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MONOGRAPHS OF THE SOCIETY F

RESEARCH IN CHILD DEVELOPME

ABSTRACT

Executive function (EF) is a central aspect of cognition that undergoes
significant changes in early childhood. Changes in EF in early childhood are
robustly predictive of academic achievement and general quality of life
measures later in adulthood. We present a dynamic neural field (DNF) model
that provides a process-based account of behavior and developmental change
in a key task used to probe the early development of executive function—the
Dimensional Change Card Sort (DCCS) task. In the DCCS, children must
flexibly switch from sorting cards either by shape or color to sorting by the
other dimension. Typically, 3-year-olds, but not 5-year-olds, lack the flexibility
to do so and perseverate on the first set of rules when instructed to
switch. Using the DNF model, we demonstrate how rule-use and behavioral
flexibility come about through a form of dimensional attention. Further,
developmental change is captured by increasing the robustness and precision
of dimensional attention. Note that although this enables the model to
effectively switch tasks, the dimensional attention system does not “know” the
details of task-specific performance. Rather, correct performance emerges as
a property of system—wide interactions. We show how this captures children’s
behavior in quantitative detail across 14 versions of the DCCS task. Moreover,
we successfully test a set of novel predictions with 3-year-old children from a
version of the task not explained by other theories.
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MONOGRAPHS OF THE SOCIETY

RESEARCH IN CHILD DEVELOPME

I. THE EMERGENCE OF EXECUTIVE FUNCTION

Early childhood is a time of rapid change in the organization of
cognition. The period between 2 and 5 years is particularly dramatic,
including the transition into formal schooling, the acquisition of language
and mathematical abilities, learning to take the perspective of others in social
interactions, and learning to appropriately adapt behavior across different
contexts (e.g., Bull & Scerif, 2001; Frye, Zelazo, & Palfai, 1995; Kochanska,
Coy, & Murray, 2001; Mazocco & Kover, 2007; Samuelson & Smith, 1999;
Zelazo, Miiller, Frye, & Marcovitch, 2003). This developmental period is also
marked by dramatic changes in executive function (EF). EF is an umbrella
term that refers to the processes that allow individuals to rise above the
exigencies of the environment, habits, or internally prepotent behaviors to
behave in a contextually appropriate and goal-driven manner.

EF is an important topic of study in early childhood because it has
widespread influences on the organization of behavior and behavioral
control. For instance, improvements in EF have a positive impact on language
development, and deficits in executive control have been linked to specific
language impairment (Im-Bolter, Johnson, & Pascual-Leone, 2006; McEvoy,
Rodgers, & Pennington, 1993). Further, high levels of EF confer an initial
advantage in mathematical and reading proficiency that has a facilitative
effect on development through the early school years (Bull & Scerif, 2001;
Mazocco & Kover, 2007). Aspects of EF have also been linked to theory of
mind and perspective taking, which require children to suppress their own
perspective and adopt the perspective of others (Carlson, Moses, & Breton,
2002; Frye et al., 1995; Hughes & Ensor, 2007). Finally, children with ADHD
and autism show deficits in all three components of EF discussed below,
displaying weaker inhibitory control, a poorer ability to maintain information
in working memory (WM), and greater difficulty switching tasks (Corbett,
Constantine, Hendren, Rocke, & Ozonoff, 2009; Geurts, Verté, Oosterlaan,
Roeyers, & Sergeant, 2004; Happé, Booth, Charlton, & Hughes, 2006; McEvoy
et al., 1993; Pennington & Ozonoff, 1996). The exact role of EF deficits in
these pathologies, however, remains debated (Liss et al., 2001).

Critically, individual differences in EF early in development can produce
long-lasting effects. Data show that enhancing EFs in early development can
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enhance school performance and reduce the prevalence of psychopathology
(see Diamond & Lee, 2011; Liss et al., 2001; Pennington & Ozonoff, 1996).
Indeed, data suggest that EFs are more important for school readiness than
IQ (Blair & Razza, 2007), in part, because EFs predict math and reading
competence throughout the school years (Gathercole, Pickering, Knight, &
Stegmann, 2004). EFs remain important into adulthood, predicting career
and marriage satisfaction and positive mental and physical health (Dunn,
2010; Eakin et al., 2004; Prince et al., 2007). Reversely, children 3-11 years
with poorer EFs have worse health, earn less, and commit more crimes as
adults, even when controlling for 1Q, gender, and social class (Moffitt et al.,
2011).

Early theories of EF proposed that the emergence of cognitive flexibility
reflected developmental changes in a central executive system—a central
resource that controls other aspects of cognition (Baddeley, 1986; Duncan,
Emslie, Williams, Johnson, & Freer, 1996; Duncan, Johnson, Swales, & Freer,
1997; Norman & Shallice, 1986). This view was anchored, in part, to evidence
that core executive functions could be localized to lateral pre-frontal cortex,
a large region anterior to the precentral sulcus. Lateral pre-frontal cortex is
one of the slowest developing brain regions (Giedd et al., 1999) and evidence
from patient populations (Baddeley, Della Salla, Papagno, & Spinnler, 1997;
Milner, 1963) and single-unit neurophysiology (Asaad, Rainer, & Miller, 2000;
Rao, Rainer, & Miller, 1997) showed that impairments of PFC leads to
behaviors that mimic the performance of young children (Dempster, 1992;
Diamond, 2002).

Factor analytic models suggest, however, that cognitive control and
flexibility do not reflect the operation of a single resource. Rather, EF has
multiple distinct components. Generally, EF is thought to involve the
inhibition or suppression of irrelevant information or inappropriate actions,
the stable maintenance or representation of information in working memory
over time in a way that prevents interference or distraction, and the flexible
updating or switching of cognitive processes to meet new goals (Collette et al.,
2005; Davidson, Amso, Anderson, & Diamond, 2006; Garon, Bryson, & Smith,
2008; Lehto, Juujarvi, Kooistra, & Pulkkinen, 2003; Miyake, Friedman,
Emerson, Witzki, & Howerter, 2000). Factor analytic approaches have
supported this multi-component view of EF, showing that different EF tasks
load on inhibition, working memory, and task switching in different ways
(Huizinga, Dolan, & van der Molen, 2006; Lehto et al., 2003; Miyake et al.,
2000; however, see Wiebe et al., 2011). We organize our review of the
development of EF below based on these three component processes. Note
that we use these labels simply to distinguish different aspects of functionality
that executive control achieves (see Zelazo et al., 2003), rather than making
strong claims that these processes capture all aspects of EF. Ultimately, the
real challenge in explaining EF is to understand the numerous ways cognitive
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THE EMERGENCE OF EXECUTIVE FUNCTION

control can emerge in specific tasks from a complex, multi-component
system.

The multi-component nature of EF revealed by behavioral studies is also
reflected in neural evidence. Data from neuroimaging studies has shown an
extensive network of regions within frontal and posterior cortical areas
thatare involved in EF (for review, see Courtney, 2004; Dosenbach etal., 2007;
Fair et al., 2007, 2008; Morton, 2010; Postle, 2006). Cognitive control and
flexibility are thought to emerge from interactions within this system-wide
network. One useful tool in understanding the neural basis of EF is resting
state connectivity analysis, in which the endogenous fluctuations in baseline
activity are correlated across voxels to reveal functionally connected regions.
Fair and coworkers (Dosenbach et al., 2007; Fair et al., 2007, 2009) have used
this approach to identify distinct networks involved in different aspects of
cognitive control. One network is composed of frontoparietal connections
across regions such as dorsolateral prefrontal cortex, intraparietal sulcus,
and precuneus. This network is hypothesized to be involved in trial-to-trial
adaptation, task-initiation, and error adjustment. The other network is
composed of cinguloopercular connections across regions thought to be
involved in the stable maintenance of task-sets, including anterior prefrontal
cortex, anterior cingulate cortex, anterior insula, and ventral prefrontal
cortex, along with sensory areas in occipital and temporal cortex (Dosenbach
et al., 2007).

Although neuroimaging data have shed important light on the neural
systems involved in EF, they have also revealed new complexities. For instance,
it is not clear how the different component processes of EF identified in the
behavioral literature map onto the functional networks identified using
neuroimaging techniques. The story gets even more complex when we look at
development. Here, we see that each component process of EF has its own
developmental trajectory with complex interactions among the processes.
Moreover, the neural systems involved in EF change dramatically over
development.

The Development of EF: Behavioral Evidence

The different component processes of EF—inhibition, working memory,
and task switching—emerge in task-specific contexts at different points
during early childhood. Response inhibition develops in a rudimentary form
late in infancy as indexed by the A-not-B task (Marcovitch & Zelazo, 1999;
Thelen, Schoner, Scheier, & Smith, 2001). In this task, children build up a
habit of reaching to one location (the Alocation), and are then cued to reach
to a new location (the B location). Typically, infants younger than 10 months
cannot inhibit the prepotent response to reach to A and continue to reach to
that location when cued to reach to the B location. By 10-12 months, infants
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succeed in the canonical task. By 3 years, more complex tasks can be used to
study inhibitory processes that pit internalized, abstract rules against
prepotent behaviors. Many of these tasks resemble tasks used with adults,
including child versions of Go/No-go (Cragg & Nation, 2008; Dowsett &
Livsey, 2000), Stroop (Carlson, 2005), Simon (Gerardi-Caulton, 2000), and
flanker tasks (Rueda et al., 2004). In these studies, a stimulus primes a
response that is either compatible or incompatible with current task
demands. On incompatible trials, children show robust deficits that diminish
from ages 3 to 5 (Dowsett & Livsey, 2000; Gerardi-Caulton, 2000).

Working memory involves the active maintenance of information or goals
over a brief period of time in the service of a particular task. A critical aspect of
developmental change in working memory is an increase in capacity, or the
amount of information that can be actively maintained simultaneously.
Capacity shows improvements between 3 and 5 years (Isaacs & Vargha-
Khadem, 1989; Logie & Pearson, 1997; Simmering, 2008), and continues to
increase into childhood and adolescence (Cowan etal., 2005; Isaacs & Vargha-
Khadem, 1989; Logie & Pearson, 1997; Simmering, 2008; Vicari, Bellucci, &
Carlesimo, 2003). One limitation of this research is that it can be difficult to
tease apart capacity limits from other aspects of task performance such as
rehearsal and chunking (Dempster, 1981; Pickering, 2001; Simmering, 2011).
To overcome this limitation, researchers examining one type of working
memory—visual working memory (VWM)—have used the change detection
task (Luck & Vogel, 1997), which uses novel objects and short memory delays
to control the influence of rehearsal and other strategic influences. Use of this
task has revealed increases from a capacity of 1-2 items at 3 years to 3 items at
5 years to 4-5 items at 10 years (Isaacs & Vargha-Khadem, 1989; Logie &
Pearson, 1997; Simmering, 2012; Vicari et al., 2003).

Finally, task switching begins to emerge around 2 years of age. This
process is typically assessed by having participants switch from using one set of
rules or goals (e.g., sort by color) to using another (e.g., sort by shape). At
2 years of age, children can reliably engage a single rule to guide behavior,
but perseverately use only one rule if the task contains more (Zelazo, Reznick,
& Pifion, 1995). At this age, then, children have difficulty implementing a
rule-set that requires choosing from alternate responses. Switching from
one rule set to another is possible in some tasks at 3 years of age (Brace,
Morton, & Munakata, 2006; Fisher, 2011; Muller, Dick, Gela, Overton, &
Zelazo, 2006; Zelazo et al., 2003), for example, if the two rule-pairs are
univalent (associated with different stimuli). It is not until 5 years of age,
however, that children can reliably switch from one rule set to another using
the same stimulus set (Muller et al., 2006; Zelazo et al., 2003). Importantly,
switch costs, as indexed by reaction times, are still seen throughout childhood,
adolescence, and adulthood (Diamond & Kirkham, 2005; Morton, Bosma,
& Ansari, 2009).
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THE EMERGENCE OF EXECUTIVE FUNCTION

In summary, there are dramatic changes in each component process of
EF between 12 months and 5 years. Moreover, these components change
in task-specific ways that are protracted throughout early childhood.
For instance, the early emergence of inhibitory control can be probed in
the A-not-B task in infancy, but related changes in inhibitory control do not
emerge in the Go/No-go task until 3-5 years. Less well studied is how changes
in one component process impact the other processes, and how children
harness and integrate these processes to show robust cognitive control and
flexibility by 5 years. In the next section, we turn to neural evidence from
developmental studies of EF. Results from this literature reveal an equally
complex picture.

The Development of EF: Neural Evidence

EF undergoes critical changes between 12 months and 5 years. This
creates challenges for efforts to understand the neural bases of EF given that
use of fMRI is difficult in this age range. Three main approaches have been
used to overcome these challenges.

The first approach has used fMRI to examine anatomical and functional
connectivity changes in brain activity related to EF in older children and
adolescents. These studies have revealed a strengthening of long range
connections that serve to integrate components of the functional networks
involved in EF and segregate the networks form one another (Fair et al.,
2009). For instance, Hwang, Velanova, and Luna (2010) reported an increase
in connectivity between frontal and parietal areas along with a decrease
in connectivity within parietal cortex in a study of 8- to 12-year-olds, 13- to
17-year-olds, and 18- to 27-year-olds. Thus, emerging control is supported by
strengthening interactions between frontal and parietal areas.

Other studies have shown extensive changes to EF networks over
development, including changes in cortical volume, structural differentia-
tion, and the dynamics of neural activation (Barnea-Goraly et al., 2005;
Crone, Donohue, Honomichl, Wendelken, & Bunge, 2006; Fair et al., 2007;
Gogtay et al., 2004; Kelly et al., 2009; Lenroot & Giedd, 2006; Moriguchi &
Hiraki, 2009; Sowell, Trauner, Gamst, & Jernigan, 2002; Stevens, Pearlson,
& Calhoun, 2009; Stevens, Skudlarski, Pearlson, & Calhoun, 2009; Tsujimoto,
2008). Thus, the emergence of EF does not reflect changes in a single area of
the brain, but instead reflects the development and organization of neural
structures throughout the brain.

Two other approaches to studying the development of EF have focused
on measuring functional activity as children engage in specific tasks that load
on different component processes of EF. One of these approaches uses fMRI
and studies the behavior of older children and adolescents. The second
approach uses functional Near-Infrared Spectroscopy (fNIRS) with young
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children. fNIRS measures changes in cortical hemodynamics using the optical
properties of oxygenated- and deoxygenated-hemoglobin (Cui, Bray, Bryant,
Glover, & Reiss, 2011; Minati, Visani, Dowell, Medford, & Critchley, 2011).
Thus, as with fMRI, fNIRS provides a localized hemodynamic measure that
reflects active cognitive processing in cortex. However, in contrast to fMRI,
fNIRS is much quieter and much more resistant to artifacts created by motion.
Thus, fNIRS is more readily adaptable for use with very young children and
infants. In the sections that follow, we review these two neuroimaging
approaches to the development of EF, again organized by EF component
processes.

Inhibition

Baird et al. (2002) recorded fNIRS from frontal cortex while infants
performed the A-not-B task. These researchers reported an increase in
frontal activation associated with correct reaching to the B location. Thus,
inhibiting motor habits, even at this early age, recruits regions of frontal
cortex. Similarly, Schroeter, Zysset, Wahl, and von Cramon (2004) recorded
fNIRS while 7- to 13-year-olds performed a Stroop task and found increased
activity in left lateral prefrontal cortex associated with greater inhibitory
control.

Similar results have been reported using fMRI. Durston et al. (2002)
compared go-no-go performance and associated fMRI data between a group
of 6- to 10-year-olds and adults. Adults were both faster and more accurate on
“go” trials, but both age groups showed stronger activation on “no-go” trials in
ventral prefrontal cortex (PFC) bilaterally, right dorsolateral PFC, and right
parietal cortex. Thus, greater inhibitory demands are associated with stronger
neural activation. This reveals an important distinction between cognitive
constructs and neural measures: although inhibition is associated with a
suppression of behavior, it is nonetheless supported by an increase in neural
activation. As we discuss later, computational models can play an important
role in clarifying such distinctions between behavioral and neural processes.

Working Memory

Thomason et al. (2009) studied a group of 7- to 12-year-olds and adults
with fMRI and found that activation in frontal and parietal regions scaled with
the number of items to be remembered. Further, this study found left
lateralization for verbal WM but right lateralization for spatial WM. Tsujii,
Yamamoto, Masuda, and Watanabe (2009) used fNIRS to examine spatial WM
with 5- and 7-year-olds and found that 5-year-olds did not show lateralized
specialization of frontal cortex while 7-year-olds did show this pattern. Thus,
the lateralization of spatial WM emerges early in childhood.

