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... toward fields

Sl¢ 52¢ 53¢
®where do “inputs” come from...!

M from sensory systems

B from other neurons

B => activation variables gain their meaning from
the connections from the sensory surfaces or to
the motor surfaces



... toward fields

® there is no behavioral evidence for discrete
sampling...

B => abstract from discrete sampling...



... toward fields

mdefine field is over the continuous stimulus
dimension

H... as dictated by input/output connectivity...
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activation fields

® define activation fields over continuous spaces

information, probability, certainty

A
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activation

field

dimension
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» metric contents

e.g., space, movement
parameters, feature
dimensions, viewing

parameters, ...

B homologous to sensory surfaces, e.g., visual or auditory space

(retinal, allocentric, ...)

B homologous to motor surfaces, e.g., saccadic end-points or
direction of movement of the end-effector in outer space

M feature spaces, e.g., localized visual orientations, color,

impedance, ...

M abstract spaces, e.g., ordinal space, along which serial order is

represented



Example motion perception:
space of possible percepts
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Activation patterns representing
different percepts
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Example: movement planning:
space of possible actions
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Activation patterns representing
states of motor decision making

® bi-modal distribution of activation over movement
direction in pre-motor cortex before a selection
decision is made

B mono-modal distribution once the decision is made
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Caudal PMd Rostral PMd
N=101

2-target task
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S 500 1000 ms C 500 1000 ms G 500 1000 ms

[Cisek, Kalaska: Neuron 2005]



Summary: activation fields

information, probability, certainty
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On the link between DFT and
neurophysiology

® What do neurons represent!?

M notion of a tuning curve that links
something outside the nervous system
to the state of a neuron (e.g. through
firing rate)

>

M based on the forward picture in which

Spike rate

B the connectivity from the sensory

surface S
Feature dimension

B or the connectivity from the neuron
to the motor surface

B determine the activity of the neuron



Example tuning curve in primary
visual cortex (monkey)

s (orientation angle in degrees)

[Hubel,Wiesel, 1962]



Example: tuning curve in primary
motor cortex (monkey)
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What do ensembles of
neurons represent?

M the pattern of neural
activity across multiple
neurons represents a
feature value much more
precisely than individual

nheurons do
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Do all activated neurons contribute?
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Population code

Bsimilar work in MT

B Purushothaman, G., & Bradley, Da. C. (2005). Neural population
code for fine perceptual decisions in area MT. Nature
Neuroscience, 8(1), 99—-106.

® consensus, that localized populations of neurons
best correlated with behavior

M there are subtle issues of noise and correlation in populations

M e.g, Cohen, Newsome | Neurosci 2009: about 1000 neurons
needed to match behavioral performance

B review: Shamir, M. (2014). Emerging principles of population coding:
In search for the neural code. Current Opinion in Neurobiology, 25,
140—148.



Neurophysiological grounding of DFT

B Example |: primary visual cortext Al7 in the cat,
population representation of retinal location

Jancke, Erlhagen, Dinse, Akhavan, Giese, Steinhage, Schoner JNsci 19:9016 (99)



B determine RF profile for each cell

Mit’s center determines what that
neuron codes for

® compute a distribution of
population activation by
superposing RF profiles weighted
with current neural firing rate

response plane




B The current response refers to a
stimulus experienced by all
neurons

M Reference condition: localized

points of light elementary stimuli
_
—
_
2.8
- >

nasal temporal



M result: population distribution of
activation defined over retinal
space = representation of visual
location




B => does a decent job estimating retinal position

current stimulus: range of retinal field
square of light sampled by neurons

0.4°




M Extrapolate measurement device to new
conditions

Be.g., time resolved

two
different time
stimulus
locations

30 - 40 ms 40 - 50 ms 50 - 60 ms 60 - 70 ms 70 - 80 ms




B or when complex stimuli are presented (here:
two spots of light)

stimuli

Bl
-5 33108 3B

1 superposition of responses to each B N
elemental stimulus

‘esponse to composite increasing distance between the two squares of light




B by comparing DPA of composite stimuli to
superposition of DPAs of the two elementary
stimuil obtain evidence for interaction

B early excitation

B late inhibition



activation level in DPA

Interaction at location of left component stimulus

1'1 ...................
N response to
& composite stimuli
o ===
superposition of
- responses to each
elemental stimulus
B
m—a
-0.1
0
1.1
—
evidence for
-0.1 . oL e
0 inhibitory
1.1 o .
interaction
& ]
~0.1 time




model by dynamic field:
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Neurophysiological grounding of DFT

® Example 2: primary motor cortex (M), population
representation of movement direction of the hand

Bastian, Riehle, Schoner, 2003



Task

B center-out movement

O ©
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Bastian, Riehle, Schoner, 2003



Tuning of neurons in Ml to
movement direction

| trials aligned by go signals, ordered by reaction time

Complete Information

lili O3 -1

\\ hand lands on target
hand lifts off start button



Distribution of Population Activation

(DPA)

Distribution of population activation =
2 tuning curve * current firing rate
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Blook at temporal
evolution of DPA

Bor DPAs in new
conditions, here: DPA
reflects prior
information
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Theory-Experiment
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Distributions of Population
Activation are abstract

Eneurons are not localized within DPA!

