, the input coming from Seg impacted
the amount of shift of the PSS. Specifically, shifts in the PSS only
occurred when asymmetric input was provided to the model. The
ambiguous and separated trials did not produce systematic shifts in
the PSS. Therefore, one critical assumption of the DNF model
presented here is that figure–ground organization is treated as an
asymmetric input.

For figure–ground trials, the PSS shifts away from zero due to
increased errors in judgments at the shortest SOA—a consequence
of the asymmetric activation projected from Seg. For onsets, this is
the positive (ground-first) SOA, and for offsets it is the negative
(figure-first) SOA. In the case of onsets shown in Figure 7, Seg’s
input is strong enough to keep the activation at the figure location
slightly higher than the ground. As the first target input (i.e., at the
ground location) is presented, activation at that location begins to
rise. To make an accurate judgment, the ground’s peak must
overcome the difference in activation between the figure and
ground before the figure target onsets. On a higher proportion of
trials than when the figure’s target leads, 26 ms is not a sufficient
amount of time for the ground activation to recover, surpass the
figure’s activation, and begin projecting activation to the response
field. Thus, an incorrect response is generated (i.e., “figure”)
relative to the comparable figure-first SOA (26 ms).

Similarly, the shift in offset PSS is directly impacted by Seg’s
asymmetric projection. Again, raised levels of input for the figure
location increases its peak activation in PF, which consequently
builds a stronger peak in WM. Therefore, the “disadvantaged”
ground, in the case of offsets, is actually at an advantage by having
less activation. As portrayed in Figure 8, less activation at the
ground’s location allows the peak in WM to fall below subthresh-
old levels of activation (i.e., destabilize) sooner than the figure. At
the shortest figure-first SOA (26 ms), the higher amount of acti-
vation at the figure’s location is not always able to diminish
rapidly enough to release inhibition in PF, which would allow a
peak to be built in PF in response to the Task input. Instead, the
ground peak destabilizes earlier in response to the offset of the
corresponding target at its location, causing the incorrect response
(i.e., “ground”) to be generated.

Clearly the asymmetric input from Seg played a critical role in
producing the shift in the psychophysical functions. Critically,
there is robust behavioral and neural support for this property of

the model suggesting that neural activation differs between figures
and grounds. For example, Vecera and O’Reilly generated and
tested a model to explain the increased salience of foreground
figures relative to ground regions (see Vecera & O’Reilly, 1998,
2000; also see Kienker, Sejnowski, Hinton, & Schumacher, 1986;
Sejnowski & Hinton, 1987; but see Peterson, 1999, and Peterson &
Skow, 2008, for an alternative account). Their interactive model
contained neural representations of both figures and grounds. They
predicted that figures have an enhanced neural activation com-
pared with grounds. Vecera and O’Reilly’s simulations provided
strong support for their hypothesis, as opposed to other descriptive
models that generated behavioral predictions that were tested in
additional experiments (see Peterson, 1999, and Peterson & Skow,
2008). Supporting Vecera and O’Reilly’s conclusions, neurophys-
iological studies have demonstrated that perceiving figures results
in increased neuronal firing relative to perceiving grounds. For
example, V1 and V2 neurons in macaques increased in firing when
their receptive fields were located on the figure (e.g., Lamme,
1995; Marcus & Van Essen, 2002; Qiu, Sugihara, & von der
Heydt, 2007). Therefore, it is reasonable to assume that the Seg
input is asymmetrical between figures and grounds and can be a
critical factor in generating consequences of figure–ground orga-
nization (e.g., prior entry and temporal extension effects).

In addition to impacting performance in the figure–ground
conditions, the Seg input also impacted the model’s performance
in the ambiguous and separated regions conditions. The separated
regions displays were assumed to lack segmentation input because
these displays should be interpreted as two distinct objects. Thus,
by not sharing a contour, there is no competition between the
regions for figural assignment. In contrast, there is some compe-
tition in the figure–ground displays, but the majority of the com-
petition can be resolved early in the trial, prior to the onset or offset
events, and remains consistent throughout the trial.