Klingberg, Forssberg, and Westerberg (2002) reported stronger superior
frontal and intraparietal cortex activity with increasing WM capacity between
9 and 18 years. Edin, Macoveanu, Olesen, Tengér, and Klingberg (2007)
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THE EMERGENCE OF EXECUTIVE FUNCTION

further showed that stronger fronto-parietal connectivity is associated with
improvementsin WM (see also, Edin etal., 2009). Thus, over development the
fronto-parietal network supporting visual WM is established and becomes
increasingly sensitive to the size of the WM load. Note, further, that the neural
basis of WM and inhibitory control share many aspects. For instance, McNab
et al. (2008) compared neural activation associated with visual WM and
inhibitory control and found common patterns of activation in right inferior
and middle frontal cortex, as well as right parietal areas.

Task Switching

Different lines of fMRI data have revealed dissociable components of
rule-switching in tasks that only require shifting of responses versus shifting of
attention (e.g., Nagahama et al., 2001). With adults, the ventro-lateral
prefrontal cortex and rostro-lateral prefrontal cortex are more active when
demands on rulerepresentation are high (i.e., when sets of response
mappings conflict with one another), while the supplementary- and pre-
supplementary motor areas together with the basal ganglia are more active
when switching rules or reconfiguring a rule-set (Crone, Wendelken,
Donohue, & Bunge, 2006; for a review of the neural circuitry underlying
rule-use, see Bunge, 2004; Bunge et al., 2005).

Critically, research has revealed differences in these neural dynamics over
development. Specifically, 8- to 12-year-olds display a less-differentiated
pattern of neural activation than adults. These children engage the pre-
supplementary motor area for rule-representation, not simply rule-switching
as with adults. Further, while adults show heightened ventro-lateral pre-
frontal cortex activation for bivalent rules on both rule-repeat and rule-switch
trials, children show greater activation in this area for both univalent rules and
switch trials (Crone, Donohue, et al., 2006).

Making Sense of Complexity: Computational Modeling Offers a Way Forward

Our survey of the literature on the development of EF paints a
complicated picture. On one hand, data showing that improvements in EF
early in development can have a long-lasting impact on behavioral
functioning makes the study of EF during this time period critically
important. On the other hand, it is not clear how to integrate the complex
pattern of behavioral and neural findings from the literature into a cohesive
theoretical account.

It is clear from the literature, however, that a theory of the early
development of EF must tackle several fundamental challenges. First,
explaining the emergence of EF requires that we understand how each
component process changes over development. Next, we must understand
how changes in one process at one pointin time relate to changes in the other



processes at later points in time. Third, the rich neural picture that has
emerged in the EF literature suggests that we need theories that can bridge
the gap between behavioral and neural systems. Fourth, theories of EF must
integrate processes over multiple timescales: in the moment as cognitive
control is executed within a trial, over the course of learning as EF is facilitated
or impaired over experience with particular tasks, and over development as
new behaviors are realized and flexibly employed in the service of task goals.
Finally, theories of EF must grapple with the central challenge of autonomy:
how can a system control and change itself autonomously, that is, without an
explicit controller or homunculus?

Different theories of EF have tackled different subsets of these challenges.
For instance, models of EF in adults have focused on capturing behavior
during individual trials and how performance changes over learning
(Anderson, 1993; Meyer & Kieras, 1997; O’Reilly, Braver, & Cohen, 1999).
Developmental models, by contrast, have focused more on changes in EF
across months and years during infancy and early childhood (Marcovitch &
Zelazo, 2009; Morton & Munakata, 2002; Zelazo et al., 2003). And several
models have tried to bridge the gap between brain and behavior, capturing
behavioral data using neurally grounded models that mimic properties of
cortical and sub-cortical neural systems (Herd, Banich, & O’Reilly, 2003;
O’Reilly & Frank, 2006).

In our view, this latter class of models offers a particularly compelling
approach to understanding the early development of EF given the long
history of considering executive control from both a behavioral and neural
perspective. For instance, this class of models can help us understand how
neural processes are functionally related to cognition (Ashby & Waldschmidt,
2008), that is, how neural processes distributed across a network of regions
can give rise to the behavioral characteristics measured in working memory
and response inhibition tasks. Concretely, specific neural processes can be
implemented in a neural network model. Then, the model’s overt behavior
can be compared to empirical findings, while the model’s simulated neural
dynamics can be compared to neural data. In this way, the computational
model can serve as a bridge to understand the link between neural dynamics
and cognitive processes (for a discussion of this approach to cognitive
neuroscience, see Ashby & Waldschmidt, 2008; Forstmann, Wagenmakers,
Eichele, Brown, & Serences, 2011; also see Behrens, Woolrich, Walton, &
Rushworth, 2007; Friston, 2009; Pessiglione, Seymour, Flandin, Dolan, &
Frith, 2009).

The success of several examples using this method is promising. For
example, Deco and Rolls (2004; see also, Deco & Rolls, 2005) implemented an
integrate-and-fire neural network that produced realistic neuronal spiking
dynamics. The model was used to simulate versions of spatial and object
working memory tasks used with adults. Moreover, the researchers developed
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THE EMERGENCE OF EXECUTIVE FUNCTION

a method to link neural activity in the model directly to the BOLD response
measured with fMRI (based on studies of the neural basis of the BOLD signal;
see Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). Using this
method, Deco and Rolls were able to reproduce hemodynamic data from
different parts of pre-frontal cortex. This led the authors to speculate about
the functional role of pre-frontal cortex in working memory and the different
inhibitory processes that might play out in different regions of pre-frontal
cortex. Further, Edin et al. (2007) used a similar model to simulate
developmental changes in working memory capacity. These researchers used
the model to test out different hypotheses about how neural interactions
might change over development. Simulated data showed that strengthening
fronto-parietal connections for units coding for similar values in the model
produced the best fit of hemodynamic and behavioral data during later
childhood.

Toward a Neural Dynamic Theory of the Development of EF

In the present report, we propose a new theory of the early development
of executive function using the framework of Dynamic Field Theory (DFT).
DFT uses simulated real-time neural population dynamics within artificial
cortical fields to capture the processes hypothesized to underlie behavioral
decisions in-the-moment, as well as how neural processes change over
learning and development (for reviews, see Schoner, 2009; Spencer, Perone,
& Johnson, 2009). This approach is well-positioned to tackle the complexity of
EF in early development. In particular, DFT has been used to examine the
early emergence of response inhibition in the context of the A-not-B error
(Smith, Thelen, Titzer, & McLin, 1999; Thelen et al., 2001), as well as
response selection processes later in development (Erlhagen & Schéner,
2002). Similarly, DFT has been used to explain changes in visual working
memory capacity in early development (Simmering, 2008) and how the
mechanisms that underlie working memory lead to counterintuitive
behavioral findings with adults (Johnson, Spencer, Luck & Schoner, 2009).
Further, DFT has been used to probe task-switching processes in the context
of dual-task performance with adults (Buss, Wifall, Hazeltine, & Spencer,
2014).

DFT also provides a bridge between behavioral processes and neural
measures. For instance, Schéner, Erlhagen, and coworkers have developed an
approach to directly link simulated activation dynamics in neural field models
to single- and multi-unit neurophysiology (Erlhagen, Bastian, Jancke, Riehle,
& Schoner, 1999; Jancke et al., 1999), enabling researchers to test a theory of
response preparation both behaviorally and neurally with non-human
primates (Bastian, Riehle, Erlhagen, & Schoéner, 1998; Bastian, Schoner, &
Riehle, 2003). This approach has also been extended to studies of visual
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cortical processing using voltage-sensitive dye imaging (Markounikau, Igel,
Grinvald, & Jancke, 2010). Finally, several studies have probed the link
between DFT and ERP measures with humans, testing dynamic neural field
accounts of motor planning (McDowell, Jeka, Schoner, & Hatfield, 2002) and
multi-object tracking (Spencer, Barich, Goldberg, & Perone, 2012).

Given the complexity of the literature on the early development of EF, we
anchor our theoretical account to data from a particular task that provides a
common frame of reference for understanding changes in EF—the
Dimensional Change Card Sort (DCCS) task. This is a switching task that
also involves aspects of inhibition and working memory, making it an ideal
probe of EF in early development (Carlson, 2005; Waxer & Morton, 2011; see
Garon et al.,, 2008). Moreover, the rate of perseverative errors in early
childhood is predictive of later functioning (Biederman et al., 2007; Hughes
& Ensor, 2007; Ozonoff & McEvoy, 1994; Schneider, Lockl, & Fernandez,
2005). Finally, the vast literature using the DCCS task provides robust
constraints for a developmental theory.

Although we focus on the DCCS task in the present report, the work
presented here provides a critical step toward a general theory of the
development of EF. In particular, the model we present implements a
distributed network of simulated cortical fields that display aspects of EF
through neural interactions within the network. This provides a framework
for thinking about brain-behavior links in early development. We explore this
link initially by asking how, for instance, response inhibition—a behavioral
construct—is related to simulated neural processes in our model. Here, we
will discuss how “inhibition” stems from robust neural activation in the
model and how this construct is related to working memory processes
(for related ideas, see Morton & Munakata, 2002; Roberts, Hager, &
Herron, 1994; Roberts & Pennington, 1996; Stedron, Sahni, & Munakata,
2005). The model also provides a platform for testing out specific
developmental hypotheses, and how neuro-developmental mechanisms
can give rise to the behavioral changes reported in the literature between 3
and 5 years. We will also consider how the simulated neural processes in
our model related to EF measures from other tasks, as well as neural
measures from the fMRI/fNIRS literature. Finally, in the General Discussion
in Chapter VII, we will pull back to the most general level and ask what our
theory might say about EF beyond the laboratory. That is, we discuss
whether our theory sheds light on how EF changes over development in the
real world and how we might intervene in future work to facilitate the
development of EF.

The remainder of this monograph is divided into six chapters. In the next
chapter, we review the literature on the DCCS task, including theories that
account for different aspects of children’s performance. In Chapter III, we
describe a dynamic field theory of executive function and how this theory
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captures performance in the standard version of the DCCS task. We
also consider how this theory relates to EF processes more generally. In
Chapter IV, we probe the ability of the model to move beyond current theories
by quantitatively simulating children’s performance from multiple variants of
the DCCS task. In Chapter V, we generate and test novel predictions regarding
the role of spatial locations in feature binding in the DCCS task. Importantly,
data from this study are not consistent with any other theory of the early
development of EF. In Chapter VI, we present further simulation results
highlighting the ability of the model to capture asymmetrical switch costs
associated with different attentional manipulations in the DCCS task. Finally,
in Chapter VII we contrast the DFT with other theories in the literature as well
as evaluate the strengths and limitations of this theoretical approach to the
emergence of EF in early development. We conclude by discussing prospects
for future work that seeks to understand the early organization of EF at the
behavioral and neural levels as well as how EF develops autonomously outside
of the laboratory.
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MONOGRAPHS OF THE SOCIETY

RESEARCH IN CHILD DEVELOPME

Il. A CASE STUDY OF THE DCCS TASK

The DCCS task has been extensively used over the last two decades to
probe the development of cognitive flexibility in early childhood. Given the
important and predictive role EF plays in early childhood (see Blair & Razza,
2007; Diamond & Lee, 2011; Gathercole et al., 2004; Liss et al., 2001; Moffitt
etal.,, 2011; Pennington & Ozonoff, 1996), this task provides an ideal starting
point to develop a neural process account of EF. In this task, children are
instructed to switch from sorting cards based on shape or color to sorting
based on the other dimension using verbal rules provided by the
experimenter (e.g., “Sort by shape/Sort by color”). Trays mark two sorting
locations where target cards are affixed. These target cards provide cues as to
which features go where (e.g., a blue-circle and a red-star). The test cards that
children sort are typically constructed so that they match either target card
along one dimension (e.g., a blue-star and a red-circle; see Figure 1A). Thus,
there is direct conflict when making a decision for a given card since it could
go to either location depending on the dimension used for sorting.

The DCCS is an ideal task to study the early development of EF for three
reasons. First, performance in the DCCS involves not only “switching,” but
also builds upon “inhibition” and “working memory,” which develop in
some forms before flexible rule-use (Carlson, 2005; Garon et al., 2008). In
particular, this task requires inhibition to suppress processing of the
irrelevant dimension, working memory to maintain representations of the
relevant task rules, and task switching in order to update these processes after
the rule-switch (Garon et al., 2008). Further, ERP data suggest that multiple
control processes unfold over the course of a trial, suggesting that the task
does not tap into only a switching component (Waxer & Morton, 2011). Thus,
flexible rule-use in this context taps into multiple aspects of EF.

Second, this task reveals rapid and dramatic changes in children’s
executive function in early development. Although 5-year-olds have little
trouble switching rules, the majority of 3-year-olds (typically around 70%)
perseverates and continues using the first set of rules after they are instructed
to switch. This perseveration is robust and persists despite constant reminders
that the rules have changed. The dramatic nature of this developmental shift
has led to an intensive investigation of why young children perseverate,
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FiGure 1.—Target and test cards used in various versions of the Dimensional Change Card
Sort (DCCS). For all of the examples shown color is the pre-shape dimension and shape is the
post-switch dimension.
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creating a vast literature on the DCCS task. This literature has revealed
complex and subtle aspects of children’s rule-use, explaining why single-cause
explanations (e.g., inhibitory control) fall short of capturing the full range of
behavioral effects and why a formal, computational approach is warranted.
Simply put, children fail to switch rules in very specific ways, and a successful
integrative theory must capture these details. For example, 3-year-olds do not
have trouble using the initial set of rules. Rather, difficulty only arises in
particular circumstances during the postswitch phase. Further, children’s
postswitch performance is typically all-or-none—that is, they either get all
of the trials correct or all of the trials incorrect. In addition, although
perseveration is robust in many variants of the task, 3-year-olds are able to
switch rules under specific conditions. Ultimately, the pattern of success
and failure across different manipulations reveal critical details that a theory
must capture.

The third reason why the DCCS task provides an ideal foundation for
developing a theory of EF harkens back to the long history of trying to
integrate behavioral and neural data in the EF literature. In addition to a rich
behavioral data set in the DCCS literature, there is an emerging neuroimaging
literature that has shown rapid and dramatic changes in children’s neural
dynamics in early development. This work has revealed changes in a network
of brain areas associated with rule-switching which emerges after age 3 and
becomes more refined into adulthood (Moriguchi & Hiraki, 2009; Morton
etal., 2009). Thus, this simple task can provide insight to the wide spectrum of
EF processes and associated neural changes in early childhood.

Below, we review the literature on the DCCS task, starting with a review of
behavioral studies organized around the different components of executive
function as well as other themes highlighted in the literature. We then discuss
neuroimaging studies on the early development of EF. Finally, we survey
existing theories of the DCCS task. This survey reveals several strengths of
existing accounts, but also key limitations that lay the foundation for the
Dynamic Field Theory (DFT) we present in Chapter 3.

Review of Behavioral Studies

The Role of Inhibition

Several studies have probed the role that inhibitory processes play in
children’s perseveration in the DCCS task. This has been accomplished by
altering different features of the target and test cards between the pre- and
post-switch phases. These data show that children do not perseverate based on
a fixed set of features or rules; rather, the dimensions and features on the
cards participate in a more subtle pattern of interactions.

In a Negative Priming version, the features that were relevant for the pre-
switch phase (e.g., color) are changed for the post-switch phase (e.g., shape;
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see Figure 1B). With the pre-switch features changed, the stimuli no longer
afford being sorted by the color values used during the pre-switch phase; thus,
it is not required that children inhibit those values or rules during the post-
switch phase. However, around 60% of 3-year-olds fail to switch rules in this
version suggesting they have difficulty overcoming the negative priming that
occurs as the irrelevant features are ignored or suppressed during the pre-
switch phase (Miiller et al., 2006; Zelazo et al., 2003). That is, 3-year-olds
appear to have too much inhibition of the post-switch dimension that they
cannot overcome. In a Partial-Change version (Zelazo etal., 2003), the reverse
issue is probed, that is, the features that were ¢rrelevant during the pre-switch
are changed in the postswitch phase (see Figure 1C). With these features
changed, the rules for the post-switch feature values would not be negatively
primed going into the post-switch. Nevertheless, more than half of 3-year-olds
also have difficulty switching in this task presumably due to their inability to
inhibit the pre-switch rules and attend to the post-switch dimension (Zelazo
etal., 2003). In this case, it seems that 3-year-olds have too little inhibition to
suppress a prepotent response pattern.

