
Higher-dimensional 
dynamics fields

enable new cognitive 
function

Gregor Schöner



Multi-dimensional fields per se

are not fundamentally different…. 

in particular, they have the same kind of 
dynamics as one-dimensional fields 



example: retinal space
obviously two-dimensional

visual field location, although the RF of each neuron might be
broadly tuned to stimulus location.

For extrapolation, DPAs were obtained by replacing the neural
activity observed in other time intervals or in response to com-
posite stimuli.

Temporal evolution of the DPAs of elementary stimuli
The main emphasis of this study was to explore cortical interac-
tion processes. It appears conceivable that such processes can be
traced during the entire temporal structure of neuron responses
because of differences of time constants of excitatory and inhib-
itory contributions (Bringuier et al., 1999) and because of time-
delayed feedback (Dinse et al., 1990). Accordingly, as an impor-
tant prerequisite, time-resolved DPAs were constructed for a
number of subsequent time intervals after stimulus onset using
the firing rates within each time slice as weights. Figures 3 and 4

illustrate the temporal evolution of the DPAs from 30 to 80 msec
after stimulus onset for two selected elementary stimuli. There is
a remarkable spatial coherence of activity within the ensemble.
The gradual build-up and decay of activation were quite uniform
across the distributions of all elementary stimuli.

On average, the DPAs constructed by Gaussian interpolation
reached maximal level of activation 54 ! 4 msec after stimulus
onset as compared to 53 ! 5 msec for the OLE-derived DPAs
(see Fig. 9B). To quantitatively assess the accuracy with which the
DPAs represent the location of the elementary stimuli position
during the entire time course of responses analyzed (30– 80
msec), we compared the position of the maximum of each DPA to
the respective stimulus position. Figure 5 plots these constructed
positions against the real stimulus positions. Results from both
reconstruction methods revealed that the DPAs represent stimu-
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Figure 3. Two-dimensional DPAs of adjacent elementary stimuli (top and bottom) derived by Gaussian interpolation. The DPAs were obtained for
consecutive intervals of 10 msec duration covering the period from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2 B. Each example
was normalized separately. As for the OLE-derived DPAs (compare Fig. 4), the distributions grow and decay gradually, and their maximum is always
located near the position of the stimulus. Although the two stimuli are at neighboring locations, differences of the spatial representations are apparent
throughout the time course of the response. For all elementary stimuli, the average latency of maximal activation was 54 ! 4 msec.
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Figure 4. The temporal evolution of two OLE-derived DPAs of the same elementary stimuli (A, B, vertical lines indicate position) as shown in Figure
3. The DPAs are depicted in 10 msec time intervals covering the period from 30 to 80 msec. The distributions grow and decay, gradually reaching
maximum activity at 53 ! 5 msec (average of all seven elementary stimuli) after stimulus onset. The position of the maximum of each distribution closely
approximates the stimulus position of the elementary stimulus throughout the time course of the neural population response, yet less accurately in the
late time epoch.

9020 J. Neurosci., October 15, 1999, 19(20):9016–9028 Jancke et al. • Population Dynamics within Parametric Space
time

[Jancke et al., 1999]



example: visual feature map

orientation-retinal location

[Jancke, JNeursci (2000)]



example: visual feature maps

the neural field 
representation a single 
feature (e.g. orientation) as 
well as retinal location is at 
least three-dimensional

cannot be mapped onto 
cortical surfaces without 
cuts ... 



mathematics of 2D fields

=> simulation

no problem ... self-
stabilized peaks 
work just fine...



