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which the agent aims to achieve through contact with the envi-
ronment. For instance, “locate a red object” is a typical perceptual
intention, “turn 30 degrees to the left” is an example of a motor
intention. x is a perceptual or motor variable, which characterizes
the particular intention; S1(x, t) is an external input which acti-
vates the intention. This input may be sensory (condition of initi-
ation) or motivational (task input) (Sandamirskaya et al., 2011).
uCoS(y, t) is the condition-of-satisfaction DNF, which receives a
localized input from the intention DNF through a neuronal map-
ping W(x, y) (as introduced in Section 2.3). This input makes
the CoS DNF sensitive to a particular part of the sensory input,
S2(y, t), which is characteristic for the termination conditions of
the intended perceptual or motor act. The mapping W(x, y) may
be learned (Luciw et al., 2013). When the CoS DNF is activated,
it inhibits the intention DNF by shifting its resting level below the
threshold of the forgetting instability.

The DNF structure of an elementary behavior (EB) further
stabilizes the behavioral state of the neural system. Thus, the
intentional state of the system is kept active as long as needed to
achieve the behavioral goal. The CoS autonomously detects that
the intended action is successfully accomplished and inhibits the
intention of the EB. Extinction of the previously stabilized inten-
tion gives way to the next EB to be activated. With this dynamics,
the exact duration of an upcoming action does not need to be
represented in advance (and action durations may vary to a large
degree in real-world environments). The intentional state will
be kept active until the CoS signals that the motor action has
reached its goal. This neural-dynamic mechanism of intention-
ality enables autonomous activation and deactivation of different
modalities of a larger neuronal architecture.

Since the intention and the CoS are interconnected DNFs,
their WTA implementation may be achieved as described in
Section 2.3.

2.6. LEARNING IN DFT
The following learning mechanisms are available in the DFT
framework.

2.6.1. Memory trace of previous activity
The most basic learning mechanism in DFT is the memory trace
formation, also called preshape. The memory trace changes the
subsequent dynamics of a DNF and thus is considered an ele-
mentary form of learning. In neural terms, the memory trace
amounts to local increase in excitability of neurons, which may
be counterbalanced with homeostatic processes.

Formally, the preshape is an additional layer over the same
dimensions as the associated DNF. The preshape layer receives
input from the DNF, which is integrated into the preshape
dynamics as an attractor that is approached with a time-constant
τl/λbuild, Equation (11). This build-up constant is slower than the
time-constant of the DNF dynamics. When there is no activity in
the DNF, the preshape decays with an even slower time-constant,
τl/λdecay in Equation (11).

τlṖ(x, t) = λbuild
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Here, P(x, t) is the strength of the memory trace at site x of the
DNF with activity u(x, t) and output f

(
u(x, t)

)
, λbuild and λdecay

are the rates of build-up and decay of the memory trace. The
build-up of the memory trace is active on sites with a high pos-
itive output f

(
u(x, t)

)
, the decay is active on the sites with a low

output. The memory trace P(x, t) is an additive input to the DNF
dynamics.

The memory trace formation can be used to account for one-
shot learning of object categories (Faubel and Schöner, 2009),
representation of visual scenes (Zibner et al., 2011), or action
sequences (Sandamirskaya and Schoner, 2010b).

In a neuromorphic WTA implementation, the memory trace,
or preshape, may be interpreted as the strength of synaptic
connections from the DNF (or WTA), u(x, t), to a “memory”
population. This “memory” population activates the preshape
by transmitting its activation through the learned synaptic con-
nections, P(x, t). Learning of the synaptic connections amounts
to attractor dynamics [as in the first parenthesis of Equation
(11)], in which the pattern of synaptic connections approaches
the pattern of the DNF’s (WTA’s) output. This learning dynamics
may also be implemented as a simple Hebbian rule: the synap-
tic weights which connect active sites of the DNF (WTA) with
the memory population are strengthened. Another possible inter-
pretation of the preshape as a change in the resting levels of
individual nodes in the DNF (WTA) is harder to implement in
neuromorphic WTA networks.

2.6.2. Learning mappings and associations
When the memory trace dynamics is defined within a structure
with a higher dimensionality than the involved DNFs, the pre-
shape dynamics leads to learning of mappings and associations.
The dynamics of an associating map is similar to the memory
trace dynamics, Equation (12).