In the case of an ambiguous display, strong input was provided
at both locations. We conjecture this reflected constant competi-
tion between these regions for figural assignment. The displays
presented in the behavioral experiments contained an abrupt tran-
sition between regions along a straight, shared contour (see Figure
2; also see Figure 1 in Hecht & Vecera, 2011). The regions
appeared to accidentally align, which may have increased confu-
sion in how to perceptually organize the display. The behavior of
the model suggests that the increased input raises activation closer
to threshold, making the system more susceptible to noise, which
then could push either location’s activation over threshold in PF

Table 5
Statistics for Offset Simulations

Statistic Trial type Behavioral data

Simulations

Run 1 Run 2 Run 3 Run 4 Run 5 Average

PSS Figure–ground �10.1 �12.4 �9.5 �10.0 �10.5 �10.3 �10.6 (1.1)
Separated regions 1.8 �5.0 �4.3 �2.2 �1.0 �1.2 �2.7 (1.8)
Ambiguous �1.3 �3.0 �1.1 2.1 �0.5 �3.0 �1.1 (2.1)

JND Figure–ground 36.4 30.1 30.5 29.4 27.9 28.5 29.3 (1.1)
Separated regions 42.6 29.9 29.9 30.3 28.4 30.6 29.8 (0.9)
Ambiguous 39.6 30.3 31.2 29.0 31.8 31.2 30.7 (1.1)

Note. Parentheses indicate standard deviations. PSS � point of subjective simultaneity; JND � just noticeable difference.
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(onsets) to generate a response, thereby reducing the accuracy of
the TOJs.

Supporting this interpretation, Vecera et al. (2002) presented
data in which ambiguous trials demonstrated a RT benefit over
figure–ground displays. Observers viewed two-region displays
whose shared contour was aligned horizontally (figure–ground
trials) or vertically (ambiguous trials). They demonstrated that the
horizontal alignment (i.e., one region in the upper visual field and
one in the lower) produced a RT benefit for lower regions (i.e.,
figure) over the upper regions in a memory matching task in which
participants chose which of two regions was present in the previ-
ous two-region display. It is interesting to note that trials in which
memory for ambiguous trials (regions to the left and right of each
other) was probed yielded overall faster RTs and higher accuracy
than trials in which the regions appeared above and below each

other. They concluded this benefit for ambiguous displays may
result from fewer constraints placed on the ambiguous displays,
allowing them to be processed more quickly than figure–ground
displays (see also Driver & Baylis, 1996). The current DNF model
agrees with Vecera et al.’s (2002) discussion and suggests that
fewer constraints may increase activation associated with process-
ing these ambiguous regions, which can also speed response gen-
eration relative to figure–ground trials.

It is interesting to note that the strength of the Seg input did not
impact the JND for ambiguous trials in the offset task: all condi-
tions yielded the same slopes. This result highlights the difference
between the onset and offset tasks. For onsets, the performance of
the system is highly dependent upon, and sensitive to, the input.
Slight variations in the input strength can shift the slope of the
function. In contrast, offsets are not as strongly impacted by the

Figure 6. Model simulations (left panels) with a denser sampling across stimulus onset asynchronies (SOAs)
and empirical experiments (right panels) data for both the (A) onset tasks and the (B) offset tasks. The onset
empirical data (A; right panel) first appeared in Lester, Hecht, and Vecera (2009; Figure 2A) and are replicated
with kind permission from Springer Science and Business Media. The offset empirical data (B; right panel) is
replicated from Hecht, L. N., & Vecera, S. P. (2011). Delayed offset detection on figures relative to backgrounds.
Journal of Vision, 11, 15. Copyright belongs to the Association for Research in Vision and Ophthalmology (©
ARVO).
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strength of the input. Because offset judgments rely on the WM
peaks falling back below threshold, and not in establishing the
initial peaks in PF, the strength of the input is not as critical in
determining the slope of the function. Sensitivity to noise remains
the same and differences between conditions instead rely on the
interaction and inhibition between the two locations.

The strength of the input also interacted with the symmetry of
input to influence the figure–ground PSS. Providing asymmetric
input shifted the PSS, and the strength of the asymmetric input
determined the size of the PSS: stronger inputs yielded larger shifts
in the PSS (i.e., higher estimates of the SOA at 50% “ground first”
responses). One prediction that can then be tested is to manipulate
the strength of the input at either location, such as manipulating
saliency of the figure. As the saliency of the figure increases, the
PSS should continue to become larger, meaning that more time
would be required between the figure and ground events to accu-
rately order them.

