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Activation

how to represent the inner 
state of the Central Nervous 
System? 

=> activation concept

source1 source2



Activation

neural state variables

membrane potential of neurons?

spiking rate? 

... population activation... 



Activation

activation as a real number, abstracting from 
biophysical details

low levels of activation: not transmitted to other systems (e.g., 
to motor systems)

high levels of activation: transmitted to other systems

as described by sigmoidal threshold function 

zero activation defined as threshold of that function 
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Activation

compare to connectionist notion of activation: 

same idea, but tied to individual neurons

compare to abstract activation of production 
systems (ACT-R, SOAR)

quite different... really a function that measures how far a 
module is from emitting its output... 



Activation dynamics

activation variables u(t) as time continuous 
functions... 

what function f? 

⌧ u̇(t) = f(u)

du(t)/dt

u(t)



Activation dynamics

start with f=0

⌧ u̇ = ⇠t

time, t

u(t)

resting
level

du/dt

u
resting level

probability distribution
of perturbations



Activation dynamics

need stabilization

⌧ u̇ = �u+ h+ ⇠t.

time, t

du/dt

u

u(t)

resting level

resting
level



Neural dynamics

In a dynamical system, the present predicts the future: given 
the initial level of activation u(0), the activation at time t: 
u(t) is uniquely determined

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)

du/dt = f(u)

u

resting
level

vector-field



tutorial on mental simulation



Neural dynamics
stationary state=fixed point= constant solution

stable fixed point: nearby solutions converge to the 
fixed point=attractor

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)

du/dt = f(u)

u

resting
level

vector-field



Neural dynamics

exponential relaxation to fixed-point attractors

=> time scale

⌧ u̇(t) = �u(t) + h

du/dt = f(u)

u

resting
level

vector-field

time

u(t)
u(0)

u(0)/e

u(T)



solutions = trajectories 
vs. dynamical system

14 Fou n dat ions  of Dy na m ic  Fi e l d T h eory

sufficiently smooth function, f(u), and any initial value of u, a unique solution, u(t), of the dif-
ferential equation exists for an interval of time, t. Thus, given the dynamics captured by the 
function, f(u), “the present predicts the future.” In Figure 1.5, this is made plausible by mark-
ing an initial condition for u and highlighting the rate of change for that initial value. In this 
case, a negative rate of change, predicting an imminent decrease of the activation variable, is 
indicated by the arrow pointing to the left. Thus, in a mental “iteration,” we expect the vari-
able to have a somewhat smaller value to the left of the initial value a moment of time later. 
The dynamics will then supply a new rate of change, which predicts the next value and so on.

In the main text of this chapter we use this form of iterative mental simulation to intui-
tively understand attractors, the convergence in time to a fixed point of the dynamical system. 
A fixed point, u0 , is formally defined as a solution of

  
f u0 0( ) =

                   
(B1.3)

as illustrated in Figure 1.6. Because the function f does not depend on time, the fixed point, 
u0 , is constant over time as well, so that !u0 0= , and thus: !u f u0 0= ( ) = 0. In other words, the fixed 
point, u0, is a constant solution of the differential equation.

A fixed point is “asymptotically stable” if the solutions of the dynamical system that start 
from initial conditions nearby converge over time to the fixed point. When the dynamics, f, has 

a negative slope at the fixed point, 
df
du

u u=( ) <0 0,  then the fixed point is stable. The arrows in 

Time, t

u

u

Time, t

u

u

FIGURE  1.4: Top: The time course of a dynamic variable, u. Middle: The time course of its rate of change, !u.  
Bottom: The functional relationship between !u and u obtained by correlating the two. The symbols in the three 
panels mark corresponding values of !u and u at three points in time. The time courses on top were obtained from 
solutions of the linear dynamical system shown at the bottom.

u = f(u)

u
Initial
condition

FIGURE 1.5: A nonlinear dynamics system !u f u= ( ) with a particular value of u chosen as initial condition (open 
circle). The dynamics assigns a rate of change to that initial condition, which predicts the direction of change 
(arrow).
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Neural dynamics

attractor structures ensemble of solutions=flow

⌧ u̇(t) = �u(t) + h

du/dt = f(u)

u

resting
level

vector-field
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Neuronal dynamics

inputs=contributions to 
the rate of change

positive: excitatory

negative: inhibitory

=> shifts the attractor

activation tracks this 
shift (stability)

⌧ u̇(t) = �u(t) + h + inputs(t)

u

h+s

input, s

resting
level, h 

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, s



=> simulation



tutorial on numerics

dynamical system 
continuous time

differential 
quotient 
approximates the 
derivative in 
discrete time

Euler iteration 
equation in 
discrete time
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shown in that figure is the result of integration across the Gaussian white noise process. This 
leads to a time-continuous process, called the Wiener process, that is still very random because 
its increments are independent of each other. That is, at any moment in time, the direction of 
change is independent of the current level of activation. We used this insight in Figure 1.8 to 
argue for a deterministic portion, f(u), of the dynamics that limits variance by introducing sta-
bility. This was done in Figure 1.9, in which  f u u h( ) = − + .