τẆ(x, y, t) = ϵ(t)
(

− W(x, y, t) + f (u1(x, t)) × f (u2(y, t))
)
. (12)

The weights function, W(x, y, t), which couples the DNFs u1(x, t)
and u2(y, t) in Equation (12), as well as in Equations (4, 5),
has an attractor at the intersection between positive outputs of
the DNFs u1 and u2. The intersection is computed as a sum
between the output of u1, expanded along the dimensions of the
u2, and the output of the u2, expanded in the dimensions of the
u1, augmented with a sigmoidal threshold function (this neural-
dynamic operation is denoted by the × symbol). The shunting
term ϵ(t) limits learning to time intervals when a reward-
ing situation is perceived, as exemplified in the architecture in
Section 3.

This learning mechanism is equivalent to a (reward-gated)
Hebbian learning rule: the cites of the DNFs u1 and u2 become
coupled more strongly if they happen to be active simulta-
neously when learning is facilitated by the (rewarding) sig-
nal ϵ(t). Through the DNF dynamics, which builds localized
activity peaks in the functionally relevant states, the learning
dynamics has the properties of the adaptive resonance net-
works (ART, Carpenter et al., 1991), which emphasize the
need for localization of the learning processes in time and in
space.
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which the agent aims to achieve through contact with the envi-
ronment. For instance, “locate a red object” is a typical perceptual
intention, “turn 30 degrees to the left” is an example of a motor
intention. x is a perceptual or motor variable, which characterizes
the particular intention; S1(x, t) is an external input which acti-
vates the intention. This input may be sensory (condition of initi-
ation) or motivational (task input) (Sandamirskaya et al., 2011).
uCoS(y, t) is the condition-of-satisfaction DNF, which receives a
localized input from the intention DNF through a neuronal map-
ping W(x, y) (as introduced in Section 2.3). This input makes
the CoS DNF sensitive to a particular part of the sensory input,
S2(y, t), which is characteristic for the termination conditions of
the intended perceptual or motor act. The mapping W(x, y) may
be learned (Luciw et al., 2013). When the CoS DNF is activated,
it inhibits the intention DNF by shifting its resting level below the
threshold of the forgetting instability.

The DNF structure of an elementary behavior (EB) further
stabilizes the behavioral state of the neural system. Thus, the
intentional state of the system is kept active as long as needed to
achieve the behavioral goal. The CoS autonomously detects that
the intended action is successfully accomplished and inhibits the
intention of the EB. Extinction of the previously stabilized inten-
tion gives way to the next EB to be activated. With this dynamics,
the exact duration of an upcoming action does not need to be
represented in advance (and action durations may vary to a large
degree in real-world environments). The intentional state will
be kept active until the CoS signals that the motor action has
reached its goal. This neural-dynamic mechanism of intention-
ality enables autonomous activation and deactivation of different
modalities of a larger neuronal architecture.

Since the intention and the CoS are interconnected DNFs,
their WTA implementation may be achieved as described in
Section 2.3.

2.6. LEARNING IN DFT
The following learning mechanisms are available in the DFT
framework.

2.6.1. Memory trace of previous activity
The most basic learning mechanism in DFT is the memory trace
formation, also called preshape. The memory trace changes the
subsequent dynamics of a DNF and thus is considered an ele-
mentary form of learning. In neural terms, the memory trace
amounts to local increase in excitability of neurons, which may
be counterbalanced with homeostatic processes.

Formally, the preshape is an additional layer over the same
dimensions as the associated DNF. The preshape layer receives
input from the DNF, which is integrated into the preshape
dynamics as an attractor that is approached with a time-constant
τl/λbuild, Equation (11). This build-up constant is slower than the
time-constant of the DNF dynamics. When there is no activity in
the DNF, the preshape decays with an even slower time-constant,
τl/λdecay in Equation (11).
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Here, P(x, t) is the strength of the memory trace at site x of the
DNF with activity u(x, t) and output f
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are the rates of build-up and decay of the memory trace. The
build-up of the memory trace is active on sites with a high pos-
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output. The memory trace P(x, t) is an additive input to the DNF
dynamics.