The persistent perseveration across these two conditions leaves one
wondering whether any changes in the features of the cards can improve
performance in this task. Results from a Total-Change version speak to this
issue: when the features of both dimensions are changed, 3-year-olds can
reliably switch to sorting by the other dimension (Zelazo et al., 2003; see
Figure 1F). Thus, if there is nothing to inhibit and the post-switch features
have not been negatively primed, children can switch rules. These data
indicate that single cause accounts such as inhibition or negative-priming at
the level of specific features alone are not sufficient to fully capture the
underlying processes giving rise to perseveration.

The Role of Working Memory

The DCCS does not place high demands on working memory capacity
since only two rules are relevant for each game and these rules are repeated
throughout the pre-and post-switch phases. Nevertheless, evidence shows that
the strength of representations that are the basis for the different sets of rules
critically influences performance. For example, 3-year-olds can switch rules if
the representations utilized for the post-switch phase are stronger than those
utilized for the pre-switch phase. Yerys and Munakata (2006) demonstrated
this by manipulating the name used for the pre- and postswitch sorting
games. Specifically, 3-year-olds’ post-switch performance is improved if the
pre-switch game is simply called a “sorting” game and the post-switch game is
given a standard informative name (such as the “shape” or “color” game). This
effect is also seen if the manipulation occurs at the level of specific stimulus
features. For example, 3-year-olds’ post-switch performance is improved if
novel shapes or colors with novel labels are used during the pre-switch game
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while familiar features and labels are used for the post-switch game (Yerys &
Munakta, 2006). In either case, it appears that an informative label can be
maintained in working memory during the post-switch phase which can out-
compete the less-familiar or non-informative representation used during the
pre-switch phase.

The Role of Task Switching

Various manipulations to the transition between the pre- and post-switch
phases have been shown to facilitate correct rule-switching. Specifically, if
the post-switch rules are given while the target cards are removed or if the
concepts of shape-rules and color-rules are explained in detail before the
child sorts, 3-year-olds have less difficulty switching rules (Mack, 2007).
Further, if children are instructed to play a “silly” version of the pre-switch
game and to match the test cards to the opposite of the pre-switch features
during the post-switch phase (e.g., matching red to blue and blue to red),
3-year-olds are able to switch rules (Kloo, Perner, Kerschhuber, Dabernig, &
Aichhorn, 2008; however, see also Brooks, Hanauer, Padowska, & Rosman,
2003, who show children are worse with bi-dimensional stimuli than with uni-
dimensional stimuli in this “silly” version of the task). This highlights that
children’s representation of the task-switch is critical to perseveration or
success in the DCCS.

The Role of Feedback and Demonstration Cues

Three-year-olds are able to correctly switch rules if they are given
sufficient demonstration cues or feedback. Specifically, if children receive
direct feedback on their performance (Bohlman & Fenson, 2005), if children
see the post-switch rules demonstrated (Towse, Redbond, Houston-Price, &
Cook, 2000), or if children are told to wait and think about the rules before
they sort a given card in the postswitch (Dedk, Ray, & Pick, 2004), then their
post-switch performance improves. Thus, even within the standard task
structure, children are not completely rigid in their perseveration but can
successfully switch given enough instruction.

The Role of Conflict

Children’s ability to switch rules in the DCCS task is not simply based on
the consistency of the features on the cards between the pre- and post-switch
phases—what children sort also matters. For example, conflict between the
dimensions during the pre-switch is necessary for perseveration. Zelazo et al.
(2003) and Muller et al. (2006) showed that 3-year-olds no longer perseverate
in the Standard or Negative Priming versions if the test cards match the target
cards along both dimensions during the initial sorting phase (e.g., sorting red
stars to red stars and blue circles to blue circles; see the no-conflict versions in
Figure 1D,E). Further, if conflict is decreased by only using one feature
within the irrelevant dimension during both the pre- and post-switch phases
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(see Relational Complexity version in Figure 1G) children have less difficulty
switching rules (Halford, Bunch, & McCredden, 2007).

Visual conflict can be further eliminated by using pictures of cartoon
characters in lieu of target cards (the characters being characterized as
“wanting” one feature or another; Perner & Lang, 2002) or by completely
removing target cards and having children sort to empty trays (Towse et al.,
2000). Under these circumstances, 3-year-olds have little trouble switching
rules. The results with target cards absent are particularly interesting given the
supposedly heightened demands on rule-representation in the absence of
visual cues.

The Role of Feature Binding

Switching rules can also be facilitated if the “objecthood” of the images on
the cards is eliminated by separating the features on the cards (e.g., an outline
of a star next to a patch of blue; see Figure 1H; Diamond, Carlson, & Beck,
2005; Kloo & Perner, 2005; Zelazo et al., 2003). Further, 3-year-olds can switch
rules if the dimensions are separated into four sorting locations with univalent
target cards (e.g., a black outline of a star or circle and patches of red or blue)
so that different pairs of trays are used for the color and shape rules (all four
trays are displayed throughout the pre- and post-switch; Rennie, Bull, &
Diamond, 2004). These versions highlight that children’s difficulty is not just
a function of the “rules” in the task, but is also influenced by the nature of the
objects to which children apply the rules. Specifically, children benefit from
being able to apply the shape and color rules to different objects. This
suggests that processes of object representation or selective attention are
central aspects of children’s rule-use.

Review of Neuroimaging Studies

Research on the DCCS task has focused on early childhood, typically the
age range from 3 to 5 years. This is a difficult time period to collect
neuroimaging data because the gold standard of neuroimaging methods—
fMRI—is not suitable for 3-year-olds. Consequently, researchers have turned
to a new neuroimaging method—fNIRS—to study the early development of
EF. In the one study of this type, Moriguchi and Hiraki (2009) used fNIRS to
examine changes in frontal cortex activation as young children engaged in
the standard DCCS task. They found increases in inferior prefrontal cortex
activity between 3 and b5 years associated with rule-shifting in the DCCS. In
particular, 3- and 5-year-olds that were able to switch rules also showed
significantly stronger frontal activation compared to 3-year-olds who
perseverated. This suggests that changes in the engagement of the frontal
cortex support the early emergence of flexible rule-use.

Another way to examine the neural processes that underlie performance
in the DCCS task is to use fMRI with older children and adults. Morton et al.
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(2009) used fMRI to explore differences in neural activation between 11- to
13-year-olds and adults when shifting dimensional attention in the DCCS task.
This study showed that activation in superior parietal cortex, dorsolateral
PFC, pre-supplementary motor area, inferior frontal junction, and fusiform
gyrus was associated with shifting rules in the DCCS. Further, between
adolescence and adulthood, there are increases in activation in superior
parietal cortex, superior frontal sulcus, and fusiform gyrus. In addition to this
study, Nagahama et al. (2001) used fMRI with adults and compared
dimensional shifts of attention with simple response reversals for the features
(akin to the “silly” version reviewed above; Kloo et al., 2008). Shifting rules,
regardless of whether attention was also being shifted, activated inferior
frontal sulcus. However, middle frontal gyrus was selectively activated when
shifts of attention were required.

Summary of Behavioral and Neural Studies

The rich behavioral literature on the DCCS provides robust constraints
for the development of a theory of EF. Children fail to switch rules in very
specific ways, showing robust perseveration across many variants of the task.
Interestingly, however, 3-year-olds can switch under particular circumstances
when the demands on inhibition, WM, or task switching are decreased. Thus,
an integrative theory of the early development of EF must explain why young
children perseverate in some circumstances, why they succeed in others, and
what changes over development to create robust rule-switching across tasks.

The neuroimaging literature on the DCCS task has revealed several
networks that are selectively activated in this task and are associated with
different aspects of EF. Moriguchi and Hiraki’s (2009) study showed increases
in frontal activation when 3- and 5-year-olds switch rules. This is consistent
with data showing developmental changes in the functional connectivity of
frontal and posterior areas (Dosenbach et al., 2007; Fair et al., 2007). fMRI
data with adults, however, has revealed a more detailed network of cortical
areas related to different aspects of rule-switching that emerges through
childhood and adolescence. Although the picture regarding the neural basis
of EF and rule-switching is incomplete, there are sufficient data to take
seriously the bridge between brain and behavior. In the next section, we
discuss how current theories account for this pattern of behavioral and neural
data.

Current Theories of the Development of Executive Function

Our review of the empirical literature on the DCCS task reveals a
complicated pattern of results where everything seemingly matters. The DCCS,
then, presents a formidable theoretical challenge. Are existing theories up to
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this challenge? Theories that address the development of executive function
within the context of the DCCS task run the gamut from an information
processing theory framed around hierarchical rule representation (Zelazo
et al.,, 2003), to conceptual accounts of the task framed around attentional
inertia (Kirkham, Cruess, & Diamond, 2003) or redescription (Kloo & Perner,
2005), to a formal connectionist model framed around active versus latent
representations (Morton & Munakata, 2002). Below, we discuss the extant
accounts in turn, building from abstract conceptual accounts at one end of
the theoretical spectrum, to formally implemented models at the other end of
the spectrum.

Cognitive Complexity and Control Theory

The most comprehensive account of children’s performance in the
DCCS task to date is the Cognitive Complexity and Control theory (CCGC;
Zelazo, 2004; Zelazo et al., 2003). CCC is an information-processing theory
that conceptualizes children’s behavior and development around hierarchi-
cal rulerepresentation. This theory contends that for children to be
successful in the post-switch phase of the DCCS, they need to be able to
consciously reflect on the two sets of rules and construct a representation of a
rule structure that can integrate the rules for the different featural
dimensions. This enables them to select the appropriate rules given the
game being played.

To construct a set of rules for the color or shape game, specific feature
values (i.e., antecedent conditions) are connected to alocation where the feature
is to be sorted (i.e., consequences) . This rule representation takes the form of an
if-then production rule that reads, “if red, then place the card here, but if
blue, then place the card there.” Sets of antecedent conditions and
consequences are linked at the next higher level in the hierarchy in a
relationship between the dimensions of the rules (i.e., setting conditions) that
specify when the different sets of rules should be used (see Figure 2).
Integrating this representation with the representation of the individual rule
sets also takes the form of an if-then statement reading, for example, “if color
game and if red, then sort here, but if shape game and if circle, then sort
there.”

To engage a set of rules during the pre-switch phase, the child must make
an active decision to use a particular set of rules given the conflict created by
the test card matching both of the target cards in some way. The active nature
of this decision was captured in a subsequent revision of CCC theory, CCCr,
which incorporated the dynamics of activation and inhibition of rule sets
(Zelazo et al., 2003). Specifically, one set of rules is used in the pre-switch
phase and gains a high level of activation, while the other rule set is inhibited
and decreases in activation. Going into the post-switch phase, children must
engage the second setting condition via a top-down process driven by
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FiGure 2.—The rule-hierarchy of the Cognitive Complexity and Control (CCC) theory
(Zelazo etal., 2003). Setting conditions determine if shape or color rules are to be used. The a’s
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(al goes with al and a2with a2under each setting condition as the combination of features on
the test cards). The ¢’s stand for consequences, which correspond to the different decisions to be
made for each feature (i.e., where the card is to be placed).

reflection on the rule-structure. Without the representation of setting
conditions in a second level of the rule hierarchy, children default to the more
active set of rules that were initially used during the pre-switch. Thus, 3-year-
olds are able to construct separate branches of antecedent conditions and
consequences and are able to use these representations to sort cards during
the pre-switch or answer questions about the post-switch rules. Nevertheless,
they lack the ability to integrate both branches of rules under the setting
conditions at a second level in the hierarchy. As the prefrontal cortex
develops, this cortical area is able to represent increasingly complex rule-
structures, allowing the child to construct a rule-hierarchy that allows for the
top-down selection of the appropriate setting condition (see Bunge & Zelazo,
2006).

Using these concepts of rule-representation and activation, CCC-r theory
can explain results of the Negative Priming and Partial-Change versions. In
either situation, the rules that apply to the pre-switch dimension are more
active during the post-switch phase either because the rules for the post-switch
dimension were inhibited during the pre-switch (Negative Priming version;
Figure 1B) or the rules for the pre-switch dimension have a high level of
activation after being used in the pre-switch phase (Partial-Change version;
Figure 1C). This imbalance of activation—even when one set of features
changes—requires a rule-hierarchy for the top-down selection of the
appropriate rules during the post-switch phase. Zelazo et al. (2003) further
state that negative priming and the persistent activation of rule-sets depend
on actively selecting a set of rules against a competing alternative. Thus, in the
no-conflict Standard (Figure 1D) and No-Conflict Negative Priming versions
(Figure 1E), children are able to use two un-integrated branches of rules
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successively because the processes of inhibition and negative priming no
longer have significant contributions to the activation of rules within the
hierarchy. With the shape and color rules acquiring equal levels of activation,
simply telling the child to use a different set of rules provides sufficient
activation to use those rules during the post-switch phase.

By structuring the rule-hierarchy around the different dimensions of the
visual features (i.e., the setting conditions), CCC/CCC-r theory is able to
generate various predictions that have been empirically supported. For
example, Zelazo et al. (2003) showed that 3-year-olds are unable to switch
between single rules for features within different visual dimensions or setting
conditions. Three-year-olds were asked to sort a single test card containing an
image of a green car within the standard task-space structure containing two
sorting locations with target cards. When playing the green game, the card was
to be sorted by color, but if playing the car game the card was to be sorted by its
shape. Even with these simpler branches containing a single rule under each
setting condition, 3-year-olds perseverated on the rule they used first. Zelazo
etal. (2003) further showed that 3-year-olds are able to use four rules at once
(e.g., using four color rules) and switch between sets of rules if they are under
the same setting condition (e.g., switching between two sets of color rules
using red and blue, or green and yellow). Thus, the number of rules under
different setting conditions does not necessarily matter. This indicates
that children’s difficulty does not stem from a limitation in memory capacity
or from a general difficulty in switching rules. Rather, 3-year-olds only
have trouble when the pairs of rules require attention to different visual
dimensions and, thus, span separate branches of the rule-hierarchy.

Although CCC/CCC-r theory generalizes to a broad range of effects, it
has critical limitations as well. For example, CCC/CCC-r theory does not
specify how children learn to construct complex rule-hierarchies over
development. Although this theory proposes that rule-use is grounded in
emergence from more basic process, the theory is focused on the conscious
decisions made by the child and does not attempt to explain the real-time
process of forming and engaging rules. In this sense, although CCC/CCCr
uses neural concepts, it is not well-positioned to integrate brain and behavior.
Rather, ties to neural dynamics and development have remained largely at the
descriptive level (Bunge & Zelazo, 2006). Further, CCC/CCCrr falls short of
accounting for different aspects of EF because it explains performance in the
DCCS using a specialized rule-switching system. Finally, there are empirical
data that highlight a fundamental limitation of an abstract rule representa-
tion framework. Specifically, 3-year-olds can more easily switch to attentionally
salient, distinctive features than less salient, perceptually similar features
(Fisher, 2011; Honomichl & Chen, 2011). In this case, the rule-hierarchy is
the same, but performance is influenced by the attentional salience of the
features involved in the different tasks. Thus, CCC/CCC-r theory does not
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specify how the salience or similarity of features, or attentional manipulations
in general, influences reflection on the rule-structure, the representation of
rule pairs, or the activation of rule pairs.

Other Conceptual Accounts

An alternative account, the Attentional Inertia hypothesis (Kirkham
etal., 2003), moves away from the concept of rule-representation and instead
attributes children’s perseveration to inflexible attention. In particular, when
using a particular set of rules, children must selectively attend to a visual
dimension of the stimulus. Children perseverate because attention becomes
stuck on the featural dimension to which it is initially applied. Shifting
attention, then, requires the active inhibition or suppression of the current
deployment of attention. By inhibiting and disengaging, attention becomes
free to shift to a different dimension of the stimuli. With poorly developed
inhibitory control, the child is unable to disengage, and is thus unable to
refocus her attention on the new dimension to use the post-switch rules.

To support their account, Kirkham et al. (2003) showed that boosting
attention to the post-switch features by prompting children to relabel the test
cards during the post-switch by the relevant dimension significantly improved
children’s ability to switch rules (however, see also Miller, Zelazo, Lurye, &
Liebermann, 2008, for a failure to replicate these results in a series of
experiments). Kirkham etal. (2003) further showed that sorting cards face-up
impaired b5-year-olds’ ability to switch rules. They suggest that this
manipulation provided an even stronger pull on attention to the pre-switch
dimension, making attention even more inflexible. Diamond and Kirkham
(2005) also found evidence for attentional inertia with adults in a timed
version of the DCCS. Adults showed significantly slower reaction times on the
trials immediately following a switch in rules, suggesting that it even takes
adults extra time to shift their attention to another featural dimension.