The interaction between these two components (i.e., asymmetric
input and strength of input) also offers an explanation for other
aspects of the empirical data. Individual curve-fits from the prior
entry and the temporal extension experiments (e.g., see supple-
mentary files in Hecht & Vecera, 2011) showed noticeable varia-
tion in both the PSS and the JND for both figure–ground and
ambiguous trials upon visual inspection. Although a majority of
the participants had the corresponding shifts in PSS for onset and
offset tasks, other participants deviated from the patterns. One
account for these individuals’ performance is that their perception
of the display is changed relative to those fitting the trends.
Figure–ground organization, although often similar across indi-
viduals, is still a heuristic used by the visual system. The cues that

are used to complete figure–ground organization (e.g., convexity)
are not used consistently across individuals. Individuals whose
PSS did not noticeably shift, for example, may have established a
weaker representation of the convex region as figure, whereas
those with opposite shifts likely established a reverse assignment
(i.e., concave region as figure), on a greater proportion of trials.
Similarly, the perception of the ambiguous trials can differ across
participants, changing the strength of the input in accordance with
changes in constraints implemented when processing the display.
The DNF model gives us a tool to explore these individual differ-
ences and a framework within which one can test these specific
proposals. One avenue for future exploration would be to measure
figure–ground perception empirically across our various displays
(figure–ground, ambiguous, and separated) and to use this to set
the Seg input to the model, permitting us to more closely simulate
performance across different display types. Such an approach
would also lend itself to showing that the magnitude of TOJ effects
is directly tied to the strength of figure–ground assignment. Spe-
cifically, displays that produced stronger figure–ground percepts
should produce larger TOJ effects, and this could be established by
measuring figure–ground perception for various displays and then
using these displays in a TOJ task.

Individual differences might also result from sparse sampling of
SOA. This methodological point is critical when considering in-
dividual differences in JND, though it also impacts the calculation
of PSS. By obtaining a smaller sampling across SOA, fewer points
are used to fit the psychophysical curves to each individual’s data.
As a result, the curve-fits are more likely to be impacted by
outliers. Denser sampling across SOA in the model supports this
conjecture: the five batches of denser sampling simulations pro-

Table 6
Statistics for Onset Simulations With Denser SOA Sampling

Statistic Trial type Behavioral data

Simulations

Run 1 Run 2 Run 3 Run 4 Run 5 Average

PSS Figure–ground 10.1 15.7 11.8 14.5 13.1 15.1 14.1 (1.6)
Separated regions �0.5 �0.7 0.3 �1.6 �0.6 �0.1 0.5 (0.7)
Ambiguous �2.7 �2.1 �3.2 �2.9 0.9 �2.3 1.9 (1.7)

JND Figure–ground 41.6 43.7 45.9 56.6 43.2 45.0 44.7 (1.2)
Separated regions 39.8 48.3 47.5 46.5 45.5 48.0 47.2 (1.2)
Ambiguous 82.0 72.2 65.9 68.8 73.5 69.5 70.0 (3.0)

Note. Parentheses indicate standard deviations. SOA � stimulus onset asynchrony; PSS � point of subjective simultaneity; JND � just noticeable
difference.

Table 7
Statistics for Offset Simulations With Denser SOA Sampling

Statistic Trial type Behavioral data

Simulations

Run 1 Run 2 Run 3 Run 4 Run 5 Average

PSS Figure–ground �10.1 �9.1 �10.7 �10.1 �9.3 �12.3 �10.3 (1.3)
Separated regions 1.8 0.0 1.5 1.0 1.2 1.6 0.4 (1.2)
Ambiguous �1.3 �1.0 �1.1 �1.1 1.4 �1.4 0.7 (1.1)

JND Figure–ground 36.4 29.1 28.1 31.2 29.8 30.7 29.8 (1.3)
Separated regions 42.6 30.1 32.7 30.1 32.4 32.8 31.7 (1.4)
Ambiguous 39.6 30.9 29.7 29.6 30.4 29.9 30.1 (0.5)

Note. Parentheses indicate standard deviations. SOA � stimulus onset asynchrony; PSS � point of subjective simultaneity; JND � just noticeable
difference.
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vided closer estimates of the PSS and JND to one another than did
the five batches using the SOAs tested empirically (see Table 3
and compare Tables 4 to 6 and Tables 5 to 7). Therefore, the
individual data likely include the impact of differences in curve-
fits on the JND and PSS; denser sampling may better estimate each
individual’s psychophysical function and reduce variation between
individuals. Of course, due to constraints (e.g., time) this hypoth-
esis may only be tested using psychophysically trained partici-
pants, though other concerns (e.g., fatigue) remain.