The memory trace formation can be used to account for one-
shot learning of object categories (Faubel and Schöner, 2009),
representation of visual scenes (Zibner et al., 2011), or action
sequences (Sandamirskaya and Schoner, 2010b).

In a neuromorphic WTA implementation, the memory trace,
or preshape, may be interpreted as the strength of synaptic
connections from the DNF (or WTA), u(x, t), to a “memory”
population. This “memory” population activates the preshape
by transmitting its activation through the learned synaptic con-
nections, P(x, t). Learning of the synaptic connections amounts
to attractor dynamics [as in the first parenthesis of Equation
(11)], in which the pattern of synaptic connections approaches
the pattern of the DNF’s (WTA’s) output. This learning dynamics
may also be implemented as a simple Hebbian rule: the synap-
tic weights which connect active sites of the DNF (WTA) with
the memory population are strengthened. Another possible inter-
pretation of the preshape as a change in the resting levels of
individual nodes in the DNF (WTA) is harder to implement in
neuromorphic WTA networks.

2.6.2. Learning mappings and associations
When the memory trace dynamics is defined within a structure
with a higher dimensionality than the involved DNFs, the pre-
shape dynamics leads to learning of mappings and associations.
The dynamics of an associating map is similar to the memory
trace dynamics, Equation (12).

τẆ(x, y, t) = ϵ(t)
(

− W(x, y, t) + f (u1(x, t)) × f (u2(y, t))
)
. (12)

The weights function, W(x, y, t), which couples the DNFs u1(x, t)
and u2(y, t) in Equation (12), as well as in Equations (4, 5),
has an attractor at the intersection between positive outputs of
the DNFs u1 and u2. The intersection is computed as a sum
between the output of u1, expanded along the dimensions of the
u2, and the output of the u2, expanded in the dimensions of the
u1, augmented with a sigmoidal threshold function (this neural-
dynamic operation is denoted by the × symbol). The shunting
term ϵ(t) limits learning to time intervals when a reward-
ing situation is perceived, as exemplified in the architecture in
Section 3.

This learning mechanism is equivalent to a (reward-gated)
Hebbian learning rule: the cites of the DNFs u1 and u2 become
coupled more strongly if they happen to be active simulta-
neously when learning is facilitated by the (rewarding) sig-
nal ϵ(t). Through the DNF dynamics, which builds localized
activity peaks in the functionally relevant states, the learning
dynamics has the properties of the adaptive resonance net-
works (ART, Carpenter et al., 1991), which emphasize the
need for localization of the learning processes in time and in
space.
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Fig. 7 Left: Simulated robot exploring the scene. Right: the summed visual input to the
architecture, the summed activity of the visual target DNF, gaze-based memory of the scene
at the end of exploration, and the gaze-trajectory, projected on the table-top (sampled at 100
frames per second).

4.3 Gain Maps Learning

The precise gaze shifts, demonstrated in the previous experiment, are the result of a
learning processes, in which the gain maps, which specify the saccades’ amplitudes,
are adapted. Figure 8 shows the convergence of the learning process for a single
location in one of the gain maps, in which the initial error of more than 3 cm is
reduced over a few saccades (five here) to values below 0.5 cm.

[Sandamirskaya, Storck: 
Artificial Neural Networks, 

Springer 2015]
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Fig. 1 The overall architecture

3.2 Perception

The perceptual system consists of a three-dimensional visual perception DNF,
which spans the dimensions of color and the retinotopic space (modelled to be a
cartesian space here, but a polar version with foveal expansion is possible as well).
The RGB output of the robotic camera is split into three color channels – hue, satu-
ration, and value. The saturation channel is used to perform the basic figure-ground
segregation and create a course saliency map, which highlights regions in the visual
space, for which the hue value is extracted and input to the visual perception DNF.
The hue (color) dimension is additionally stabilised by a coupled one-dimensional
color DNF. The visual perception DNF requires this supporting input to form a sta-
bilised activity peak over a selected object in the scene. This support from the color
field is suppressed for objects, which are already stored in memory. Thus, such ob-
jects have a disadvantage in the competition to be selected for the next looking act2.