Conventionally, the source of randomness, the stochastic perturbation on the right-hand 
side of the dynamics, is referred to as noise. The consequence of randomness is variability 
of the solutions of the stochastic dynamics. That variability is referred to as fluctuations. Not 
all authors strictly adhere to that convention, however. Essentially all the models we use in 
DFT have a noise component and are thus stochastic differential equations. In many cases we 
compare the fluctuations of the time courses obtained from the stochastic dynamics to vari-
ability across time or trials observed in experiment. In some instances, those comparisons 
lead to quantitative match and predictive power (e.g., Schöner, Haken, Kelso, 1986; Schutte, 
Spencer, 2009).

The numerical solution of stochastic differential equations differs a bit from the numerics 
of deterministic differential equations. Before we review that, however, we will first discuss 
numerics in greater detail. Numerics is an issue for the modeler, of course, not for the ner-
vous system. The nervous system is essentially an analogue computer that implements neu-
ral dynamics directly (although that implementation is not trivial either, using spikes, as we 
briefly discussed in Box 1.1). But as modelers we solve the dynamical equations numerically 
on digital computers when we run simulations to account for neural or behavioral data. When 
we use neural dynamics to drive robots that behave autonomously based on their own sensory 
information (as in Chapters 4, 9, 12, and 14), we do the same: The robots have on-board comput-
ers, on which we solve the equations in real time, taking input from the sensors and sending 
the computed solutions to the actuators. On computers, time is discrete. The computer goes 
through computational steps, paced by its clock. The time step available to us at the macro-
scopic level at which we write our code is much, much larger than the clock cycle on the hard-
ware (e.g., somewhere around 10 to 50 milliseconds for our computational cycles compared to 
1 millionth of a millisecond for the hardware clock cycle on a 1 GHz processor).

How to approximate the continuous time dynamics in discrete time is the topic of numer-
ics, a well-established field of applied mathematics. For numerical solutions of deterministic 
differential equations, consult Braun (1993); for numerical solutions of stochastic differential 
equations, consult Kloeden and Platen (1999). Here we outline only the main ideas.

Let’s say we want to numerically solve this differential equation, the deterministic version 
of Equation B1.4:

                                      .!u f u= ( )   (B1.5)

We assume that we have a computational cycle that allows us to provide estimated values, 
u ti( ), of the time course of u(t) at the discrete times, t i ti = ∆ . Here, ∆t, is the time step and we 
have used an index, i = …0 1 2 3, , , , to count the discrete time events. The classical and simplest 
approach is called the Euler method and is based on approximating the derivative, !u, around one 
of the sample times, ti, by the differential quotient:

                              !u t
u t u t

ti
i i( ) ≈ ( ) − ( )−1

∆
  (B1.6)

If you don’t remember this from high school, look it up, even on Wikipedia. It is easy to fig-
ure out. If you insert this into Equation B1.5, multiply by ∆t  and add u ti−( )1 , you obtain the Euler 
formula:
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have used an index, i = …0 1 2 3, , , , to count the discrete time events. The classical and simplest 
approach is called the Euler method and is based on approximating the derivative, !u, around one 
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             u t u t t f u ti i i( ) = ( ) + ( )( )− −1 1∆ .   (B1.7)

In this derivation, you will first find that the function f u ti( )( ) on the right-hand side should 
be taken at the current time step, ti. That leads to the “implicit Euler” method. When the time 
step is sufficiently small, we may approximate this value of the function by its value at the 
previous time step, f u ti−( )( )1 , as in Equation B1.7. This is easy to implement in a numerical pro-
gram: Initialize the time series by setting u t1( ) to the initial condition. Then loop through the 
discrete times, computing at each iteration step the next value of u ti( ) based on Equation B1.7, 
which makes use only of the previous value, u ti−( )1 . The time step, ∆t, must be small enough 
that it can sample the time courses of activation. Near an attractor, the timescale of u t( ) is given 
by the relaxation time, τ, illustrated in Figure 1.11. The time step needs to be smaller than the 
relaxation time: ∆t ≪ τ. In practice, our neural dynamics is usually close to an attractor, whose 
stability helps keep the numerics stable. We often get away with a Euler step that is only about 
10 times smaller than the relaxation time.

When noise comes into the picture, things are a bit different, a fact sometimes overlooked 
by modelers. The Euler formula for the stochastic differential equation B1.4 reads:

        u t u t t f u t t q ti i i i( ) = ( ) + ( )( ) + ( )− −1 1∆ ∆ .ξ   (B1.8)

Note that the noise term scales differently than the deterministic term with the Euler  
step, ∆t.

