Multi-layer fields enable
more complex neural
dynamics
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... so far we assumed

B that a single population of activation variable
mediates both the excitatory and the inhibitory
coupling required to make peaks attractors
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But: Dale’s law

M says: every neuron forms with its axon only one
type of synapse on the neurons it projects onto

M and that is either excitatory or inhibitory
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2 layer neural fields

B inhibitory coupling is
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2 layer Amari fields

T U(x,t)=-u(x,t)+h, +s(x,t)+ ka (x-x")g(u(x’,t))dx’ - ﬁew (x-x")g(v(x’,t))dx’

T,U(x,t)=-u(x,t)+h, + ka (x—x")g(u(x’,t))dx’

with projection kernels
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simulation



Implications
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time course of selection

intermediate: dominated by excitatory interaction
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=> early fusion, late selection

double target paradigm
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fixation and selection
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2 layer fields afford oscillations

B => simulation

B (oscillatory states for enhanced coupling
among fields)

M (generic nature of oscillations)



mathematical basis of
oscillations: limit cycle attractors

B Amari /77

T = —u + hu + Wuuf(u) o Wuvf(v)
TV = —v + hv T Wvuf(u)a
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mathematical basis of oscillations

Tu = —u + hu + Wuuf(u) o Wuvf(v)

™w=—v+ h, +w,f(u),

Blinearize dynamics in each
quadrant

B compute fixed point

mif it lies in same quadrant:
fixed point attractor

mif it lies in next quadrant:
part of a limit cycle
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oscillator




two-heuron simulator



Limit cycle oscillators

Mare source for stable, autonomously
generated time structure in neural
dynamics

Bused in movement generation
®and coordination...

®“liquid state machines” or “echo-state
networks” are an expansion of that idea
(not very well defined mathematically)



Active transient

Barises when the
stable resting state is
briefly pushed by
input into the fourth
quadrant: return on a
temporally ,
structured trajectory £

um



active transient
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self-stabilized state

on: blue => red



CoS

2 A Vinh
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Transient detector
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Change detection

B three layer field => simulation



Conclusion

B by taking into account Dale’s law, reach
much richer neural dynamics that includes

I oscillations: time course generation

B active transient: preserve oscillatory time structure in
single-shot time course

B switching an activated node of with a finite/well defined
amount of time before switch is achieved: Condition of

Satisfaction

B transient detection: make a single, well defined time
course from a step change

B change detection