The center of visual field is another three-dimensional DNF, which receives in-
put from the central portion of the camera image. This field may only build activity
peaks from the camera input when the fixation node is active and provides an addi-
tional boost to this DNF (i.e., raises its resting level), signalling that a saccadic gaze
shift has been finished. An activity peak in the center of visual field DNF activates

2 This ‘habituation’ happens along color dimension, but habituation along retinal space is
also possible [36], both processes have to be balanced to account for human looking data.
Here, we keep this system simple since accounting for experimental data is not the focus
of the work reported here.

process infrastructure to organize looking and learning
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the saccade generator system (Figure 2), amplifying the amplitude of the burst of
the neural oscillator. Figure 4 illustrates this process.

Perceptual DNF (2D projection) Visual Target DNF

Selected gain map 
(horizontal)

Selected gain map 
(vertical)

time

time

speed hor.

speed vert.

Saccade generation circuit

Fig. 4 Circuitry to generate saccades with a precise amplitude

The gain maps are initially homogeneous – all values in them are set to ones.
When a visually perceived target appears in this state, a saccade is generated with
such an amplitude in both motors that does not bring the target object into the central
portion of the camera image (retina). Thus, the fixation system does not get engaged,
but the error estimation module is activated and estimates whether the saccade was
too long or too short (too far / to close module in Figure 1) in each of the four direc-
tion in the image: left, right, up, and down (corresponding to four direction of the
eye movements’ ‘synergies’). The learning mechanism of Equation (5) updates the
gain map at the position, which corresponds to the active region of the visual target
field and the gaze angle before the saccade. The direction of adaptation (increase
of decrease of the values in the selected region of the gain map) is defined by the
output of the error estimation module.

τl Ġh,v(x,y,k, l, t) = εh,v(t) f (uEoS(t))
(

f (um(k, l, t))× f (utar(x,y, t))
)
. (5)

Here, Gh,v(x,y,k, l, t) are two sets of gain maps (for the ‘horizontal’ and ‘vertical’
components of movement). Each of the k× l gain maps in the two sets is defined over
the dimensions of the visual target DNF, utar(x,y, t). Each set spans k× l different
initial motor states (the pan and tilt joint angles in our setup). The gains change
in the map(s), which are selected by the output of the motor DNF, f (um(k, l, t)),
at the locations, which are set by the activity peak in the target DNF. f (uEoS(t))
is the output of the end-of-saccade node, which is required to be positive (saccade
finished) for learning to become active. εh,v(t) is the error in each of the movement
components, τl is the learning rate.

Thus, after each unsuccessful saccade the gain maps are corrected slightly in
a localised region. After sufficient experience with looking at visual targets in
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3.2 Perception

The perceptual system consists of a three-dimensional visual perception DNF,
which spans the dimensions of color and the retinotopic space (modelled to be a
cartesian space here, but a polar version with foveal expansion is possible as well).
The RGB output of the robotic camera is split into three color channels – hue, satu-
ration, and value. The saturation channel is used to perform the basic figure-ground
segregation and create a course saliency map, which highlights regions in the visual
space, for which the hue value is extracted and input to the visual perception DNF.
The hue (color) dimension is additionally stabilised by a coupled one-dimensional
color DNF. The visual perception DNF requires this supporting input to form a sta-
bilised activity peak over a selected object in the scene. This support from the color
field is suppressed for objects, which are already stored in memory. Thus, such ob-
jects have a disadvantage in the competition to be selected for the next looking act2.

The center of visual field is another three-dimensional DNF, which receives in-
put from the central portion of the camera image. This field may only build activity
peaks from the camera input when the fixation node is active and provides an addi-
tional boost to this DNF (i.e., raises its resting level), signalling that a saccadic gaze
shift has been finished. An activity peak in the center of visual field DNF activates

2 This ‘habituation’ happens along color dimension, but habituation along retinal space is
also possible [36], both processes have to be balanced to account for human looking data.
Here, we keep this system simple since accounting for experimental data is not the focus
of the work reported here.