Beyond accounting for figure–ground phenomena, our model
can be extended to the attention literature. Other manipulations
that produce asymmetric input, such as spatial attention, may also
be provided to the model, in lieu of Seg, to the change detection
mechanism to produce these same consequences for temporal
processing. Figure–ground organization and attention do affect
temporal processing in similar ways: both processes result in prior
entry and temporal extension effects (see Hecht & Vecera, 2011,
and Lester et al., 2009, for a discussion). Therefore, we surmise
that these processes may utilize the same mechanism in order to
influence temporal processing in the same, structured fashion. By
extension, current theories regarding spatial attention’s impact on
temporal processing may provide further insight into the nature of
the mechanism implemented in the DNF model. The current model
suggests that raised activation (i.e., asymmetric input) for figures
relative to grounds puts activation closer to detection threshold in
the case of onsets, but can also extend the duration of processing
for these regions as well. These processing dynamics also apply to
recent evidence that indicates a ‘prior entry’ effect for convex

shapes and near surfaces (West, Pratt, & Peterson, 2013), similar
to that observed for figural regions. Such results suggest that
surface convexity and monocular depth might produce asymmetric
inputs similar to those from figure–ground perception, and the
DNF model would account for these results with the mechanisms
we have outlined here.

Similar accounts have been proposed within the attention liter-
ature, but they rely on separate mechanisms: one to account for
prior entry and one to account for temporal extension. Schneider
and Bavelier (2003) found that the prior entry effect can be
attributed to both an acceleration of processing and to sensory
facilitation, whereby perceptual processing is accelerated (e.g.,
neurally enhanced) independently of attention. Their proposal sug-
gested that neurons responding to attended regions increased in
activation, enhancing their representation. This enhancement then
allowed for faster detection of targets appearing at that location.
This general account aligns with the DNF model, which also uses
an increase in activation in response to the source of the asym-
metric, or biased, input (i.e., figure–ground organization).

An alternative theory was proposed to account for the temporal
extension effect. In particular, Yeshurun and Levy (2003) consid-
ered two alternatives: spatial and temporal resolution may be
independent, separable processes (e.g., Lehky, 1985; Wilson,
1980) or that they interact (e.g., Carrasco, 1990; Drum, 1984),
yielding a tradeoff between the two (e.g., Wilson, 1980; Wilson &
Bergen, 1979) where foveated locations are provided higher spatial
resolution and the periphery is provided higher temporal resolu-
tion. Using a gap detection task to assess spatial resolution and a

Figure 7. Sample of model simulation’s activation (y-axis) over time (x-axis) for a figure–ground trial in the
onset task where the ground target (Time 1; T1) led by 26 ms. This example demonstrates the model incorrectly
responding “figure” (Time 2). SOA � stimulus onset asynchrony; PF � perceptual field; WM � working
memory. See the online article for the color version of this figure.

Figure 8. Sample of model simulation’s activation (y-axis) over time (x-axis) for a figure–ground trial in the
offset task where the figure target led by 26 ms. This example demonstrates the model incorrectly responding
“ground.” PF � perceptual field; WM � working memory; T1 � Time 1; T2 � Time 2. See the online article
for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

13DNF MODEL OF TEMPORAL ORDER JUDGMENTS



two-flicker fusion threshold paradigm (e.g., Levine, 2000) to as-
sess temporal resolution, Yeshurun and Levy found behavioral
support for a tradeoff between the two processes.

After finding that attended locations had high spatial and low
temporal resolution, Yeshurun and Levy (2003) outlined a neuro-
physiological hypothesis that accounted for these behavioral ef-
fects. This hypothesis considered the processing differences be-
tween foveated and peripheral locations, and drew parallels
between these differences and the characteristics associated with
the parvocellular (P) and magnocellular (M) pathways in visual
processing. Parvocellular neurons have smaller receptive fields
(e.g., Schiller & Logothetis, 1990; Shapley & Perry, 1986) and
extended response durations (e.g., Merigan & Maunsell, 1993;
Schiller & Logothetis, 1990), contrasting with the properties of M
neurons. Moreover, these characteristics align with the differences
found between foveated and peripheral locations (e.g., Allen &
Hess, 1992). Therefore, enhancing one domain (spatial or temporal
resolution) should result in a decrease to the other domain, creating
a tradeoff between the two. By Yeshurun and Levy’s account,
attention increases the activation of P neurons. In turn, this acti-
vation then projects inhibition to the M neurons resulting in higher
spatial acuity but poorer temporal resolution at the location of
attention.