Another alternative account put forth by Kloo et al. (2008) and Kloo and
Perner (2005)—the redescription hypothesis—frames children’s difficulty in
the DCCS around an inability to redescribe objects. They suggest that
children use a more general matching strategy along dimensions (e.g., match
by color) than a hierarchy of rules. For this strategy to work, however, children
need to engage descriptions of the objects along the correct dimension.
Children fail to switch in this case, because they have difficulty redescribing
the test cards by the new dimension. If children can apply a new label to a
different object, they should have little trouble switching rules. This appears
to be the case: 3-year-olds succeed with separated dimensions where they can
describe a patch of color as red and the outline of the shape as a star (Perner &
Lang, 2002; Zelazo etal., 2003). Further, when the post-switch is introduced as
a “silly” version of the first game and children are instructed to match the pre-
switch features to the opposite target cards, children do not need to
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redescribe the test cards by the new dimension and they typically succeed.
What develops to allow correct rule-switching, according to this view, is “a
conceptual understanding that things can be described differently under
different perspectives” (Kloo et al., 2008, p. 132).

The attentional inertia and redescription hypotheses offer different ways
of describing children’s behavior in the DCCS task. The attentional inertia
hypothesis lacks a clear definition of attention, which is problematic given the
complexity of this cognitive construct (for a review, see Luck & Vecera, 2002).
Specifically, it is unclear what type of attention is involved, what mechanisms
are involved in changes in attention, or how the influence of inhibitory
control on attention changes over development. Similarly, the redescription
hypothesis does not offer an account of what processes underlie children’s
ability to apply flexible descriptions or what mechanisms produce changes in
children’s concepts that support flexible descriptions. Thus, it is difficult to
determine exactly how well these accounts capture behavior, how they
generalize beyond the DCCS task, and what develops to enable flexible
behavior.

Connectionist Model

Morton and Munakata (2002) took an important step toward formalizing
the neural and developmental mechanisms underlying the DCCS by
implementing this task in a connectionist model (see Figure 3). In the
model, relevant dimensions are represented within a set of PFC nodes. These
nodes reflect the dimensionality of the stimulus, representing either shape or
color as the relevant dimension. When the model activelyrepresents either the
shape or color “rules” in the PFC nodes, the feed-forward connections
between the hidden units and output units for the relevant features are
strengthened. As inputs are processed and “sorted” according to the pre-
switch dimension, latent connections are established through a Hebbian
process between the hidden layer and output nodes. Importantly, only the
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FiGure 3.—The parallel distributed processing (PDP) model proposed by Morton and
Munakata (2002). Visual, verbal, and rule inputs are fed through a hidden layer and a
prefrontal cortex (PFC) layer (which also feeds into the hidden layer and modifies the strength
of the connections between the hidden layer and the output layer). Decisions are made in the
output layer for which target card the test card should be matched.
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features that are used for sorting undergo Hebbian learning. This creates a
bias in the system toward making decisions based on that dimension. For the
model to overcome these latent connections and correctly sort by the post-
switch rules, the PFC nodes need to have a relatively strong active
representation of the current rules to shift the balance of activation between
hidden layer and output layer toward making decisions based on the post-
switch dimension. As the PFC develops (i.e., as the strength of recurrent
activation in the model’s PFC nodes is increased), the model is able to actively
represent the relevant rules, exerting a stronger influence on the decision-
making process and facilitating flexible rule-use.

This model has generated various predictions about children’s rule-use in
the DCCS task. For example, Morton and Munakata (2002) gave their model
practice with unidimensional postswitch inputs before the start of the post-
switch phase. This increased the strength of latent traces for the post-switch
features and improved the performance of the model. Brace et al. (2006)
tested this prediction by administering a training phase between the pre- and
post-switch phases. The training phase consisted of a set of cards that started
with univalent stimuli for the postswitch features. Throughout the training
phase, the pre-switch features were gradually “morphed” into the image on
the cards until they contained fully bivalent stimuli when the child started the
post-switch phase. This training phase significantly improved 3-year-olds’ post-
switch performance over that of children who had a training phase with
irrelevant features or dimensions.

In a second test of the model, Jordan and Morton (2008) explored the
role that environmental support can have in promoting the active
representations of new rules. They showed that children are better able to
switch rules with the use of congruent flankers. For instance, if color was the
relevant post-switch dimension, patches of color would flank the test-card
image. With this extra environment support, children can activate the
relevant task rules more strongly and correctly switch rules. Finally, the studies
examining the influence of dimensional labels or novel features reviewed
above (Yerys & Munakata, 2006) were designed to probe the active/latent
memory distinction in the model. Specifically, when the pre-switch game is
simply called a “sorting” game, or when unfamiliar features are used for the
pre-switch game, weaker latent memories are established that pose less
competition with the active memories during the post-switch phase.

The account offered by Morton and Munakata (2002) has many
strengths. It uses a neurally plausible implementation of rule-use and has
generated multiple empirical predictions that have been successfully tested.
Nonetheless, this theory does not achieve as much coverage of the DCCS
literature as CCC/CCCr theory. In particular, the model has not been
generalized to account for other versions of the task to explain, for example,
why children still perseverate in the NP version or are able to switch in versions

24



CASE STUDY OF THE DCCS TASK

where there is no conflict during the pre-switch phase. Indeed, there are no
dimensions per se in the model; there are only associations between the PFC
and hidden units representing the particular features of the task. Thus, it is
unclear how the model would capture the introduction of new features at
different phases of sorting. Interestingly, the model has not been used to
quantitatively capture children’s performance or changes over development,
although Morton and Munakata (2002) have demonstrated that correct
switching increases as the recurrent connections for the PFC nodes are
strengthened.

Summary of theories

The theoretical perspectives reviewed here offer differing views of what
a “rule” is and how the ability to use rules changes over development.
CCC/CCGCr theory has been used to conceptually integrate an extensive
portion of the literature but lacks specification of several key processes and an
ability to interface with neural data. The connectionist model put forth by
Morton and Munakata (2002), at the other extreme, uses formal neural
concepts but has not been used to explain a broad array of findings in the
literature.

Our primary aim in developing the DNF model described below is to
achieve extensive theoretical coverage of young children’s performance in
the DCCS task early in development while adhering to, and anchoring our
concepts in, formalized neural principles. This brain-behavior focus is
inspired by data showing not only the complexity of explaining cognitive
flexibility at the neural level, but also the promise that this level of explanation
might offer new ways to test and constrain developmental theories of EF. In
the present work, we take a first step toward this brain-behavior link, showing
that DFT sheds light on EF by integrating different functional aspects of
control within a single model and providing insight into the neural processes
associated with different aspects of rule-use and EF. In this way, the model
offers useful clarity about the link between cognitive concepts and their
neural instantiation.
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MONOGRAPHS OF THE SOCIETY

RESEARCH IN CHILD DEVELOPME

lil. DYNAMIC FIELD THEORY

Dynamic Field Theory (DFT) grew out of the principles and concepts of
dynamical systems theory initially explored in the “motor approach”
pioneered by Gregor Schoner, Esther Thelen, Scott Kelso, Michael Turvey,
and others (e.g., Kelso, Scholz, & Schéner, 1988; Schéner & Kelso, 1988;
Thelen & Smith, 1994; Turvey & Shaw, 1995). The goal was to develop a
formal, neurally grounded theory that could bring the concepts of dynamical
systems theory to bear on issues in cognition and cognitive development. DFT
was initially applied to issues closely aligned with the cognitive aspects of
motor systems such as motor planning for arm and eye movements (Erlhagen
& Schoéner, 2002; Kopecz & Schoner, 1995). Subsequent work extended DFT,
capturing a wide array of phenomena in the area of spatial cognition, from
spatial category biases to changes in the metric precision of spatial working
memory from childhood to adulthood (Schutte, Spencer, & Schéner, 2003;
Simmering, Schutte, & Spencer, 2008). This theoretical framework has been
used to capture how objects are neurally represented in a way that links
features to a spatial frame of reference (Johnson, Spencer, & Schéner, 2008;
Schneegans, Lins, & Spencer, in press; Spencer, Schneegans, & Schoéner, in
press), how object recognition can emerge from associating features with
labels (Faubel & Schéner, 2008), and how young children learn words in a
social context using a common spatial frame to bind words and objects
together (Samuelson, Smith, Perry, & Spencer, 2011).

Importantly, the model we present here was not derived solely as a model
of rule-use; rather, it is an extension of an object WM model (Johnson et al.,
2008; Spencer, Austin etal., 2012; see also Samuelson etal., 2011) to which we
add an autonomous dimensional attention system. Rule-use, then, emerges in
the neural interaction between dimensional attention nodes (a “shape” or
“color” node) and an object WM system that localizes features in space and
makes decisions about where objects should be placed. We show how this
interactive system captures young children’s performance in the DCCS task.
We then use the DNF model to probe whether specific developmental
changes in the dimensional attention system are sufficient to capture the
emergence of flexible rule-use in the DCCS task between 3 and 5 years.

In the following sections, we describe the DNF model. It is important to
note that when we refer to terms such as neural activation, cortical fields, and
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excitatory/inhibitory neural interactions, we are referring to the simulated
neural dynamics of the model. Although we do not capture actual neural
measurements from children in the present study, DFT has a long history of
interfacing directly with neural data (see Bastian et al., 1998, 2003; Buss,
Wifall, Hazeltine, & Spencer, 2014; Erlhagen et al., 1999; Jancke et al., 1999;
Markounikau et al., 2010; McDowell et al., 2002; Spencer et al., 2012). As we
discuss below, these previous reports show that the neural concepts we use
when describing the DNF framework are more than just neural jargon: these
are well-grounded concepts that can be mapped to neural measures
commonly used in the literature (e.g., multi-unit recording, voltage-sensitive
dye imaging, and ERPs).

We begin with an overview of several central concepts in DFT, including a
discussion of neural population dynamics within multilayered cortical fields,
interactions between different cortical fields, as well as the variant of Hebbian
learning we use to capture changes in neural dynamics over a trial-to-trial
timescale (see, Faubel & Schoner, 2008; Lipinski, Spencer, & Samuelson,
2010; Samuelson et al., 2011; Simmering et al., 2008). Next, we describe the
object WM model (Johnson et al., 2008; Spencer et al., in press; see also,
Samuelson et al., 2011). This is followed by an overview of the dimensional
attention system that we couple to this model, as well as a discussion of the
developmental hypotheses explored in the present study. We then step
through how the DNF model sorts cards in a rule-like fashion in the DCCS
task, perseverating early in development and switching rules later in
development. Finally, we conclude with a discussion of how the DNF model
achieves the different functional aspects of cognitive control discussed in
Chapter L.

Basic Concepts of DFT

DFT simulates thinking in the form of neural population dynamics, that
is, patterns of neural activity within cortical fields consisting of simulated
neurons “tuned” to continuous metric dimensions (e.g., space, color,
orientation; for related ideas, see, e.g., Georgopolous, Schwartz, & Kettner,
1986). These fields are organized so that neighboring locations in a field have
similar receptive fields—they respond maximally to similar feature values.
Moreover, neighboring neurons share lateral excitatory interactions, such
that the activity of one neuron can boost the activity of its neighbors. By
contrast, neurons with very different receptive fields share inhibitory
interactions, such that the activity of a local group of neurons can inhibit
the activity of neurons tuned to different feature values (for discussion, see
Spencer, Austin, & Schutte, 2012). When inputs to such a field are strong
enough to reach an activation threshold (an activation level of 0), these inputs
combine with lateral interactions among neurons (local excitation, surround
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inhibition) to form “peaks” of activation that stably represent a particular
feature value. These peaks represent a type of neural decision that a particular
feature value is, for instance, present in the world. Moreover, if neural
interactions are strong enough, peaks can remain stably activated through
time—even in the absence of sensory stimulation. In this sense, peaks can
capture key properties of “working” or “active” memory (Compte, Brunel,
Goldman-Rakic, & Wang, 2000; Edin et al., 2007, 2009; Johnson, Spencer, &
Schoéner, 2009).

In the present report, we use two-layered neural fields composed of an
excitatory layer of neurons (which we call a working memory [WM] field)
coupled to a layer of inhibitory interneurons (Inhib field). When activation
reaches an activation threshold (>0), the WM field becomes self-excitatory—
that is, activated neurons share excitation with close neighbors. Also, the
activated neurons pass excitation to the Inhib field. Once these inhibitory
interneurons are activated at above-threshold levels (>0), they pass broad
inhibition back into WM. This dynamic back-and-forth among layers creates
the local excitatory and laterally inhibitory interactions needed to form
localized peaks within the field (see the Appendix for a more detailed
discussion and the two-layered neural field equations).

Our DNF models also use a variant of Hebbian learning that allows neural
populations to learn as they acquire a history in the task (see, e.g., Lipinski,
Simmering, Johnson, & Spencer, 2010; Lipinski et al., 2010; see Perone,
Simmering, & Spencer, 2011; see Clearfield, Dineva, Smith, Diedrich, &
Thelen, 2009). These Hebbian memories vary in strength from 0 to 1, much
like a “weight” or synaptic connection in a connectionist model. As Hebbian
memories increase in strength, the affected neurons acquire a resting level
closer to the activation threshold of 0 (i.e., the resting level becomes less
negative). Thus, Hebbian memories enable specific neural sites in the field to
become activated more quickly on subsequent trials. This results in a priming
effect, facilitating the response of a local population of neurons to a familiar
stimulus.

A central question with any neural network framework is how the
concepts of the theory are anchored to the neural reality of the brain. On this
front, DFT is well-grounded. The layered architecture we use was initially
developed to capture neural activation patterns within visual cortex (Amari,
1977, 1980; Amari & Arbib, 1977; see also, Compte et al., 2000; Wilson &
Cowan, 1972). Our coworkers have demonstrated that the population
dynamics within neural fields can be directly derived from multi-unit
neurophysiology using the Distribution of Population Activation approach
(Bastian etal., 1998, 2003; Erlhagen etal., 1999; Jancke et al., 1999). A related
approach has also been used with voltage-sensitive dye imaging (VSDI; see
Markounikau et al., 2010). These approaches enable researchers to directly
test DNF models using neurophysiological measures in nonhuman animals.
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Other efforts have shown that DNF models can be tested with humans using
eventrelated potentials (see Spencer, Barich et al., 2012). For instance,
McDowell et al. (2002) examined the prediction of a DNF model of motor
planning that movement direction and response probability should be
interdependent. They tested this by measuring both reaction times and the
amplitude of the P300 eventrelated potential (a positive going event-related
potential that peaks at 300 ms post stimulus onset). Both types of measures
showed the predicted interactions. In summary, then, the differential
equations that we use in the present report capture real, observable aspects
of activation dynamics within populations of cortical neurons.

A DNF Model of Object WM

The model we propose here is based, in part, on a model of object
working memory shown in Figure 4 (see Appendix for equations). At the top
of this figure, we show a picture of the brain, with several highlighted cortical
regions whose function is captured by aspects of the model. Below this is a
simulation of the model at different points in time as it “binds” object features
present in the visual display.

The architecture of the object WM model was inspired by the properties
of the primate visual system, which has distinct processing pathways for visual
information (Haxby et al., 1991; Ungerleider & Mishkin, 1982): a dorsal
(“where”) pathway that is primarily concerned with encoding the spatial
locations of objects (e.g., Andersen, 1995) and a ventral (“what”) pathway that
is composed of cortical fields that encode different object features such as
color or orientation in distinct neural populations (e.g., Desimone & Gross,
1979; Xiao, Wang, & Fellman, 2003). This creates a “binding” problem in
vision (Treisman, 1996; Treisman & Gelade, 1980): given that different
populations of neurons are tuned to different feature dimensions in the
ventral pathway, how does the brain know which features go with which other
features to quickly form a novel, integrated object representation?