But: higher-dimensional 
fields enable new 

cognitive functions



Example1: Feature binding

1D spatial location (for 
illustration)

1D color dimension (hue)

visual input: 2D

=> 2D peaks

Space-Color Field
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for now: 2D field, one spatial
dimension and one color dimension

color processing in visual cortex not
fully understood, but population
code over hue values is a reasonable
simplification

qualitatively same e↵ects as in 3D
field, but easier to visualize in 2D
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2D input 

creates 2D peaks that form 
combined (bound) 
representations of objects

Combined vs. Separate Feature Spaces
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single high-dimensional
representation vs. separate
low-dimensional representations

low-dimensional fields much less
costly in terms of
computational/neural resources

but limited in their
representational power
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extracting features

read-out from 2D to 1D by 
projection

by summing along the other 
dimension (marginalization)

or by taking the (soft)max

Read-out from high-dimensional field
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fields of di↵erent dimensionality
can interact with each other

read-out of one feature
dimension: integrate over
discarded dimensions

e.g. spatial readout:

IS(x) =

Z
f (uv (x , y))dy

often additional Gaussian
convolution in read-out for
smoothness (reflects synaptic
spread in biological system)
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assembling bound representations

from 1D to 2D: ridge input is constant along the 
other dimensionRidge Inputs to Multi-Dimensional Fields
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projection from 1D to 2D: ridge input
does only specify value in one dimension, homogeneous in the other
should typically not induce a peak by itself
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assembling bound representations

peaks form at the 
intersections of ridges and 
form bound representations 
of the two dimensions

Ridge Intersections
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intersection of 1D ridges can
specify location in 2D

binding problem when multiple
items are present
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assembling bound representations

binding problem: multiple 
ridges lead to a 
correspondence problem

=> assemble one object at a 
time… sequentiality bottle-
neck

Feature Conjunctions and Feature Binding
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multiple ridges create additional
intersections

1D fields with multiple peaks do
not specify which features
belong together

combined representation
necessary to resolve feature
binding problem
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visual search

combine 1D (ridge) input 
with 2D input.. 

so that only those 2D 
locations can form peaks that 
overlap with ridge (boost 
driven detection)

activates objects consistent 
with 1D feature value

Visual Search
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combine top-down feature input
(1D) with bottom-up localized
input (2D)

read out spatial position of
matching item
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visual search

the selection 
from visual 
search can be 
propagated to 
the 1D feature 
representations
… 

Coupled Selection
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joint selection in separate 1D fields, coupled via 2D field
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contrast: synaptic association

in conventional 
connectionist 
networks associative 
relationships are 
learned by adjusting 
synapses between 
those color and 
space neurons that 
have been co-
activated

space encoding neurons
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connections must be 
learned, so does not 
account for how 
“where is the red 
square” works from 
current stimulation 
(seen for the first time 
ever)

limitations of synaptic association

space encoding neurons
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learning multiple 
associations poses a 
binding problem: 

connectionist 
associators learn 
one item at a time 
and need separate 
presentation of 
individual items!

limitations of synaptic association

space encoding neurons
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red

blue

left right

the network may associate blue with left and read with right



Example 2: coordinate 
transformations

which are analogous to the instantaneous 
associations between stimulus features 
demonstrated earlier



coordinate transformations

eye movement: visual target from retinal 
representation to head-centered representation 
for reachingEye Movements and Reference Frames

visual image visual image

visual scene visual scene

eye with 
ocular muscles

limited visual acuity in periphery of the retina, eye movements to
perceive larger scenes, read, etc.

gaze direction depends on eye and head orientation, considered as
single variable in the following
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coordinate transformations

every gaze shift changes the 
spatial reference frame of 
the visual perception 

how to memorize locations 
when the reference frame 
keeps shifting? 

=> transformation to gaze-
invariant reference frame 

Eye Movements and Reference Frames

visual image visual image

visual scene visual scene

eye with 
ocular muscles

limited visual acuity in periphery of the retina, eye movements to
perceive larger scenes, read, etc.

gaze direction depends on eye and head orientation, considered as
single variable in the following
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coordinate transformations

head movement: transform visual target from 
retinal representation to body-centered 
representation



coordinate transformations

hand movement: transform movement target from 
body-centered representation to hand-centered 
representation for reaching

Movement preparation
movement is prepared before it is initiated: 

movement parameters like movement direction, amplitude, time, or 
force level can be predicted from the first 10 to 20 ms of 
movement  

movement parameters are about the hand’s 
movement in space 

[Erlhagen, Schöner, Psych Rev 2002]

movement
direction

movement
extent



coordinate transformations

need mapping between different reference frame: 
retinocentric (moving with the eye) to body-centered 
(gaze-invariant) 

mapping is a variable shift, depends on current gaze 
direction

as a formula x body = x retinal + x gaze

but how to implement this in DNFs, using space code 
representations? 