Yeshurun (2004) later supported this neurophysiological hy-
pothesis in a series of behavioral experiments examining temporal
resolution using a two-flicker fusion threshold paradigm. Criti-
cally, these studies were designed to inhibit the M neurons prior to
activation of the P neurons. In doing so, the P neurons, when
activated via attention, would not be able to inhibit the M neurons.
Yeshurun inhibited the M pathway by presenting either colored
stimuli in isoluminant pairs (e.g., blue paired with yellow) or a
diffuse red light. Magnocellular neurons are both colorblind (e.g.,
Merigan & Maunsell, 1993; Schiller & Logothetis, 1990) and are
suppressed by diffuse red light falling on the surround of their
receptive fields (e.g., Livingstone & Hubel, 1984; Van Essen,
1985). If the inhibition of M by P neurons while processing
information at an attended location is critical in degrading tempo-
ral resolution, then, Yeshurun argued, eliminating this inhibitory
process should improve temporal resolution at attended regions.
Yeshurun (2004) found decrements in temporal resolution under
normal circumstances, but found attenuated decrements when the
flicker stimuli were isoluminant and found no differences in res-
olution between attended and unattended locations when a diffuse
red background was used. These results supported the neurophys-
iological hypothesis that P-M inhibition processes impact temporal
discrimination by decreasing temporal resolution. Furthermore,
Yeshurun’s results offer an explanation for the observation that P
neurons are active for longer durations and have a slower rate of
decay relative to M neurons (e.g., Merigan & Maunsell, 1993;
Schiller & Logothetis, 1990).

Therefore, Yeshurun and Levy’s (2003; see also Yeshurun,
2004) neurophysiological hypothesis addresses the physical mech-
anism that can give rise to the temporal extension effect (i.e.,
extended processing for attended locations or figures). Figure–
ground organization has a similar impact on temporal resolution,
such that figures are processed similarly to attended locations.
Specifically, the temporal resolution is degraded at these locations
(Hecht & Vecera, 2011, 2014). Yeshurun and Levy’s account is
reminiscent of Weisstein, Maguire, and Brannan’s (1992) proposal

that regions processed by the P pathway are recognized as figures,
suggesting that attention and figure–ground may be utilizing sim-
ilar mechanisms. Because figure–ground has been shown to im-
pact temporal processing in similar ways as attention, potentially
resulting in similar neurophysiological patterns, we speculate that
temporal processing decrements from figure–ground organization
and from attention are generated from use of the same mechanism,
as demonstrated by the DNF model, and that the source of this
mechanism may relate to the P and M pathways.

Still, it is important to note that there is no direct evidence for
the P-M inhibition hypothesis. Indirect behavioral evidence has
been provided (e.g., Yeshurun, 2004) to support the hypothesis,
but currently no studies have examined activation patterns in these
pathways during completion of TOJ tasks to study the role and
interaction of the P and M pathways. As Schiller (1996; see also
Schiller & Logothetis, 1990) noted, the separation of these path-
ways is less distinct in later visual processing (e.g., V4). Without
directly studying the neurophysiological functioning in these tasks,
it is uncertain whether theories should distinguish between the P
and M pathways. Note that a recent DNF model by Schneegans,
Spencer, Schöner, Hwang, and Hollingworth (2014) further inte-
grates perception, attention, and visual working memory, showing
how the contents of visual working memory affect perception
which, in turn, influences the allocation of attention and saccadic
eye movements (see Hollingworth et al., 2013). Because the Sch-
neegans et al. (2014) model has separate pathways for spatial
attention and a surface feature pathway, it might serve to bridge
our current DNF model to Yeshurun’s (2004) two-pathway ac-
count of temporal processing. Regardless, the current DNF model
provides a detailed depiction of the neural dynamics (i.e., patterns
of activation and their interaction) that can produce the prior entry
and temporal extension effects in figure–ground perception and in
the allocation of spatial attention.
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