Neural Dynamics

Gregor Schöner
gregor.schoener@ini.rub.de
how to represent the inner state of the Central Nervous System?

=> activation concept
Activation

- neural state variables
 - membrane potential of neurons?
 - spiking rate?
 - ... population activation...
Activation

- activation as a real number, abstracting from biophysical details
 - low levels of activation: not transmitted to other systems (e.g., to motor systems)
 - high levels of activation: transmitted to other systems
 - as described by sigmoidal threshold function
 - zero activation defined as threshold of that function
Activation

- compare to connectionist notion of activation:
 - same idea, but tied to individual neurons
- compare to abstract activation of production systems (ACT-R, SOAR)
 - quite different... really a function that measures how far a module is from emitting its output...
Activation dynamics

- activation variables $u(t)$ as time continuous functions...

$$\tau \frac{du(t)}{dt} = f(u)$$

- what function f?
Activation dynamics

- start with $f=0$

$$\tau \dot{u} = \xi_t$$
Activation dynamics

need stabilization

\[\tau \dot{u} = -u + h + \xi_t. \]
In a dynamical system, the present predicts the future: given the initial level of activation $u(0)$, the activation at time t: $u(t)$ is uniquely determined

$$\frac{du(t)}{dt} = \dot{u}(t) = -u(t) + h \quad (h < 0)$$
tutorial on mental simulation
Neural dynamics

- stationary state = fixed point = constant solution
- stable fixed point: nearby solutions converge to the fixed point = attractor

\[\frac{du(t)}{dt} = \dot{u}(t) = -u(t) + h \quad (h < 0) \]
Neural dynamics

- exponential relaxation to fixed-point attractors
- $\tau \frac{du}{dt} = f(u)$

$u(t)$

$u(0)$

$u(0)/e$

$u(\tau)$

Time

Resting level

Vector-field

$\tau \frac{du}{dt} = -u(t) + h$
solutions = trajectories vs. dynamical system

A fixed point, \(u_0 \), is formally defined as a solution of

\[f(u_0) = 0 \quad (B1.3) \]

As illustrated in Figure 1.6. Because the function \(f \) does not depend on time, the fixed point, \(u_0 \), is constant over time as well, so that

\[\dot{u}_0 = 0, \]

and thus:

\[\dot{u}_0 = 0 = (B1.3). \]

In other words, the fixed point, \(u_0 \), is a constant solution of the differential equation.

A fixed point is “asymptotically stable” if the solutions of the dynamical system that start from initial conditions nearby converge over time to the fixed point. When the dynamics, \(f \), has a negative slope at the fixed point,

\[\frac{df}{du} u_0 = 0 < 0, \]

then the fixed point is stable. The arrows in

Time, \(t \)

...
Neural dynamics

- attractor structures ensemble of solutions = flow

\[\frac{d\mathbf{u}}{dt} = f(\mathbf{u}) \]

- resting level

\[\tau \mathbf{u}(t) = -\mathbf{u}(t) + h \]
Neuronal dynamics

- **inputs** = contributions to the rate of change
 - positive: excitatory
 - negative: inhibitory
- $\tau \dot{u}(t) = -u(t) + h + \text{inputs}(t)$
=> simulation
tutorial on numerics

- dynamical system
 - continuous time

- differential
 - quotient
 - approximates the derivative in discrete time

- Euler iteration
 - equation in discrete time

\[\ddot{u} = f(u). \]

\[\dot{u}(t_i) \approx \frac{u(t_i) - u(t_{i-1})}{\Delta t} \]

\[u(t_i) = u(t_{i-1}) + \Delta t f(u(t_{i-1})). \]
Matlab code
Neuronal dynamics with self-excitation

\[\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t)) \]
Neuronal dynamics with self-excitation

\[\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t)) \]

\[g(u) \]

\[\text{resting level, } h \]

\[\beta \]

\[\Rightarrow \text{nonlinear dynamics!} \]
Neuronal dynamics with self-excitation

\[\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t)) \]
Neuronal dynamics with self-excitation

- at intermediate stimulus strength: bistable
- “on” vs “off” state

\[\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t)) \]
Neuronal dynamics with self-excitation

increasing input strength =>
detection instability

resting level, h

stimulus strength

stable
unstable
Neuronal dynamics with self-excitation

- Decreasing input strength => reverse detection instability
Neuronal dynamics with self-excitation

- The detection and the reverse detection instability create discrete events out of input that changes continuously in time.
simulator
Neuronal dynamics with competition

\[\tau \dot{u}_1(t) = -u_1(t) + h - \sigma(u_2(t)) + S_1 \]

\[\tau \dot{u}_2(t) = -u_2(t) + h - \sigma(u_1(t)) + S_2 \]
The rate of change of activation at one site depends on the level of activation at the other site.

Mutual inhibition

\[
\begin{align*}
\tau \dot{u}_1(t) &= -u_1(t) + h - \sigma(u_2(t)) + S_1 \\
\tau \dot{u}_2(t) &= -u_2(t) + h - \sigma(u_1(t)) + S_2
\end{align*}
\]

Sigmoidal nonlinearity
to visualize, assume that \(u_2 \) has been activated by input to positive level

\[\Rightarrow \text{then } u_1 \text{ is suppressed} \]
why would u_2 be positive before u_1 is? E.g., it grew faster than u_1 because its inputs are stronger/inputs match better

\Rightarrow input advantage translates into time advantage which translates into competitive advantage
Neuronal dynamics with competition

vector-field in the absence of input

\[\frac{du}{dt} = f(u) \]

resting state

1D cut through vector-field

resting level
Neuronal dynamics with competition

vector-field (without interaction) when both neurons receive input

\[du/dt = f(u) \]

1D cut through vector-field

stimulus determined state

input

activated level
Neuronal dynamics with competition

only activated neurons participate in interaction!

sigmoidal nonlinearity
Neuronal dynamics with competition

- vector-field of mutual inhibition

site 1 inhibits site 2

site 2 inhibits site 1

interaction combined
Neuronal dynamics with competition

Vector-field with strong mutual inhibition: bistable
Neuronal dynamics with competition

before input is presented

after input is presented
Neuronal dynamics with competition

=> biased competition

stronger input to site 1:
attractor with activated $u_{\text{-}1}$ stronger,
attractor with activated $u_{\text{-}2}$ weaker, may become unstable
Neuronal dynamics with competition

=> biased competition

before input is presented

after input is presented
=> simulation
next

where do activation variables come from?

=> DFT lecture