There are much better numerical procedures for solving deterministic differential equa-
tions. These get away with a larger Euler step to achieve the same precision. In fact, MATLAB 
considers the Euler method so outdated that it doesn’t include the Euler algorithm any longer 
in its library (it is easily programmed by hand, of course). In practice, we still use this simplest 
and worst (from the point of view of numerics experts) algorithm. First, it is good enough. 
Second, it lends itself to implementation on robots, on which we also take sensor readings 
at every time step. The more advanced algorithms take into account multiple samples of the 
dynamical variable at multiple time steps, and many also vary the time step, ∆t, depending 
on how strongly the solution varies. Neither is well suited to updating the sensor data. For 
sensor data, we want to go as fast as we can to track any changes in the input. So we are not 
so interested in using the largest Euler step that delivers acceptable precision. A final issue 
is that the more advanced methods for stochastic differential equations are quite complex, 
requiring a considerable number of estimates and auxiliary variables to be iterated. Although 
those methods scale better with the time step in principle, the amount of computation needed 
at each time step can be quite large, more than offsetting the advantage gained by the larger 
Euler step.

Any initial level of activation will thus remain 
unchanged over time. But what happens when ran-
dom perturbations impact the activation variable? 
A random perturbation can be modeled as a random 
kick that generates a non-zero rate of change for a 
short (infinitesimal) moment in time (see Box  1.4 
for a brief tutorial in stochastics). The random per-
turbations may be distributed as Gaussian, as hinted 
at in the figure, so large kicks are less frequent than 
small kicks, the average kick size being zero. Kicks 
at different times are assumed to be independent 

of each other. Such random inf luences are called 
Gaussian white noise, ξ t( ), and form a good model of 
sources of stochasticity, based on fundamental laws 
of probability (Arnold, 1974). Formally, the neural 
dynamics with noise can be written as

 τ ξ"u t= ( ).  (1.2)

Any time a positive kick is applied, activation 
increases. Every time a negative kick is applied, acti-
vation decreases. Over time, activation performs a 
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Matlab code



⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation

stimulus

input

output

self-excitationu c
s



⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))Neuronal 
dynamics 
with self-
excitation u 

du/dt 

resting
level, h
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=> nonlinear dynamics!



u 

du/dt 

resting
level, h

input strength

⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal 
dynamics 
with self-
excitation



at intermediate stimulus 
strength: bistable

“on” vs “off” state

u

du/dt

time, t

u(t)<0

u(t)>0

⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal 
dynamics 
with self-
excitation



increasing input strength => 
detection instability

u 

du/dt 

resting
level, h

input strengthNeuronal 
dynamics 
with self-
excitation
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du/dt 
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fixed point

unstable

stable
stimulus
strength

stimulus
strength



decreasing input strength 
=> reverse detection 
instability

u 

du/dt 

resting
level, h

input strengthNeuronal 
dynamics 
with self-
excitation
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du/dt 
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stable 
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stimulus
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the detection and the 
reverse detection instability 
create discrete events out of 
input that changes 
continuously in time

time, t

u(t)

detection 
instability

reverse
detection 
instability

Neuronal 
dynamics 
with self-
excitation



=> simulation



Neuronal dynamics with competition

stimulus

input

output

u1
inhibitory coupling

output

u2

⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2



the rate of change of activation at one site 
depends on the level of activation at the other 
site

mutual inhibition

⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2

sigmoidal nonlinearity

Neuronal dynamics with competition



to visualize, assume that 
u_2 has been activated by 
input to positive level

=> then u_1 is suppressed

u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

Neuronal dynamics with competition



why would u_2 be positive 
before u_1 is? E.g., it grew 
faster than u_1 because its 
inputs are stronger/inputs 
match better

=> input advantage 
translates into time 
advantage which translates 
into competitive advantage
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Neuronal dynamics with competition



vector-field in the 
absence of input
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Neuronal dynamics with competition



vector-field (without 
interaction) when both 
neurons receive input
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only activated neurons participate in interaction!
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sigmoidal nonlinearity

Neuronal dynamics with competition
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site 1 inhibits site 2
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vector-field of mutual inhibition

Neuronal dynamics with competition



vector-field with strong
mutual inhibition: 

bistable
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Neuronal dynamics with competition
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=>biased competition
stronger input to site 1: 

attractor with activated u_1 stronger, 
attractor with activated u_2 weaker, may become unstable
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Neuronal dynamics with competition

0

0

u 1

resting state

re
st

in
g 

st
at

e

u 
2

before input is presented after input is presented

=>biased competition



=> simulation



next

where do activation variables come from? 

=> DFT lecture


