DFT and learning

Gregor Schoner



Reminder: the memory trace

®building a facilitatory trace of
patterns of activation

®(that can be inhibitory if they
are build in an inhibitory field)

T activation, u(x)

T memory

dimension, x

trace, Umem) V'

dimension, x




Dynamics of the memory trace

Tu(x,t) = —u(z,t)+ hA S(x,t@em@

n /dx/ w(z —2') o(u(z"))

Tmem umem(aja t) — _umem(aja t)

+ /dm’ Winem (T — ") (u(x', 1))

B memory trace only evolves while there is supra-
threshold activation anywhere in the field



Dynamics of the memory trace

M different growth and decay rates

UP(x, ) = )\build( — P(x, t) + f(u(x, t)))f(u(x, t))

— hdecay P (1 = (. D) ).

[Sandamirskaya, 20 14]
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Memory trace as
first-order Hebbian learning

Mincrease resting level at
those field locations where
and when supra-threshold [ activation, u(x)
activation is present

dimension, X

B ~the old “bias” unit in NN

M that does much more
work here due to the
boost-driven detection
instability



Regular second-order Hebbian learning

M projections among fields
(or from sensory input
to field) learns
according to Hebb rule

M strengthen input projection
where supra-threshold
activation in both fields are
aligned

activation, u | (x)

dimension, x

activation, uy(y)
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Regular second-order Hebbian learning

Wy, 1) = €)= W, 7, 0+ fanx, 0) x fanly, )

activation, u | (x)

dimension, x
>

activation, uy(y)

dimension, y

[Sandamirskaya, 20 14]



Regular second-order Hebbian learning

activation node, u |

Mused a lot in DFT for
projections from zero- O
dimensional nodes to
one-dimensional nodes

activation
Bor generally, from lower 4 field, up(y)
to higher dimensional
field

dimension, y

B => concepts



Autonomous learning

M Learning as change of neural dynamics (memory
trace, Hebb) driven by ongoing activation
patterns while system is “behaving”

M (rather than in a particular training regime in
which parts of the architecture is “clamped” or
in which error information is provided)



Example: learning to look

® have “retinal” coordinates of a visual target

B need motor command to move fovea onto the visual
target

Snapshot 1: before looking
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[Sandamirskaya, Storck: ‘isl
Artificial Neural Networks, l_

Springer 2015]



M process infrastructure to organize looking and learning
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B core element of learning: a (steerable) map
from the “retina” to motor commands

Saccade generation circuit l

Selected gain map > speed hor

(horizontal)
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Gain maps for pan Gain maps for tilt
after 0 saccades after 0 saccades
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® during learning a transition from
gaze memory in retinal to gaze
memory in body/scene
coordinates
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(a) Retina-memory saccades (‘young model’).
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Autonomous learning

B ... requires a lot of process structure

B remembering the visual representation to bridge the
temporal gap and compute error signals

B remembering the motor command

B autonomously organizing the update and storage of such
information ..