C. The allocentric pathway

Since retinotopic saccades lead to errors when performing
more than one saccade from memory, an alternative path gets
recruited, in which the representation of the second target
does not loose its validity after intermediate saccade(s). In our
model, we use a gaze-based target representation to enable
memory saccades. In particular, the locations of the targets
are stored in terms of the gaze-angle, which characterise
the camera pose, when it is fixating the object. Using this
representation, the saccade towards the target may be initiated
from any initial pose, i.e. after any number of intermediate
saccades. The same representation is used in our architecture
to store long-term memory of the observed scene. However,
to enable memory saccades, as performed in the double-step
paradigm, the pose of the camera (eye) after the saccade has to
be inferred, or predicted, without performing the actual gaze-
shift movement.

The gaze-based target representation may be created by
a motor command integrator, which integrates the velocity
signal internally, summing it up with the current pose of
the motors, instead of actually executing the movement. The
integrated motor signal creates an activity peak in the gaze

planning DNF at a location, which corresponds to the gaze
angle of the camera head when it fixates the object. This rate-
to-space code transformation is accomplished by a mechanism,
equivalent to input from a set of nodes, sensitive to different
value ranges of the integrated motor signal (this transformation
may also be subject to adaptation, which however, was not
needed in our setting). The resulting gaze angles are stored
in the gaze planning DNF for all objects, which the system
will look at, whereas internally simulated “looking acts” are
generated using the same circuitry as for the retina-based
saccades.

The serial order WM in the gaze-based pathway, similarly
as in the retinal pathway, creates graded activation levels
for objects, which are put into the gaze planning DNF in
a sequence. The gaze target DNF selects the least recent
object and stabilises this selection decision, while removing
this object’s representation from the gaze planning DNF. The
sustained gaze target DNF generates activation when the
system is allowed to generate gaze shifts (release of the no

go, plan inhibition). An activity peak in this DNF activate
the difference command generation module, which generates
a value for scaling the saccade generator’s output to generate a,
this time real, precise gaze-based saccade. Since the memory
for saccade targets is held in motor coordinates, which are
independent of the current pose of the retina, a sequence of
correct saccades follows.

IV. RESULTS OF SIMULATED EXPERIMENTS

A. Gain maps learning

Recently, we have demonstrated how the presented architec-
ture is capable of learning to perform precise saccades and to
adapt to changes in the environment or in the sensorimotor
plant [11]. Here, we modified the learning processes by

Gain maps for pan Gain maps for tilt

Fig. 2: Gain maps, linking the retinal representations of targets
with motor commands, which bring the targets in the center
of visual field, autonomously learned by the system from the
randomly generated initial state. One slice of each of the two
4D gain maps for the initial pose [0, 45]deg is shown here.
The color coding in the plots corresponds to the range [-0.5,
2.5].

initialising the gain maps with small random numbers and
simulating a more natural learning process, in which the maps
are learned in a less controlled learning session. Fig. 2 shows
the gain maps, learned by the modified system. To learn the
maps, an object was randomly placed in front of the robot
on a grid, which covers the whole visual space for several
initial poses of the camera head (in contrast to the non-random,
systematic placement, originally used). When the target object
is selected and stabilised in the sustained target DNF, a saccade
is generated, which, however, in the beginning of the learning
process does not bring the target object to the center of visual
field. The retinal error is detected and its direction is estimated
in the too far/too close module and the gain maps are adjusted
accordingly.

On the figure, you can see how the structure emerges in two
of the gain maps (one for the pan and one for the tilt motors
of the robot). The shown maps correspond to the following
initial pose of the camera head before each saccade: pan = 0
and tilt = 45deg (the motor space overall was sampled in the
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Fig. 5: Projection on the table-top surface of the gaze-angles
of the camera during the two saccades in the simulated double-
step experiment

V. CONCLUSION

In this paper, we have further explored capabilities of
the recently introduced neural-dynamic model for generation
of adaptive looking behaviour. The emphasis here was on
formation of gaze-based memory and generation of memory
saccades, which requires an allocentric representation of the
visual targets. We have incorporated both retinotopic and gaze-
based pathways in our model, which allows to use this model
to study the developmental process, leading to more frequent
and fast recruitment of the more allocentric representations
in generation of saccadic eye movements and other object-
directed actions.
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Autonomous learning

… requires a lot of process structure

remembering the visual representation to bridge the 
temporal gap and compute error signals

remembering the motor command 

autonomously organizing the update and storage of such 
information .. 