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



coordinate transformations

fixed mapping: neural 
projection in a neural network

flexible mapping that depends 
on gaze/eye position?

Reference Frame Transformation
fixed mapping between fields: easy

but how to implement variable mapping (two input fields) using just
synaptic projections?

?
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Reference Frame Transformation
fixed mapping between fields: easy

but how to implement variable mapping (two input fields) using just
synaptic projections?

?
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coordinate transformations

expand into a 2D field

free output connectivity to 
implement any mapping

Reference Frame Transformation

solution:

expand into combined, higher-dimensional field

then can implement arbitrary (smooth) mappings from this field to
target representation
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coordinate transformations

DNF Mechanism for Reference Frame Transformation
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coordinate transformations

DNF Mechanism for Reference Frame Transformation
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coordinate transformations

DNF Mechanism for Reference Frame Transformation
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coordinate transformations

DNF Mechanism for Reference Frame Transformation
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coordinate transformationsDNF Mechanism for Reference Frame Transformation
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coordinate transformations

bi-directional 
coupling: reversing 
the 
transformations

Multi-Directional Transformations
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spatial remapping during saccadesCase Study: Spatial Remapping during Saccades
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Case Study: Spatial Remapping during Saccades
transformation fieldA
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Coordinate transformations

predict 
retinal 
location 
following 
gaze shift

[Schneegans, Schöner, BC 2012]



=> accounts for predictive updating of retinal representation

Case Study: Spatial Remapping during Saccades
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Combine feature binding and 
coordinate transforms

the higher 



Scaling dimensionality



Scaling dimensionality

example: a single 6-dimensional field is needed 
to transform the coordinates of a 3D field: 

1 feature dimension X 2 spatial dimensions on input side

1 feature dimension X 2 spatial dimensions on output side

sample each dimension with 100 neurons: 
10^12 neurons = entire brain!  



Scaling dimensionality

Example: a few features over space

color

orientation 

disparity

line-length 

2D space

=> 6 dimensions ~10^12 neurons! 



solution

break down the feature fields into many low 
dimensional fields… all 3 or maximally 4 
dimensional

coordinate transform only space… 

and bind the features to space by combining 
the ridge values: operating sequentially!

=> coordinate transforms are at the origin of 
the binding bottleneck 



Memoriza)on	of	le.	item

[Slides adapted from Sebastian Schneegans, 
see Schneegans, Spencer, Schöner,  Chapter 9 of Dynamic Field Theory-A Primer, OUP, 2015]



Adding	third	item	to	scene

[Slides adapted from Sebastian Schneegans, 
see Schneegans, Spencer, Schöner,  Chapter 9 of Dynamic Field Theory-A Primer, OUP, 2015]



Post	sequen)al	memoriza)on	of	all	three	items

[Slides adapted from Sebastian Schneegans, 
see Schneegans, Spencer, Schöner,  Chapter 9 of Dynamic Field Theory-A Primer, OUP, 2015]



Conclusion: multi-dimensional fields

enable new cognitive functions that derive from 
association and cannot be realized by synaptic 
networks

instantaneous association or linkage (referral) enabling 
dimensional cuing

cued recall 

coordinate transforms instantaneous real-time 

representing associations, rules etc. in a manner that can be 
activated/deactivated



Conclusions continued

need to span only a limited number of 
dimensions (2 and 3), which are expanded by 
binding through space

span by small number of neurons 



Outlook

multi-dimensional fields help us move toward 
higher cognition