Figure 4 shows a concrete example of this challenge: when shown the blue
square and the yellow diamond in the display in Figure 4A, how does the brain
know that the blue hue (represented by the dark gray shading of the object in
the Display panel) should be linked to the square shape given that these
neural representations “live” in different parts of the brain? Concretely, how
does the brain know that the “blue” neurons in the fusiform area (see light
gray circle on brain image; Simmons et al., 2007) should be coupled to the
“square” neurons in the lateral occipital complex (see medium gray circle on
brain image; Drucker & Aguirre, 2009; Kourtzi, Erb, Grodd, & Biilthoff,
2003)? One candidate solution to this problem is to capitalize on the bimodal
nature of neural populations in the ventral stream. In particular, ventral
stream neurons are sensitive to visual features but are also coarsely receptive to
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FiGure 4.—Working memory (WM) fields for the feature binding model. Panel A depicts
the modeljust after the inputs have been turned on. Panel B shows the WM fields after the inputs
have reached threshold. Within fields, the neural interactions have been engaged to form a
peak. Between fields, spatial activation is being shared (visible in the feature WM fields as the
vertical ridge of activation) to anchor features together in the representation of an object with a
particular shape and color. In Panel C the WM fields are shown after the inputs have turned off
and excitation has relaxed to resting level. The contribution from Hebbian memory is now
visible. The left panel shows the putative mapping of the different fields to cortical locations.
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spatial information (see Aggelopoulos & Rolls, 2005; DiCarlo & Maunsell,
2003; Op De Beek & Vogels, 2000; for a review, see Kravitz, Vinson, & Baker,
2008). Thus, it might be possible to anchor the featural representations in
both cortical areas to a precise representation of spatial locations in, for
instance, parietal cortex (see dark gray circle on brain image; Andersen, 1995;
for a review, see Silver & Kastner, 2009). This is the solution that the DNF
model implements.

The sequence of simulations in Figure 4 illustrates how the DNF model
“binds” visual features together. The top row of this figure shows the display of
inputs that is presented to the model at three different time-points: at the
onset of the display (A), after the objects have been consolidated or “bound”
in working memory (B), and after the display has been turned off and the trial
has ended (C). The next row shows a one-dimensional spatial field that
captures aspects of neural processing in the parietal cortex (see dark gray
circle on brain image). This field consists of a layer of neurons with receptive
fields sensitive to variations in the horizontal positions of objects in the
display. Neurons that “prefer” leftward locations in the display are on the left
side of the spatial field, while neurons that “prefer” rightward locations in the
display are on the right side of the spatial field. The x-axis in this figure shows
the activation of each neuron in the field. For instance, in panel A, the two
bumps of activation show the initial response of spatially tuned neurons to the
presentation of an item to the left of center (the square) and a second item to
the right of center (a diamond).

Below the spatial field in Figure 4A is a two-dimensional color-space field
(which we will refer to as the “color” field). This layer of neurons has receptive
fields sensitive to the combination of spatial position and color (hue), like
neural populations in the fusiform area (light gray circle on brain image; see
Simmons et al., 2007). Considered together, the entire two-dimensional field
of neurons can represent any collection of colors at any location in the task
space. The spatial tuning of the neurons is again shown along the x-axis, while
the y-axis now displays the color tuning of the neurons (represented by the
gray scale to the left of the field, which shows the mapping of the RGB color
spectrum to the y-axis). The level of activation of neurons in the color field is
depicted by the gray shading, with higher levels of activation indicated by
lighter shading (see activation scale at bottom). As can be seen in the color
field in Figure 4A, there is an activation bump (light gray oval) in the lower left
region of the field that reflects the initial encoding of the blue (dark gray)
square to the left, and a second bump of activation in the upper right region of
the field that reflects the initial encoding of the yellow (light gray) diamond to
the right.

Finally, the bottom panels in Figure 4 show the activation within a two-
dimensional shape-space field (called the “shape” field). Here, these neurons
have receptive fields that are sensitive to spatial position and shape
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information as in the lateral occipital complex (dark gray circle on brain
image; see, e.g., Kourtzi et al., 2003). Like the color field, the xaxis shows the
spatial tuning of the neurons while the yaxis shows the tuning along an
abstract shape-similarity dimension. As before, the level of activation for these
neurons is depicted by the gray shading (see activation scale at bottom). Thus,
the activation bump in the upper left region of the field (light gray oval)
reflects the initial encoding of the square on the left, and the activation bump
to the lower right reflects the initial encoding of the diamond on the right.1

In Figure 4A, all of the activation profiles are sub-threshold (i.e.,
activation < 0) because the objects were just presented in the display. Thus,
strong neural interactions have not yet become engaged, and the model has
not formed robust WM representations of the objects. Critically, the coarse
spatial encoding properties of the feature-space fields produces overlap along
the spatial dimension for the feature inputs. Left alone, these bimodal cortical
fields would have difficulty binding the correct colors to the correct shapes
(for a demonstration of this difficulty, see Johnson et al., 2008).

Figure 4B shows the model resolving this ambiguity through spatial
coupling. Since all of the WM fields share a common spatial dimension,
activation is coupled along this dimension (see bi-directional arrows between
dorsal and ventral cortical areas in the brain image). As activation rises, spatial
information is passed back and forth among the WM fields. Because the
spatial field has precise spatial information, this helps resolve any spatial
conflictin the feature-space fields. This is shown in Figure 4B, which shows the
fields after peaks have emerged. As can be seen, the model correctly binds
“blue” and “square” on the left and “yellow” and “diamond” on the right. In
particular, there are robust peaks to the left and right of the spatial field
(second panel), at the blue hue value to the left and yellow hue value to the
right in the color field (third panel), and at the square shape to the left and
diamond shape to the right in the shape field (bottom panel). Note that the
shared spatial excitation can be seen in the vertical ridges within the feature-space fields.
Although activation is passing back-and-forth at the left and right spatial
positions, this does not lead to explosive excitation at every sight along these
ridges; rather, the lateral or surround inhibition associated with each peak in
the featurespace fields keep excitation locally contained around the
consolidated object feature values. This spatial coupling and associated
feature binding will play a critical role in the simulations of the DCCS that we
discuss below.

Figure 4C shows the fields after the inputs have been turned off and the
“trial” is over. This reveals the contribution from the Hebbian process that
operates in the model: there is now slightly elevated activation corresponding
to the blue square that was on the left and the yellow diamond that was on the
right. As can be seen, these memories are very coarse, elevating broad regions
around sites associated with the WM peaks in Figure 4B. What is the
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consequence of the broad memory traces? When these, or similar objects, are
presented again, peaks will build more readily at these particular feature-
space conjunctions given the slightly elevated activation levels.

To summarize, in the DNF model, neural populations that code for
different object features are bound together by a common spatial dimension
anchored to the precise spatial representations found in the parietal cortex.
Note that this solution to the binding problem shares elements with Feature
Integration Theory proposed by Treisman and Gelade (1980). Further, as the
model builds integrated WM representations across the different cortical
fields, a Hebbian learning process operates to bring the activated sites closer
to their activation threshold. This creates a type of priming effect when these
objects are re-presented, causing neurons in the fields to become activated
more quickly on subsequent presentations.

Autonomous Dimensional Attention and the Development of Rule-Use

The model shown in Figure 4 is able to actively form working memories
and Hebbian associations for object features in the task space, but how does it
sort cards and behave in a rule-like fashion in the DCCS task? For this, we need
to add an additional concept—dimensional attention. Figure 5 shows the
complete model architecture, which adds a frontal dimensional attention
system. The brain image in Figure bA adds a black circle highlighting several
frontal cortical regions implicated in executive function and the control of
dimensional attention (see, e.g., Morton et al., 2009). This frontal system is
reciprocally coupled to cortical fields in the ventral and dorsal pathways as
indicated by the bi-directional arrows (see Crone, Wendelken, Donohue, van
Leijenhorst, & Bunge, 2006; Dosenbach et al., 2007).2

The architecture of the dimensional attention system in the model is
shown in Figure 5B. This architecture consists of two attentional nodes
labeled “color” and “shape.” The nodes have the same dynamics as neural
fields: they are self-excitatory, mutually inhibitory, and can show robust,
above-threshold activation when sufficiently stimulated. In this sense, then,
the nodes can be viewed as localized neural populations in frontal cortex that
can enter a robust “peak” state when the system is actively attending to a
particular type of information, such as shape or color. These nodes also learn
as they are repeatedly activated in a task. In particular, the frontal system uses
the same type of Hebbian process described previously. Hebbian traces at the
level of the frontal system boost the baseline level of activation in the relevant
node that can effectively prime “color” or “shape” responding on subsequent
trials.

The information that each node actively represents is reflected in the
pattern of connectivity between the frontal nodes in Figure 5B and the object
WM system shown in Figure 5C. As is shown in the figure, the “color” node has
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FiGure 5.—The object working memory (WM) model, the dimensional attention
architecture, and the putative mapping to cortex.

strong excitatory connections to the color field (solid bi-directional line) and
weaker excitatory connections to the shape field (dashed bi-directional line).
Consequently, when the “color” node goes into an active or “on” state, the
color field receives a global activation boost. This makes it easier for peaks to
form in the color field, which can bias the model to initially form peaks in the
object WM system (Figure 5C) based on color information. Reversely, the
“shape” node has strong excitatory connections to the shape field (solid bi-
directional line) and weaker excitatory connections to the color field (dashed
bi-directional line). Consequently, when the “shape” node goes into an active
or “on” state, the shape field receives a global activation boost. This creates a
bias in the model to initially form peaks in the object WM system (Figure 5C)
based on shape information. This pattern of connectivity is akin to
connection weights in a parallel distributed processing (PDP) network. We
assume that the system begins with randomized weights that become
selectively mapped as the “shape” dimensional neuron becomes associated
with the shape field and the “color” dimensional neuron becomes associated
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with the color field. Note that the pattern of connectivity in the model is fully
reciprocal; thus, the growth of neural activity in the posterior neural fields
(e.g., the shape and color fields) can also impact the activation of the frontal
system.

The activation dynamics within our model are consistent with
neurophysiological evidence (e.g., Egner & Hirsch, 2005; Lepsien & Nobre,
2007; Zanto, Rubens, Bollinger, & Gazzaley, 2010; Zanto, Rubens, Thangavel,
& Gazzaley, 2011), which has demonstrated boosts in baseline activity for
cortical areas processing task-relevant information under situations with high
executive demands. For example, in a face/name Stroop task, boosts of
baseline activity were observed in the fusiform face area on trials that required
participants to categorize faces when conflicting names were presented.

In the present work, we probed whether specific changes in the
connectivity pattern between the frontal and posterior cortical fields were
sufficient to capture the emergence of rule-use over development in the
DCCS task. In particular, we created a 3-year-old model that had poorly
organized connectivity: activation of the “color” node, for instance, boosted
the baseline level of activation in the color field, but also weakly boosted the
shape field. By contrast, the 5-year-old model had well-organized connectivity:
activation of the “color” node selectively boosted the color field and had little
impact on the shape field (see Appendix for details). As we discuss below,
these changes in connectivity were critical in capturing key aspects of young
children’s performance in the DCCS task. Conceptually, such changes are
akin to changing the weight matrix in a PDP model over learning such
that “shape” and “color” nodes become associated with a specific feature
dimension.

In addition to refining the connectivity between the frontal and posterior
neural systems in the model, we implemented a specific developmental
hypothesis central to other work using DFT—the spatial precision hypothesis
(Schutte & Spencer, 2009; Spencer et al., 2009). According to this hypothesis,
excitatory and inhibitory neural interactions become stronger over develop-
ment. Thus, the strength of self-excitation and lateral inhibition for the
“shape” and “color” dimensional units was increased. This addresses the
question of whether changes within the dimensional attention system are
sufficient to capture the developmental pattern of behavior in the DCCS task.

Note that, although both developmental changes in the model—changes
in the pattern of connectivity between frontal and posterior systems and
changes in the strength of neural interactions in the dimensional attention
system—were implemented “by hand,” other work suggests that these changes
could emerge via an autonomous learning mechanism. We highlight this
direction in the General Discussion by describing work using DNFs. This work
shows how patterns of connectivity between nodes and fields can be learned
by standard forms of Hebbian learning as the system learns the correlation
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between, for instance, the use of the word “color” and the importance of
task-relevant hue values in the task space (see Faubel & Schéner, 2008;
Sandamirskaya & Schoner, 2010).

The DNF Model and the DCCS Task

Figure 6 shows the DNF model as it sorts cards in the DCCS task. The top
panel shows the activation of the dimensional nodes across the pre-switch and
postswitch phases for the young model (i.e., 3-year-olds). There are 12
periods where the dimensional nodes become more active (creating the box-
car profile) corresponding to the six pre-switch and six post-switch trials. The
middle panels show the object WM system at particular points during the task
indicated by the time labels above each panel (which correspond to marked
times on the top panel). The bottom panel shows the activation of the
dimensional nodes for the older model (i.e., 5-year-olds). As is clear in this
panel, the older model shows more robust activation of the dimensional
attention system (i.e., greater activation values), with a clear separation in the
activity of the “color” and “shape” nodes during the pre-switch and post-switch
phases.

To understand how the model works in detail, it is important to dissect
the neural interactions captured in the middle panel. Figure 6A shows the
target input presented to the model. This input to each field in the object WM
system reflects the presence of the target cards and trays used in the DCCS, for
instance, the blue-circle on the left and the red-star on the right (see the
display at the top of Figure 6A). In the spatial field, this input takes the form of
subthreshold “bumps” of activation at the left and right locations. These serve
to “pre-shape” or prime activation in the fields to build peaks at the locations
of the trays, that is, to sort cards to these locations (for related ideas, see
Erlhagen & Schoner, 2002). In the color field, there are two subthreshold
hotspots of activation. These correspond to the blue item to the left and the
red item to the right. There are also two subthreshold hotspots in the
shape field. These correspond to the circle at the left location and the star at
the right location. Thus, between the shape and color fields, there are inputs
for a blue circle at the left tray and a red star at the right tray.

Figure 6B shows the object WM system just after an input for a red circle
test card has been given. This fest input is presented to the feature fields as
horizontal ridges of activation for a feature across all spatial locations. This
captures the nature of the task: the model, like children, must spatially
localize the features presented on the test cards; that is, the model must
decide to place the card to the left or right. Notice that there is spatial conflict
between the two feature fields for the features presented on the test card in
Figure 6B. The test input for the blue feature overlaps with the target input at
the left location. The test input for the star feature, on the other hand,
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FiGure 6.—The sequence of events as the model sorts cards in the Dimensional Change
Card Sort (DCCS). For simplicity, only the spatial, color, and shape working memory (WM)
fields are shown in each panel. The top panel depicts the activation of the dimensional
attention nodes of the “young” model over the six pre- and six post-switch trials (“color” is
plotted in light gray, “shape” is plotted in black). The middle panel shows the object WM system
at particular timepoints of interest (see labels at top of Panels A-]). The bottom panel shows the
activation of the dimensional attention nodes of the “older” model over the six pre- and post-
switch trials. In this example, color is the relevant dimension for the pre-switch and shape is the
relevant dimension for the post-switch. Panel A shows the inputs for the target cards and trays
(highlighted by the gray ovals). Panel B shows the input for a blue star test card. Panel C shows
the model sorting this card to the left. Panel D shows the formation of Hebbian traces from
making that decision (highlighted by the white circle). Panels E and F show the inputs and
decision being made for a red circle during the pre-switch phase. Panel G shows the WM fields
of the model going into the post-switch phase after sorting during pre-switch phase. Gray ovals
outline the target inputs, while white circles outline the Hebbian memories. Panel H shows
the input for a red circle during the post-switch phase. Panel I shows the “young” model
perseverating and sorting by color even though the “shape” node is now more strongly
activated. Panel J shows the “old” model correctly switching and sorting by shape.
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overlaps with the target input at the right location in the shape field. Thus,
there is not enough information in these inputs alone to determine where the
test input should be localized. The input for the blue feature will try to build a
peak at the leftward location, while the input for the star feature will try to
build a peak at the rightward location.

Critically, however, the model is “told” to play the color game at the
beginning of the pre-switch phase. This is implemented as a sub-threshold
input to the “color” node. This can be seen in the slight boost in activation for
the “color” node (light gray line) in the top panel at timestep 300. As a test
card is presented in panel B, the feature-space fields build-up excitation from
the inputs. This sends activation to the dimensional nodes, boosting their
activity (see the increase in activation in the top panel at timestep 600). The
dimensional attention system, in turn, sends activation back to the feature-
space fields, with aslight boost to the color field since the “color” node is more
active. Figure 6C shows that this subtle bias in the activation of the “color”
node is enough to tip the balance in the direction of a color-based decision:
the model has formed a peak at the left location in the spatial field, binding
the blue and star features to this location in the task space. Note that this
spatial binding is reflected in the vertical ridges of subthreshold excitation
at the leftward location in the feature-space fields as spatial information is
passed back-and-forth among the object WM fields. Figure 6D shows the
consequence of this sorting decision: there is a Hebbian memory in the color
field that associates the blue feature and the left sorting location; similarly,
there is a Hebbian memory in the shape field that associates the star feature
and the left sorting location (see circled region of each field).

The same sequence of events play out as the model sorts the second type
of test card highlighted in panels E-G. In Figure 6E, the model is shown a red
circle to sort. This boosts the activity of the dimensional nodes (see top panel).
The small bias to the “color” node is amplified, leading the model to sort the
red circle based on its color. Consequently, the model forms a peak of
activation to the right side of the color field, binds the circle feature to the
right as well, and effectively sorts the red circle to the right (see Figure 6F).