Ecortical neurons really are sensitive to many
dimensions

B motor: arm configuration, force direction

Myvisual: many feature dimensions such as spatial frequency,
orientation, direction...

m=> DPA is a projection from that high-
dimensional space onto a single dimension



... back to the activation fields

® that are “defined” over the
appropriate dimension just as
population code is...

®in building DFT models, we

must ensure that this is actually

true by setting up the
appropriate input/output
connectivity
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mathematical formalization

Amari equation
ri(z, ) = —u(z,t) + h+ Sz, 1) + / w(z — 2o (u(@', 1)) do’

where
e time scale is 7
e resting level is h < 0
e input is S(x,1)

e interaction kernel is




Interaction: convolution
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Relationship to the dynamics of
discrete activation variables

self-
excitation

mutual
inhibition

A U

>

2

self-
excitation




=> simulations



Solutions and instabilities

Hinput driven solution (sub-threshold) vs. self-
stabilized solution (peak, supra-threshold)

Edetection instability
HEreverse detection instability
Hselection

Eselection instability
Ememory instability

mdetection instability from boost



Detection
instability
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the detection instability helps
stabilize decisions

threshold piercing detection instability
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the detection instability helps
stabilize decisions

Mself-stabilized peaks are macroscopic neuronal
states, capable of impacting on down-stream
neuronal systems

M (unlike the microscopic neuronal activation that
just exceeds a threshold)



emergence of time-discrete events

Bthe detection instability also explains how a
time-continuous neuronal dynamics may create
macroscopic, time-discrete events



behavioral signatures of
detection decisions

Bl detection in psychophysical paradigms is rife with
hysteresis

B but: minimize response bias



Detection instability

B in the detection
of Generalized
Apparent Motion

Luminance (cd/m?2)
—
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_—

Left Right
Position Position




Detection instability

Frame 1
Lm = L1 + L2
2
B varying R
Frame 2 ackgrouna-nelative L1 - L2
BRLC Luminance Change =
(BRLC) Lm - Lb
Frame 3




Detection instability

B hysteresis of motion detection as BRLC is varied

B (while response bias is minimized)

Proportion of Ascending Trials with

H. S. Hock, G. Schoner / Seeing and Perceiving 23 (2010) 173—-195
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overcoming fixation

B detection can be like selection: initiating an action
means terminating the non-action=fixation or posture

B example: saccade initiation

300
(b)
200
o0
initiation PR
. y
level m a® ammm? aQamme
-100
&% %
selection e
level -----------' > :
fovea ta rg et ey target fovea
input

[Wilimzig, Schneider, Schoner, 2006]



initiation vs. fixation

B such models account for the gap-step-overlap effect
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stabilizing selection decisions

20;

activation
-ﬁ&)Ql\)b

gctivation

Y00 s
[Wilimzig, Schoner, 2006]
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behavioral signatures
of selection decisions

Bin most experimental situations, the correct selection
decision is cued by an “imperative signal” leaving no
actual freedom of “choice” to the participant (only the
freedom of “error™)

B reasons are experimental

Bwhen performance approaches chance level, then close
to “free choice”

Bbecause task set plays a major role in such tasks, | will
discuss these only a little later



one system of “free choice”

B selecting a new saccadic location

[O’Reagan et al., 2000]



saccade generation

+ 1

®
initial visual
fixation targets

[after: Ottes et al., Vis.

Res. 25:825 (85)]

activation fiel

[ Bl

targets saccadic
A end-point

N————

bistable

activatio
field

targets saccadic
end-point

[after Kopecz, Schbner: Biol Cybern 73:49 (95)]



studying selection decisions in the
laboratory

B using an imperative signal...



reaction time (RT) paradigm

Imperative
signal=
go signal

response

task set

time

RT




the task set

® s the critical factor in such studies of selection:
which perceptual/action alternative/choices are
available...

M e.g., how many choices
M e.g., how likely is each choice

M e.g, how “easy” are the choices to recognize/perform

B because the task set is known to the participant
prior to the presentation of the imperative signal,
one may think of the task set as a “preshaping” of
the underlying representation (pre=before the
decision)
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weak preshape
in selection

| specific (imperative)
input dominates and
drives detection
instability

[Wilimzig, Schoner, 2006]
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using preshape to account for
classical RT data

® Hick’s law: RT increases 3/\
with the number of !
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metric effect
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experiment:

metric effect
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preshaped activation field

maixmal activation

same metrics, different probability
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boost-induced detection instability
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boost-driven detection instability

Binhomogeneities in the field existing prior to a
signal/stimulus that leads to a macroscopic
response="preshape”

Bthe boost-driven detection instability amplifies
preshape into macroscopic selection decisions



... emergence of categories!