Figure 6G shows the result of repeatedly sorting red circles to the right
and blue stars to the left during the pre-switch phase: the model has robust
Hebbian memories of where the test cards were sorted on the previous trials
(see highlighted circles). Consider the consequences these memories will
have as the model is now told to switch and play the shape game. In Figure 6G,
the Hebbian traces are highlighted with white circles, while the target inputs
are highlighted with white ovals. As can be seen in the figure, this results in
cooperation within the color field—the Hebbian memories (circles) overlap
with the target inputs (ovals). Consequently, activation is likely to build
quickly at these primed locations. By contrast, there is competition within the
shape field—the Hebbian memories (circles) associate the star shape with a
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leftward location and the circle shape with a rightward location, while the
target inputs (ovals) indicate a circle on the left and a star on the right.
Consequently, activation in this field will build slowly as multiple locations
within the field compete through lateral inhibition.?> Considered together,
then, the pre-switch dimension (color) is primed and has a competitive
advantage going into the post-switch phase.

What happens when the model transitions to the post-switch phase? As
can be seen in the top panel at timestep 25,000, the post-switch phase begins
with a boost to the “shape” node as the model is told to play the shape game.
The “shape” node is given the same strength of input as the “color” node
during the pre-switch phase; thus, the shape node (solid line) is now more
strongly activated than the color node (gray line). Note, however, that the
difference in the activation strengths of the two nodes is quite small—smaller,
in fact, than at the start of the pre-switch phase (see timestep 300). This
reflects the influence of Hebbian learning in the dimensional attention
system. Specifically, Hebbian traces built up for the “color” node during the
pre-switch phase. As a result, the “color” node is primed going into the post-
switch phase, leading to a weaker differential in the activation of the two
nodes.

At timestep 27,000, the model is given the first test card in the post-switch
phase. In particular, Figure 6H shows a red circle test card that is presented to
the object WM system. Figure 61 shows that the young model perseveratively
sorts this red circle to the right—the model sorts by color and not shape. This
occurs for two reasons: (1) there is only a small boost to the shape field from
the dimensional attention system, and (2) there is cooperation in the color
field and conflict in the shape field.

How is the model, like 5-year-olds, able to overcome these biases and
switch rules? As discussed above, we made two changes to the model over
development. First, the 5-year-old model has stronger interactions between
the “shape” and “color” nodes—self-excitation and lateral inhibition are both
stronger. This implements the spatial precision hypothesis probed in previous
work using DFT (Schutte & Spencer, 2009; Spencer et al., 2009). Second, the
connectivity pattern between the frontal and posterior systems is stronger and
more selective. For example, the “shape” node now passes stronger excitation
to and from the shape field and has relatively minimal interaction with the
color field. Thus, the 5-year-old model has a more refined understanding of
what “shape” means.

The bottom panel of Figure 6 shows how these developmental changes
impact the activation of the dimensional attention system across the pre-and
postswitch phases. Here, the relevant node for each phase achieves robust
activation and strongly suppresses the irrelevant node. As a consequence, the
5-year-old model is now able to switch rules during the post-switch phase. This
is shown in Figure 6]. In this figure, the 5-year-old model correctly sorts the red
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circle to the left—sorting by shape instead of color. The older model correctly
sorts by shape because the “shape” node sends a strong boost of activity to the
shape field and suppresses the activity of the “color” node (see timestep
27,500 in the bottom panel). With a stronger boost, the shape field can resolve
the competition between the Hebbian memory and the test input, successfully
sorting the red circle to the left.

To getabetter feel for the differences in the neural dynamics between the
young and the old model, Figure 7 zooms in on these neural dynamics during
the critical moments when the model is making its initial sorting decision on
the first post-switch trial. The top panel plots the activation of the dimensional
attention system for the old (solid lines) and young (dashed lines) model. The
middle and bottom panels show the object WM system for the young and old
models, respectively, at critical time-points during the decision-making process.
Because the spatial field is receiving the summed activation over space from the
different feature-space fields, this field reflects the relative amount of conflict
or cooperation in the feature-space fields as a decision is being made.

Figure 7A shows the fields before the first post-switch test card is
presented. Note the cooperation within the color field and competition
within the shape field for both models. In Figure 7B, the red circle test card is
presented to the model. At the corresponding timestep (26,975), the
dimensional attention system is just becoming engaged. In Figure 7C, the
inputs from the test card have built close to threshold and spatial activation is
being shared throughout the network. At this pointin time in the spatial field,
the leftand rightlocations are roughly equally activated in both the young and
old model. Consequently, itis not clear how the object WM system will sort the
card at this pointin time. Looking at the dimensional attention system, however,
differences between the old and young models are evident (see timestep
27,000). Specifically, the “shape” and “color” neurons for the old model have
achieved a much larger separation in activation relative to the young model.
Thus, the old model is attending to, or boosting, the shape field more strongly
and selectively than the young model. The consequences of this difference are
starting to become evident in Figure 7D. The young model has stronger overall
activation at the rightward location due to the cooperation in the color field,
while the old model has stronger overall activation at the leftward location due
to the input from the “shape” node to the shape field. Finally, in Figure 7E, both
models have resolved the spatial conflict and made a sorting decision. The
young model perseverated and sorted the red circle to the right, while the older
model successfully switched and sorted the test card to the left.

Summary of the Model

We have presented a DNF model that consists of multiple, reciprocally
coupled neural fields with featural and spatial properties common to neural
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FIGURE 7.—A zoom-in on the critical dynamics of the attentional system on a rule-switch
trial is plotted at top for the “young” (dashed lines) and “old” (solid lines) models. The middle
panel shows the object working memory (WM) system for the “young” model while the bottom
panel shows the object WM system for the “old” model. Panel A shows the object WM systems at
the beginning of the postswitch phase. In Panel B the red circle test card is presented to the
model. At the corresponding timestep in the top panel, the dimensional nodes for the old model
have begun to separate, while the dimensional nodes for the “young” model both maintain
activation near 0. In panel C, spatial activation begins to build at both spatial locations for the
“young” and “old” models. In Panel D a decision is beginning to emerge as the rightward spatial
location is more active for the “young” model but the leftward spatial location is more active for
the “old” model. In Panel E both the “young” and “old” models have built a spatial response.
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populations in the dorsal and ventral visual pathways. Through neural
interactions within and between these populations, stable peaks of activation
can emerge that capture decisions to sort objects (i.e., cards) to the left or
right location in the DCCS task. Hebbian processes operating within these
fields serve to accumulate memories over the course of the task, which can
influence subsequent decisions.

To sort cards in a rule-like fashion, we introduced a frontal dimensional
attention system that effectively boosts the baseline level of activity in the
posterior neural fields (e.g., Egner & Hirsch, 2005; Lepsien & Nobre, 2007;
Zanto et al., 2010, 2011). In addition, we implemented a specific type of
developmental change in the dimensional attention system to capture the
emergence of rule-use between 3 and 5 years: the older model had
stronger excitatory and inhibitory neural interactions in the frontal
system and a more precise pattern of connectivity with the posterior system.
As a consequence, the 3-year-old model perseverated: this model was not
able to achieve robust activation of the “shape” node; consequently,
cooperation in the color field dominated the sorting decision. By contrast,
the 5-year-old model switched rules: this model robustly activated the
“shape” node, boosted the baseline activity in the shape field, and
correctly sorted the red circle to the circle target card on the left. Interestingly,
the different dynamics of the dimensional attention system for the young and
old models in Figure 7 could explain the fNIRS data from Moriguchi and
Hiraki (2009). Specifically, the older model that switches rules shows much
stronger “frontal” activation compared to the young model. This parallels the
pattern of data for switchers and perseverators in Moriguchi and Hiraki
(2009). We discuss these ties in greater detail in the General Discussion
(Chapter VII).

The DNF model is clearly a model of children’s performance in the DCCS
task. But is it more than that? At face value, the answer to this question is
certainly “yes.” Recall that the DNF model builds on an earlier model of how
children and adults “bind” visual features together (see, Johnson et al., 2008;
Spencer, Austin et al., 2012). Thus, the model speaks to issues that extend
beyond the purview of the DCCS task (for a more detailed discussion, see
Chapter VII). Moreover, the model implementation makes specific claims
about the general nature of rule-use and executive control. For instance,
there was no explicit representation of the rules in the model. Rather, rule-use
emerged from specific associations of features with spatial locations in an
object WM system and the associations of dimensional attention nodes with
cortical populations in the object system. This means that the “rule” does not
reside in the frontal system—that system knows nothing about the specific test
card presented or where the target cards are in the task space. These details
are “known” in the object system; however, the object system knows nothing
about the meaning of the “color” or “shape” game. Thus, rule-use—and the
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ability to switch rules—emerges from interactions across multiple neural
populations.

We can also ask how the different components of EF—inhibitory control,
working memory, and task-switching—are captured by the model. For
instance, how does the model inhibitirrelevant information? This is partly the
job of the dimensional attention system, for instance, boosting the excitation
of the “color” node on the first pre-switch trial in the color game. But
inhibitory processes also play a role: when the “color” node was boosted,
lateral inhibitory interactions suppressed the activity of the “shape” node.
Inhibitory processes were also at work in the posterior neural fields. Here, the
build-up of activation in the color field at the left location increased the
activation of neurons on the left side of the shape field. As this activation
increased in the shape field, laterally inhibitory interactions suppressed
activation associated with the star feature at the rightward location, binding
the test card features to the left location. Thus, inhibitory control—a key
cognitive concept in early development—emerges from excitatory neural
processes (e.g., boosting the “color” node) and associated laterally inhibitory
consequences (e.g., suppressing the “shape” node; for related ideas, see
Morton & Munakata, 2002; Roberts et al., 1994; Roberts & Pennington, 1996;
Stedron et al., 2005).

Similar processes have been used to explain inhibitory control in the
Simon task. In this task, the spatial location of the stimulus can either be
congruent or incongruent with the spatial response required for the stimulus.
To simulate this task, Erlhagen and Schéner (2002) gave a DNF model stimuli
that either overlapped (as in a congruent trial) or conflicted with one another
(as in an incongruent trial). When an incongruent stimulus was presented, it
was inhibited through lateral inhibition generated by the build-up of
excitation associated with the relevant response location. Thus, activation
peaks and inhibitory processes go hand-in-hand.

What about a second component of EF—where does “switching” live in
our DNF model? There were many components of the model’s dynamics that
produced rule-switching. This required a strong representation of the
relevant dimension brought about through robust activation of the relevant
dimensional neuron. This, in turn, produced a strong boost to a specific
feature-space field, helping this field resolve the conflict between the task
input at one location and the Hebbian trace at another location. But the full
resolution of this conflict required building excitation at the “correct” feature
value in the feature-space field and suppressing the incorrect feature via
lateral inhibition. Switching, then, requires a confluence of robust neural
activation peaks and lateral inhibitory processes.

These examples are informative in that they highlight the challenge of
relating cognitive concepts such as “inhibitory control” and “task-switching”
to mechanisms in a neural model, and the utility of having a neural model to
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bridge between these two levels of description. Our simulations show that the
DNF model can produce functional behavioral outcomes central to cognitive
control in early development such as changes in the ability to switch tasks and
inhibit a prepotent response. But these outcomes do not map one-to-one onto
specific neural mechanisms. That is, there is not an inhibitory module or a
task-switching module in the model; rather, the model helps explain how
functional behaviors labeled as, for instance, “inhibitory control” can arise
from neural mechanisms in a complex neural system.

For this link between cognitive concepts and neural mechanisms to have
meaning, however, we must first demonstrate the utility of the theory. We do
this in the following sections by quantitatively simulating a host of behavioral
effects in the literature. Next, we generate a set of novel behavioral
predictions and test these predictions with 3-year-old children. Critically,
these predictions are not consistent with any other theory of children’s
performance in the DCCS task. We then demonstrate that the DNF model can
capture several additional findings from a study that present a challenge to
other theories, thereby showing how the DNF model speaks to a wide range of
issues central to the early development of executive function. We conclude in
Chapter VII by returning to the early development of EF and asking what the
model contributes to our understanding of this critically important topic.

NOTES

1. Note that neural population dynamics within two-dimensional neural fields have the
same properties discussed above, except now lateral neural interactions occur along both
dimensions. This creates a “Mexican-hat” profile with a peak of excitation surrounded by a
circular trough of inhibition. Note also that each WM field in Figure 4 consists of an excitatory
layer that forms Hebbian memories and a layer of inhibitory interneurons. For simplicity, we
only show activation in the excitatory layer in all figures.

2. Note that the fronto-parietal connections did not play a role in the simulations reported
here. Consequently, we do not discuss them further, although studies show developmental
changes in fronto-parietal connectivity during childhood (Crone, Donohue, et al., 2006).

3. Itisimportant to note that the strength of the Hebbian memories do not grow stronger
than the influence of the target inputs. That is, the model always has access to the “correct”
information within each individual field. For example, if the model were given a
unidimensional post-switch feature, activation would be stronger at the location of the target
input compared to the location of the Hebbian memory, and the model would build a peak of
activation at the location of the target input.
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MONOGRAPHS OF THE SOCIETY

RESEARCH IN CHILD DEVELOPME

IV. QUANTITATIVE FITS OF CORE FINDINGS
IN THE DCCS LITERATURE

In this section, we present—for the first time—quantitative simulations of
a diverse array of findings from the literature on children’s performance in
the DCCS task. Specifically, we show that the DNF model reproduces the
pattern of data across versions of the task that manipulate the features
between the pre-switch and postswitch phases, as well as versions that
manipulate the degree of conflict during the pre-switch phase. These variants
of the task have played a central role in evaluating existing theories of
children’s performance. Thus, the simulation results in this section establish
that the DFT achieves extensive coverage of the extant literature at a level of
quantitative detail that has not yet been achieved by any other theory.

In the previous section, we described how the model can autonomously
sort cards by modulating the resting level of populations of neurons tuned to
specific features. This was accomplished through the neural dynamics in an
autonomous dimensional attention system that was coupled to the feature
fields. Figure 8A shows these neural dynamics in action in a simple variant
of the DCCS task with only two pre-switch trials and two post-switch trials
(to enable a close-up view of the activation profiles). As noted previously, there
are critical differences between the activation of the nodes during the pre-and
post-switch phases. Recall that during the pre-switch phase, the “color” node is
boosted by a fixed amount, reflecting the task instructions “let’s play the color
game.” During the post-switch phase, the boost is applied in reverse, that is,
the “shape” node is now boosted by the same fixed amount (i.e., “let’s play the
shape game”). Notice in Figure 8A, however, that even though the boost
amount is the same strength in the postswitch phase, the shape node
activation is lower than the color node activation from the pre-switch phase.
Reversely, the color node activation in the postswitch phase is greater than the
shape node activation from the pre-switch phase. These two effects are the
result of Hebbian memories accumulated for the “color” node during the pre-
switch phase. The Hebbian traces boost the color node in the post-switch phase
and slightly suppress the shape node activation due to lateral inhibition.

In the simulations described below, we simplified the neural dynamics
within the dimensional attention system to make the task of quantitatively
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during the pre-switch phase.

simulating results from many studies in the literature tractable. In particular,
we replaced the autonomous dimensional attention system with two nodes
that passed static activation values to the posterior neural system during the
pre- and post-switch phases. This eliminated the rise and fall dynamics of the
dimensional attention system evident in Figure 8A, but retained the key
consequence of these neural dynamics—a boost in the baseline level of
activation in a particular feature field, and a reduction in the fidelity of this
boost during the post-switch phase.

We used two parameters to specify the activation passed from the
dimensional nodes to the feature fields. First, we used a boost parameter that
specified the strength of the global boost, effectively the global difference in
activation of the cued versus non-cued dimensions in each phase of the task.
The 3-year-old model used small boost values to reflect the weak neural
interactions within the dimensional attention system and the imprecise
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connectivity between the dimensional nodes and the feature fields, while the
5-year-old model used larger boost values. Second, we used a shift parameter
that specified the fidelity or proportion of the boost applied during the post-
switch phase (with 1.0 reflecting a perfect shift in attention and 0.0 reflecting
no shift in attention). The 3-year-old model used smaller shift values,
reflecting the difficulty this model had overcoming the Hebbian traces from
the pre-switch phase to selectively activate a single dimensional node during
the post-switch phase. The 5-year-old model used larger shift values, reflecting
amore complete shift in dimensional attention (see, e.g., the bottom panel of
Figure 6).

Figure 8B shows an example of the simplified dimensional attention
system. In this example, the boost value is 0.4 and the shift value is 0.75. Thus,
on the pre-switch trials (Pre-Switch T1 and T2 along the x-axis), the resting
level of the color field was boosted by 0.4 units, while the shape field remained
at baseline. This captures the quantitative difference in activation between the
color and shape nodes during the pre-switch trials shown in Figure 8A. On the
post-switch trials (Post-Switch T1 and T2 along the xaxis), we applied the shift
value. Thus, on trial 7, 75% of the boost value (0.4 x 0.75=0.3) was applied to
the post-switch field—the shape field—while the remaining 25% remained
with the color field. Again, this reflects the quantitative difference in
activation between the color and shape nodes during the post-switch trials
shown in Figure 8A.

The final assumption we made when selecting the parameters of the
dimensional attention system for the 3- and 5-year-old models was that
individual children differ in their ability to attend to particular dimensions.
This creates a continuum of individual abilities across the two age groups.
Conceptually, then, there is not one optimal boost and shift parameter to
describe all 3-year-olds and a different optimal boost and shift parameter to
describe all 5-year-olds. Rather, some 3-year-olds, for example, might show
an enhanced ability to boost attention to one feature dimension relative to
their peers. Thus, to capture developmental differences between 3 and
5 years, we used the two boost distributions shown in Figure 9. As this figure
shows, the 3-year-old model had a mean boost value of 0.35 and the 5-year-old
model had a mean boost of 0.5. This reflects the increase in the strength of
neural interactions in the dimensional attention system, as well as an increase
in the precision of the connectivity between the frontal and posterior systems.
We also used two shift distributions (see Figure 10). The 3-year-old distribution
encompassed a broad range of values centered on 0.5 while the 5-year-old
distribution was skewed more toward values between 0.6 and 1. This reflects
an increase in the efficiency with which children are able to switch attention
and overcome Hebbian traces accumulated during the pre-switch phase.
Note that the boost and shift values were selected independently for each
simulation based on the age-specific probability distributions shown in
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olds is dominated by lower h-boost values, while the distribution for 5-year-olds is dominated by
higher h-boost values reflecting the stronger mapping of the dimensional nodes to their
relevant feature fields.

Figures 9 and 10. This provides a conservative starting point for probing the
development of flexible rule-use in our model in that we made no
assumptions about how the ability to boost attention to one dimension was
related to the ability to switch the attentional focus with high fidelity.

3-yo |5-yo
Mean [ 0.55 | 0.7
StDev | 0.1 0.18
Skew | 0 -0.275
3 295 | 2.5
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FiGure 10.—Shift-value distributions for 3- and b5-year-old models. The 3-year-old
distribution covers a wide range of intermediary value while the 5-year-old distribution is
skewed to values closer to 1 capturing the increasing fidelity with which the dimensional nodes
are able to achieve robust selective activation.
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In the sections that follow, we describe our simulation method in detail,
including how we identified the set of final parameters used and constraints
on model parameters. We then turn to quantitative simulations of results from
the DCCS literature.

Method

Simulations were conducted in Matlab 7.5.0 (The Mathworks, Inc.,
Natick, Massachusettes, United States) on a PC with an Intel® i7™ 3.33 GHz
quad-core processor (the Matlab code is available from the authors on
request). The same model paramelers were used for all conditions; the only
differences across simulations were the inputs presented to the model to
reflect differences in the DCCS tasks that were simulated.

For all simulations, the model was given six test cards (three of each
possible combination of features) for both the pre- and post-switch phases.
Throughout each simulation, target inputs were presented at specific feature
and spatial values to capture the relevant details of the target cards for the
pre- and post-switch phases. At the start of each trial, the model was presented
with ridges of input for the features present on the test card. The model’s
response on each trial was determined based on the location (left or right
tray) of the peak in the spatial field. For example, if the model made a decision
to sort a card to the left tray, then it would bind the features on the test card to
the left location in the feature fields and build a corresponding peak of
activation at the left location in the spatial field. Thus, the model generates a
“left” or “right” decision on every trial. The modelis scored as correct based on
the spatial location of the target inputs to the shape and color feature fields
and the “game” being played (color game or shape game).

Each trial was simulated for 1,500 timesteps, with the test card stimulus
presented for 1,000 timesteps. The model always generated a response by the
end of the 1,500 timestep interval. Next, we decreased the resting-level of the
WM fields to destabilize any peaks and prepare the field for the subsequent
presentation of a test card. For all of the figures and simulation examples in
the Results Section, color is the pre-switch dimension and shape is the post-
switch dimension.

Three batches of 100 simulations (i.e., 100 children) were conducted
for each condition for each age group to get rates of perseveration and
switching for quantitative fits. As in the literature, the model was required to
sort at least five out of six pre-switch test cards correctly. Further, a model
was characterized as passing if five or more postswitch test cards were
correctly sorted and as failing if 1 or fewer post-switch cards were sorted
correctly. The model parameters can be found in the Appendix. As noted
previously, these parameters were held constant for all simulations in both age
groups.
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The best fitting parameters were assessed en masse across all conditions.
An initial set of parameters was generated to fit the Standard condition, which
was then tested across all conditions. Parameters were modified in an iterative
fashion in order to maximize the fit across all conditions. There were various
constraints imposed on the parameters of the model. For example, the
dynamics of the object WM were tuned to reliably form peaks of activation
across all WM fields. Further, the parameters of the Hebbian learning process
were constrained to not grow larger than the target inputs and to still allow for
correct switching with strong dimensional attention.

Results

Grounding rule-use in a process-based model that generates active
responses on every trial imposes robust constraints when trying to capture the
details of 3- and 5-year-olds’ performance. First, because we simulated both
the pre- and postswitch phases, the model must show high levels of correct
sorting during the initial sorting phase. More importantly, the model must
also capture the all-or-none aspect of children’s performance during the post-
switch phase. That is, the model must either completely perseverate and sort
all of the cards incorrectly, or completely switch and successfully sort all of the
cards correctly. The literature reveals a very specific pattern of results
depending on the presence or absence of conflict and different changes to
the features on the cards. In the following section, we show that the model is
able to quantitatively capture these details.

Standard Version

The first issue we probed was whether the model quantitatively captures
children’s performance in the Standard DCCS task. Figure 11A shows the
rates of perseveration and switching for the model and literature sampled for
3- and 5-year-olds (Halford et al., 2007; Muller et al., 2006; Zelazo, Frye, &
Rapus, 1996; Zelazo et al., 2003). As can be seen, the model exhibits a high
rate of perseveration similar to 3-year-olds and also closely matches the level of
correct switching for 5-year-olds. As discussed above, the only difference
between these simulations across age is the strength of the boost for each age
group and the shift of the resting-level modulation between the pre- and post-
switch phases.

The top panel in Figure 11A explains why the 3-year-old model
perseverates. Going into the postswitch phase, there is cooperation of
Hebbian memories and target inputs in the color field (the pre-switch field).
That is, the model has always sorted red test cards to the right and blue test
cards to the left. By contrast, there are competing Hebbian memories and
target inputs in the shape field (the postswitch field): the model is “seeing” a
star on the right and a circle on the left, but has Hebbian memories at the
opposite locations. In this circumstance, the model requires a strong boost to
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version (Panel D).

the shape field to overcome the competition and sort by the post-switch
dimension. The weak boost of the shape field for the 3-year-old model is not
up to the task—this boost is not sufficient to inhibit the cooperative bias in the
color field. The 5-year-old model, on the other hand, has a stronger boost and
higher fidelity switch. This activates the shape field more robustly and the color
field more weakly, allowing the model to correctly sort by the post-switch rules.

No-Conflict Standard Version

Can the pattern of cooperation and competition within the feature-space
fields generalize beyond the Standard version? One version reviewed above
examined the role of conflict during the pre-switch phase. This study showed
that the post-switch performance of 3-year-olds significantly improved if the
test cards match the target cards along both dimensions during the pre-switch
phase (Zelazo et al., 2003). Eliminating this conflict should have a similar
impact on the model’s performance. Figure 11B shows simulation results of
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the young model and data with 3-year-olds (Zelazo et al., 2003). The model
quantitatively reproduces the relatively high switching rate displayed by
3-year-olds—both models and children sort correctly over 60% of the time.

As can be seen in the top panel, no-conflict cards during the pre-switch
phase establish cooperation in both the color and shape fields. That is, going
into the postswitch phase, the inputs for the target cards overlap with
Hebbian memories established during the pre-switch phase. Although there
is still overlap of Hebbian memories and target inputs in the color field, there
is no longer competition in the shape field. Thus, the 3-year-old model with
only a weak boost is able to correctly bind the test cards to locations based on
shape. This shows how memories for the spatial layout of features can
eliminate the need for inhibition, influencing the amount of boost required
to successfully sort during the post-switch phase.

Negative Priming Version

Our simulations of the standard condition indicate that there are two key
factors that play a role in 3-year-olds’ perseverative behavior—(1) overlap
between Hebbian memories and target inputs in the pre-switch field and (2)
conflict between Hebbian memories and target inputs in the postswitch field.
Thatis, the model is affected by conflict between what it remembers, and what
it “sees.” One question is whether each source plays a central role. This is
addressed in the Negative Priming version where the features that were
relevant during the pre-switch phase are changed in the post-switch phase.

Figure 11C shows quantitative fits of the model with this version of the
task where the colors were changed in the postswitch phase. Like the
empirical data (Miller et al., 2006; Zelazo et al., 2003), the 3-year-old model
shows a high rate of perseveration and the 5-year-old model shows a high rate
of switching. The top panelin Figure 11C shows the model just before the start
of the post-switch phase. Now, new target inputs are present in the color field
at the values for yellow and green (see the shift in the positions of the light
gray ovals between, for instance, Figure 11B, C). These new color values do not
overlap with the Hebbian traces for red and blue; thus, the color field has a
neutral degree of cooperation/competition. There is, however, still
competition in the shape field. As before, this competition slows peak
building in the shape field during the post-switch trials. Consequently, peaks
first emerge in the color field and the 3-year-old model perseveratively sorts by
this dimension. Thus, perseveration at 3 years can emerge solely due to
competition in the post-switch field. The 5-year-old model overcomes this
competition with a stronger resting-level boost to the shape field.

No-Conflict Negative Priming Version

The No-Conflict Negative Priming version verifies that conflict along the
post-switch dimension is the critical source of error in the Negative Priming
version. This version eliminates the postswitch conflict by asking children to
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sort test cards that match the target cards along both color and shape
dimensions during the pre-switch phase. Results from this version are shown
in Figure 11D. As in the Negative Priming version, there are new target inputs
(green, yellow) for the color dimension at the start of the post-switch trial,
creating a neutral state in the color field. Now, however, there are overlapping
Hebbian memories and target inputs in the shape field because the model
sorted no-conflict cards during the pre-switch phase. This creates cooperation
in the shape field, eliminating the need for inhibition of the Hebbian
memories. Thus, the 3-year-old model, like children, is able to switch rules
(Muiller et al., 2006; Zelazo et al., 2003).

Partial-Change Version

The Partial-Change version is the opposite of the Negative Priming
version in that it probes whether cooperation in the pre-switch field is
sufficient to drive children’s errors. In this version, the features for the post-
switch dimension are changed while the features for the pre-switch dimension
remain constant throughout the procedure. As can be seen in the top panel of
Figure 12A, changing the shape features going into the first post-switch
trial eliminates conflict in the shape field, creating a neutral degree of
cooperation/competition. There is, however, still overlap between Hebbian
memories and target inputs in the color field. As the simulation results show,
this cooperation is sufficient to drive perseveration with only a weak boost
provided to the color field. In particular, activation builds more quickly in the
color field and the model, like children, tends to perseverate (Zelazo et al.,

2003).

Total-Change Version

In the Total-Change version, all of the features that were present during
the pre-switch phase are changed for the postswitch phase. Thus, as can be
seen in the top panel of Figure 12B, this version eliminates both the
cooperation in the color field and the competition in the shape field, creating
a neutral state in both. Simulation results show that the model, like 3-year-
olds, does not perseverate in the Total-Change version (Zelazo et al., 2003).
Thus, even though the 3-year-old model has just a small boost in the resting
level of the shape field on the postswitch trials, this is sufficient—in this
condition—to correctly switch rules.

Relational Complexity Version

The relational complexity version examines the role of the relational
propositions that must be represented in a hierarchical rule-structure in, for
instance, CCC/CCCer theory. This was accomplished by reducing the number
of irrelevant features during the pre- and post-switch phases (see Figure 1G).
Here, children received two conflict and two no-conflict test cards and were
scored as passing if they sorted all four post-switch cards correctly. Figure 12C
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Ficure 12.—Working memory (WM) fields for the model at the beginning of the post-
switch phase and simulation results for the Partial-Change version (Panel A), Total-Change
version (Panel B), Relational Complexity version (Panel C), and the training study by Brace
et al. (2006; Panel D).

shows that 3-year-olds—and the model—show better switching performance
in this version relative to the standard task (Halford et al., 2007). As can be
seen in the top panel of Figure 12C, the relational complexity version reduces
competition in the shape field at the beginning of the post-switch phase
because there is only conflict for one of the post-switch features. This reduced
competition allows a weak representation of the rules to guide more accurate
rule-use.

Training Version

Brace et al. (2006) showed that 3-year-olds’ post-switch performance was
improved when they were given a training phase between the pre- and
post-switch phases. Specifically, they gave children a series of cards that started
with images that contained only the post-switch features. Over a series of 6
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training trials, the pre-switch features were gradually “morphed” from a
neutral image into the fully bivalent stimuli at which point the post-switch
phase began.

We administered this training task to the model in the same fashion. The
model was given six pre-switch trials. At the start of the training phase, the
model was given only a post-switch feature. Over the six training cards, the
strength of the pre-switch inputs were increased to reflect the increasing
salience and specificity of the pre-switch features as they were “morphed” into
the bivalent stimuli. As can be seen in Figure 12D, the model benefited from
this training phase in a manner similar to 3-year-olds. Specifically, 83% of the
models were able to correctly switch rules compared to 88% of 3-year-olds
averaged across the Training and Training-Plus-Instructions conditions
reported by Brace et al. (2006). In the DNF model, similar to the PDP
model of Morton and Munakata (2002), this benefit resulted from the
formation of Hebbian memories in the shape field during the training phase
that overlapped with the postswitch target features. This reduced the
competition in the shape field, allowing the young model to switch rules.

Summary of Quantitative Fits

A central innovation of the DNF model is that it integrates the dynamics
of object representation with a simple form of dimensional attention—
boosting the resting level of different neural populations when cued by the
label “shape” or “color.” The strength of the model in generalizing across
conditions stemmed from the ability of the model to bind features and form
Hebbian memories associating features with spatial locations. As the pattern
of competition and cooperation in the color and shape fields changed across
conditions, this tipped the balance toward perseveration or correct
performance in the context of activation provided by the dimensional
attention system. Thus, critical aspects of children’s performance across
conditions came “for free” from these details.

Although the model captured the quantitative details of children’s
performance across conditions, this was not guaranteed a priori. Indeed, the
effort to “tune” the model’s parameters revealed multiple constraints posed
by the pattern of behavioral data. For instance, the initial “boost” value
provided to the model had to be strong enough to drive correct rule-use
during pre-switch phase, but not so strong that the model would always show
correct performance in the post-switch phase. Similarly, the combination of
the boost and shift parameters had to be weak enough (i.e., a “shift”
value < 0.5) to produce some perseveration in situations where cooperation
in the post-switch field biased the model to respond correctly. For example, it
proved challenging to move the model off ceiling performance (100%
correct) in the No-Conflict Negative Priming version.
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In total, the simulations reported here quantitatively simulated children’s
performance from eight different variants of the DCCS task all with the
same parameters, including two variants reporting data from both 3- and
5-year-olds. Note that our ability to simulate 5-year-olds’ performance was
limited by the fact that the majority of studies in the literature do not report
data for this age group. We note, however, that the 5-year-old model does, in
fact, switch correctly in all variants of the task reported here. Note also that the
four developmental parameters we changed to create the 5-year-old model
were all necessary to achieve accurate switching performance. Changing only
the mean of the boost or shift distributions, for instance, produced high levels
of intermediate switching (i.e., sorting between two or four out of six cards
correctly during the postswitch phase). Thus, the number of parameters
changed over development was necessary to capture the specific pattern of
rule-switching present in the literature.