Bif we understand, how such inhomogeneities
come about, we understand the emergence of
categories...



this supports

categorical
behavior

B when preshape
dominates

[Wilimzig, Schoner, 2006]
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categorical responding

Bbased on categorical
memory trace and
boost-driven detection
instability
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distance effect

Bcommon in categorical tasks... e.g., decide which of
two sticks is longer => RT is larger when sticks are
more similar in length (1930s’)
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Behavioral evidence for the graded and
continuous evolution of decision

timed movement
initiation paradigm

imperative stimulus

‘(— imposed SR interval
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[Ghez and colleagues, 1988 to 1990’s]
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Distribution of Peak Forces

Experimental results of Henig et al
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Number of trials

theoretical account for Henig et al. Experimental results of Henig et al
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[Erlhagen, Schoner. 2002, Psychological Review 109, 545-572 (2002)]



minfer width of

preshape peaks
in field

[Ghez et al 1997]
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Neural evidence for preshape

Complete Information

Distribution of population activation =
2 tuning curve * current firing rate

neurons

activation
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[after Bastian, Riehle, Schéner, submitted]
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Complete information

A Complete information A

B DPA reflects
prior
information

population activation
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[Bastian, Schoner, Riehle 2003]




BDPA reflects prior
information

concentration
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[Bastian, Schoner, Riehle 2003]



Memory instability

A A

dimension dimension
0 > 0 —
h h
self- self-
excited excited
peak peak

A A
dimension dimension
0 » O >
h h self
sub-threshold attractor sustained
peak



“space ship” task probing spatial
working memory

10 sec delay Ready, Set, Go!

[Schutte, Spencer, JEP:HPP 2009]
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B DFT account of
repulsion:
inhibitory
interaction with
peak representing
landmark

Acftivation

Location (°)

[Simmering, Schutte, Spencer: Brain Research, 2007]



Working memory as sustained peaks

Bimplies metric drift of WM, which is a marginally stable
state (one direction in which it is not asymptotically
stable)

m=> empirically real..



the memory trace
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mathematics of the memory trace

Tu(x,t) = —u(x,t)+h+ S(x, t)
+ /d:L" w(x — ') o(u(x))
Tmem Umem(Z,t) = —Umem(T,1)

+ /dx’ Wiem (T — 2 )o(u(x', 1))

B memory trace only evolves while activation is excited

® potentially different growth and decay rates
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Piaget’s A not B paradigm:“out-of-sight
-- out of mind”

A trial y s B trial

‘ ‘ A not B error
A e o0 "
| delay A B  delay B




Toyless variant of A not B task

&1 o 1-{‘ Ef

-'.- ':,'-.

. -'f .:.
“’ﬂ 1 L oy

[Smith, Thelen et al.: Psychological Review (1999)]



Toyless variant of A not B task
reveals that A not B is essentially a
decision task!

A trial

K B trial
@
e
A B “
. delay A B
( X o0

[Smith, Thelen et al.: Psychological Review (1999)]




activation field

A location

\

B location

\t\ [Thelen, et al., BBS (2001)]

task specific preshape
input input  nput

[Dinveva, Schoner, Dev. Science 2007]
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Instabilities

® detection: forming and initiating
a movement goal

® selection: making sensori-motor
decisions

® (learning: memory trace)

® boost-driven detection: initiating
the action

® memory instability: old infants
sustain during the delay, young
infants do not
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DFT of infant perseverative reaching
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[Dinveva, Schoner, Dev. Science 2007]



DFT of infant perseverative reaching

activation field
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[Dinveva, Schoner, Dev. Science 2007]



DFT of infant perseverative reaching

activation field
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[Dinveva, Schoner, Dev. Science 2007]



DFT of infant perseverative reaching

spontaneous
error

Hin spotaneous errors,
activation arises at B
on an A trial

Bmwhich leads to
correct reaching on
B trial

correct on B!
activation field
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[Dinveva, Schoner, Dev. Science 2007]



DFT of infant perseverative reaching

spontaneous
error

mthat is because
reaches to B on A
trials leave memory
trace at B

correct on B!
activation field
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[Dinveva, Schoner, Dev. Science 2007]



DFT is a neural process model

mthat makes the decisions in each individual trial, by amplifying
small differences into a macroscopic stable state

mand that’s how decisions leave traces, have consequences
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[Wilimzig, Schoner, 200€]

_=""600

X TT200 gmes

~="""1000



Decisions have consequences

M a spontaneous error doubles probability to make the
spontaneous error again

spontaneous errors

1 —e— infants - ir|1fants, repeéted
-m= DFT = - DFT, repeated
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O | | | l
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trial [T]

[Dineva, Schoner: Connection Science 2018]



Conclusions

Haction, perception, and embodied cognition
takes place in continuous spaces. peaks = units
of representation are attractors of the neural
dynamics

®neural fields link neural representations to
these continua

®stable activation peaks are the units of neural
representation

Hpeaks arise and disappear through instabilities
through which elementary cognitive functions
(e.g. detection, selection, memory) emerge



The conceptual framework of DFT

DST/DFT
DST/DFT < DFT models for > Robotic DST/DFT
human factors experiment: demonstrations approaches to
models <€» account for of DST/DFT Htechnical
A experimental models autonomous
results $ ¢ robotics
Y \ /
Naturalistic Laboratory robotic
experiment experiment demonstrations
neural <€ )of experimental

behavioral results