The simulations presented here demonstrate that the DNF model
provides an integrative account of young children’s performance in the DCCS
task that can capture a broad array of findings in the literature. This is one key
role of formal theories—to bring together a diverse set of empirical resultsin a
single, unified framework. But this is only one function of formal theories.
A second function is to use theories to generate novel, sometimes
counterintuitive predictions that are not consistent with other theories in
the literature. Chapter V pursues this second goal.
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V. EMPIRICAL TEST OF THE DNF MODEL:
THE ROLE OF SPACE

The model we have presented is able to achieve extensive coverage of the
existing literature through the interaction of spatially specific memories for
features and a simple form of dimensional attention. Critically, all of the
effects simulated above emerged from spatially specific competition or
cooperation between target inputs and Hebbian memories in different
feature fields. This leads to the prediction that the DCCS task is not just about
“rules”—space should also matter. Spatial information is not an aspect of any
theory of EF, rule-use, or the DCCS task. And, as we highlight next, the spatial
properties of the DNF model predict that we can reverse two known effects in
the literature simply by moving where the target cards are located in the task space.
Note that we are not claiming the DCCS task is only about space, an issue we
will return to later. Rather, in the present section, we highlight a key way in
which our theory diverges from all others and generates a set of
counterintuitive predictions.

To test whether space plays a role in children’s rule-use in the DCCS task,
we constructed two new experimental conditions based on the No-Conflict
Negative Priming and the Negative Priming versions simulated above. In the
No-Conflict Negative Priming version, there is cooperation within the post-
switch feature field and 3-year-olds are able to switch rules, while in the
Negative Priming version there is competition in the post-switch feature field
and 3-year-olds perseverate. Critically, if the layout of Hebbian memories and
target inputs in these two versions is indeed the source of 3-year-olds’ success
and failure, then swapping the spatial locations of the target cards before the post-switch
trials should reverse this pattern of resulls.

Recall that in the No-Conflict Negative Priming version (Miiller et al.,
2006; Zelazo et al., 2003) the test cards match the target cards along both
dimensions during the pre-switch phase and the features that are relevant for
the pre-switch phase are changed before the start of the post-switch phase.
Figure 13A shows the model of the No-Conflict Negative Priming version
reproduced here for ease of comparison. The 3-year-old model is able to
switch in this version because there is cooperation in the shape field and a
neutral state in the color field. What happens in our “Space Swap” version of
this task shown in Figure 13B? This version swaps the locations of the target
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Ficure 13.—Model at the start of the pre-switch phase for the No-Conflict Negative
Priming (Panel A) and No-Conflict Negative Priming-SpaceSwap versions (Panel B). In this
example, color is the pre-switch dimension and shape is the post-switch dimension. In panel B,
conflict is introduced in the post-switch (shape) working memory (WM) field by swapping the
locations of the target cards. The bottom panel shows the data from the 3-year-old DNF model.
Also shown is the model at the start of the pre-switch phase for the Negative Priming (Panel C)
and Negative Priming SpaceSwap versions (Panel D). In this example, color is the pre-switch
dimension and shape is the post-switch dimension. In Panel D conflictis eliminated in the post-
switch (shape) WM field by swapping the locations of the target cards. The bottom panel shows
the simulated data from the 3-year-old dynamic neural field (DNF) model.

cards (see postswitch display). Consequently, there is now competition
between Hebbian memories and target inputs in the shape field, and 3-year-
olds should have more difficulty switching rules. Simulation results in the
bottom panel confirm this prediction. Thus, 3-year-olds in the No-Conflict
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Negative Priming-SpaceSwap version should perseverate, while 3-year-olds in
the No-Conflict Negative Priming version should switch correctly. This is
striking because everything is identical in these versions—the rule structure,
the target cards, the test cards—except the location of the target cards during the
post-switch phase.

In the Negative Priming version (Mtller et al., 2006; Zelazo et al., 2003),
on the other hand, there is conflict between the test cards and target cards
during the pre-switch phase (see pre-switch display in Figure 13C) and the
features that were relevant for the pre-switch game are changed for the post-
switch game (see post-switch display in Figure 13D). Recall that in this version,
3-year-olds perseverate. The model also perseverated in the Negative Priming
version because of the competition in the shape field (see middle panel of
Figure 13C). Figure 13D illustrates the effect of swapping the spatial locations
of the target cards in the Negative Priming version. As before, the locations
of the target cards have been swapped at the start of the post-switch phase
(see post-switch display). Consequently, in Figure 13D the locations of the
target inputs now overlap with the Hebbian memories in the shape field,
which should facilitate rule-switching in 3-year-olds. Simulation results in the
bottom panel confirm this prediction. Thus, the model predicts that 3-year-
olds in the Negative Priming-SpaceSwap version should switch rules, even
though everything—the rule structure, the target cards, the test cards—is
identical relative to the Negative Priming version except the location of the target
cards during the post-switch phase.

Simulation results in the bottom panel of Figure 13 summarize the key
predictions across conditions. The No-Conflict Negative Priming version
shows high rates of switching, but the model predicts that children will
perseverate in this condition when we swap the spatial location of the target
cards in the post-switch phase. By contrast, the Negative Priming version
shows high rates of perseveration. Here, the model predicts that children will
switch correctly in this condition when we swap the spatial location of the test
cards in the post-switch phase. Thus, the model predicts that simply swapping
the locations of the target cards will push performance in opposite directions
for these two conditions. Importantly, the features and rules remain the same
in all versions of the task; therefore all other existing theories predict that the space-
swap manipulation should have no impact on children’s performance. We tested the
DNF predictions in the following experiment.

Method

Participants

Seventy-six 3-year-olds between 38 and 46 months of age (M=41.67
months, SD=2.68 months) were included in the final analysis (N= 19 for all
four groups). An additional nine children were dropped due to experimenter
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error (N=4), failing to pass the pre-switch phase (i.e., sort at least four cards
correctly, see Zelazo et al., 2003; N=3), or parental interference (N=2).

Materials

The pre-switch target cards for all versions were a red star at the right
location and a blue circle at the left location. The pre-switch test cards for the
No-Conflict Negative Priming versions were red stars and blue circles. The
pre-switch test cards for the Negative Priming versions were red circles and
blue stars. Depending on the task-order, the post-switch cards were either red
and blue triangles and squares (for the shape-color task order), or green and
yellow stars and circles (for the color-shape task order). In the Space-Swap
versions, the locations of the target cards were swapped for the post-switch
phase (see Figure 13). For all versions, five pre-switch and five post-switch test
cards were used with no more than three of any particular card appearing in
any sorting phase.

Procedure

Sessions were run individually with the child and experimenter in a quiet
room. The experimenter began by showing the cards to the child and saying
that they were going to play a couple of games. The experimenter stated the
name of the first game, how the cards were to be sorted, and the specific rules
for that game. For example, the experimenter said, “First, we are going to play
the color game. In the color game, we sort the cards by color. So, all of the red
ones go here and all of the blue ones go there.” The experimenter then
demonstrated a card for each rule saying, for example, “See, this one is red so
it goes here.” The experimenter presented the test cards one at a time to the
child. When presenting a card, the experimenter did not provide a label but
asked, “Where does this one go in the color game?”

After the pre-switch cards had been sorted, the experimenter stated that
they were all done with that game and were going to play a new game. In all
conditions, the experimenter then removed the target cards and replaced
them with the post-switch target cards, stated the name of the new game, how
the cards were now to be sorted, and the specific rules for the new game just as
in the pre-switch. No demonstration of the post-switch rules was supplied. The
post-switch test cards were presented just as in the pre-switch. Throughout
both phases, no direct feedback was provided. If the child incorrectly sorted a
card, the experimenter simply reminded the child of the rules by saying, for
example, “Remember, we are playing the color game, so we are sorting the
cards by color. All of the red ones go here and all of the blue ones go there.”
Note that the space swap conditions were identical to the standard conditions except
Jor a single change—after the target cards were removed at the end of the
pre-switch phase, they were repositioned at the opposite spatial locations.
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Results

Children were categorized as passing the post-switch phase if they sorted
atleast four out of five cards correctly and as failing if they sorted one or fewer
cards correctly (Zelazo et al., 2003). We removed data from the following
children from further analysis for intermediate responding: two children in
the No-Conflict Negative Priming version, zero children in the No-Conflict
Negative Priming-SpaceSwap, three children in the Negative Priming
condition, and one child in the Negative Priming-SpaceSwap condition.
The percent of children who correctly switched rules in each condition is
shown in Figure 14, along with the predictions from model simulations.

The first question we examined was whether data from the No Swap
conditions replicated previous findings. This was indeed the case: Signifi-
cantly more children in the Negative Priming group failed to switch rules than
in the No-Conflict Negative Priming group (X2(l) =10.186, p=10.001). Next,
we tested the predictions of the DNF model by comparing the No-Conflict
Negative Priming and No-Conflict Negative Priming-SpaceSwap conditions
(see Figure 14A). As predicted, significantly more children failed to switch
rules in the No-Conflict Negative Priming-SpaceSwap condition than in the
No-Conflict Negative Priming condition (XQ(l) =3.995, p=0.04). We then
tested the other prediction of the DNF model by comparing the Negative
Priming and the Negative Priming-SpaceSwap conditions (see Figure 14B).
Again as predicted, significantly more children failed to switch rules in the
Negative Priming version than in the Negative Priming-SpaceSwap version

(xX*(1) =4.48, p=0.03).
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Ficure 14.—Children’s performance and dynamic neural field (DNF) model data. Panel A
shows the No-Conflict Negative Priming and No-Conflict Negative Priming-SpaceSwap
conditions. Panel B shows the Negative Priming and Negative Priming SpaceSwap conditions.
Panel C shown data from less developmentally advanced 3-year-old model (only the bottom
87% of the shift and boost distributions were analyzed).
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Discussion

Results from the present study showed that a simple manipulation of the
spatial structure of the DCCS task can have surprising effects on the behavior
of 3-year-olds. Specifically, by swapping the location of the target cards
between the pre- and post-switch phases, we reversed the pattern of results
from the No-Conflict Negative Priming and Negative Priming versions. Three-
year-olds typically switch rules in the No-Conflict Negative Priming version;
however, swapping the locations of the target cards significantly impaired
their performance. Three-year-olds typically perseverate in the Negative
Priming version; however, swapping the locations of the target cards
significantly improved their performance. The DNF model predicted this
reversal of the behavioral effects from each condition a priori; no other theory
provides an account of such effects because the features and rules are
identical in the standard and space-swap variants of the task.

For example, according to CCC/CCC-r theory, children perseverate in
the Negative Priming version due to the suppression of the post-switch rules,
not due to any learning about where the post-switch features are sorted. Thus,
it should not matter where the post-switch features are positioned in the task
space. By contrast, the PDP model proposed by Morton and Munakata (2002)
only learns about the relevant dimension on the pre-switch trials, that is, the
feature dimension that is most strongly activated. Consequently, there are no
weight changes associated with the postswitch features that could guide
differential performance across the standard and space-swap conditions.
Moreover, the spatial positions of the cards are not captured in the PDP
model in any grounded way; rather, the mapping between the output units
and space is built-in a priori. As such, there is no clear way to implement our
manipulation in this model.

One potential concern with our findings, however, is the quantitative
difference between the model predictions and the behavioral data from the
Negative Priming and Negative Priming-SpaceSwap conditions: children in
these conditions underperformed (i.e., lower percent switching) relative to
the model predictions (see Figure 14B). One key observation regarding this
discrepancy is shown in Figure 14C: children in our sample also under-
performed relative to the data from the literature (Miiller et al., 2006; Zelazo
etal., 2003) that were used as an anchor point for our simulations (see light
gray bar in Figure 14C).

Why did children in both the Negative Priming and Negative Priming-
SpaceSwap conditions have such a hard time with these tasks? The age ranges
in our conditions were comparable to previous studies, and we replicated the
Negative Priming procedure exactly. A possible explanation for the
quantitative difference across empirical samples is that we happened to
sample from a group of less developmentally advanced 3-year-olds. To explore
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whether this could possibly yield the decrease in percent switching in both
conditions, we reassessed the performance of the model, focusing only on the
bottom 87% of the distributions of the boost and shift parameters, that is,
focusing on parameters for the less developmentally advanced models.
Simulation results from this analysis are plotted in Figure 14C (black bars).
Data from the less developmentally advanced simulations more accurately fit
the observed pattern of switching. Critically, this sampling bias in the model
produced an equivalent decrement in both Negative Priming and Negalive
Priming-SpaceSwap conditions, effectively capturing the empirical pattern.

In summary, the data presented here demonstrate a critical role for
spatial information in the DCCS task. What does this mean for EF in general?
These data support the idea that EF emerges from the coupling between more
abstract cognitive abilities like dimensional attention and basic processes such
as working memory and response inhibition. In the latter case, our theory
suggests that spatial information is critical to binding features together to
make integrated object representations. The data reported here show that
signatures of this spatial binding process show up in young children’s ability—
or inability—to flexibly shift tasks as the rules of the game change. Thus,
spatial memories of where features should be placed in the task are not merely
details that influence EF, but part of the processes that construct EF in the
moment.
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VI. BEYOND SPACE: THE ROLE OF FEATURE-SALIENCY AND
ATTENTIONAL-WEIGHTS

The work we have presented thus far has highlighted the interaction of
spatially specific featural information from the target cards and spatially
specific Hebbian memories for features that accumulate as decisions are
made. We turn now to new versions of the DCCS reported by Fisher (2011).
These versions attempted to isolate the processes of voluntary and automatic
shifts of attention by manipulating the saliency of dimensional features or the
number of features per dimension. These versions provide a particularly
useful probe of the DNF model because in this design the spatial locations of
the target cards were randomized from trial to trial. Thus, these versions allow
us to examine whether the DNF model can capture children’s performance in
tasks that are explicitly removed from spatial influences.

Feature-Saliency

In one set of conditions, Fisher (2011) manipulated the saliency of the
features for each dimension. In this case, saliency was defined by similarity—
that is, distinct or very different features were characterized as being more
salient than similar features. This manipulation was motivated by two factors.
First, previous research has shown that salient features automatically capture
attention (Smith, Jones, & Landau, 1996; Treisman & Gelade, 1980). Thus,
salient features facilitate an automatic shift of attention, while less salient
features require a voluntary shift of attention. Second, data suggest that
automatic attention is robust by 3 years of age, but voluntary attention is still
developing (Fisher & Sloutsky, 2005; Smith et al., 1996). Based on these
observations, Fisher (2011) proposed that changes in voluntary attention
might play a critical role in the emergence of rule-use in the DCCS task. If this
is the case, then post-switch trials that require a shift to a more salient
dimension should be easier because such trials engage automatic attention.
By contrast, a switch to a less salient dimension should be harder because this
requires voluntary attention, which requires more effort.

To test this, Fisher (2011) used a version of the DCCS task with similar
colors (red and pink) but distinct shapes. If voluntary attention is particularly
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hard for 3-year olds to recruit, they should have particular difficulty switching
to color. Switching to shape, by contrast, should be automatic. Figure 15 shows
the stimuli Fisher (2011) used. In addition to varying the salience of the
stimuli, Fisher (2011) eliminated potential spatial biases by randomizing the
location of the target cards on each trial. She also included no-conflict test
cards on half of the trials. These cards matched a target along both
dimensions, allowing for an assessment of whether children were actually
staying on task.

Results of this study are shown in Figure 16. Children performed quite
well on the pre-switch trials and on all no-conflict trials. Critically, when 3-year

-

F1Gure 15.—Cards used in the feature-saliency version by Fisher (2011).
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olds had to switch to the salient shape dimension and play the “shape” game,
they tended to sort conflict cards correctly. By contrast, when 3-year olds had
to switch to the less salient color dimension and play the “color” game,
children perseverated on the conflict cards.

Can the DFT capture this pattern of results? To probe this, we gave the
model inputs and the task structure taken directly from the methods used by
Fisher (2011). We used the same parameters used previously for the 3-year-old
model. Figure 16 shows that the simulation results closely follow the pattern of
behavior displayed by 3-year olds. In particular, the model showed a high rate
of correct sorting for all trials during the pre-switch phase. During the post-
switch phase, the model again had a high rate of correct sorting for no-conflict
trials with both shape and color rules. Like 3-year olds, however, the model
had little difficulty sorting conflict cards by the more salient dimension (e.g.,
shape), and more difficulty sorting conflict cards by the less-salient dimension
(i.e., color).

What is the source of this asymmetry in the model? The asymmetry arises
from competition in the color field due to the metrically close target inputs.
As seen in the left panel of Figure 16, the target inputs are very close along the
color dimension, but are far apart along the shape dimension. Interestingly,
this competition is evident even during the pre-switch trials as reflected in the
peak-build latency in the shape and color fields. Specifically, the peak-build
latency for the pre-switch phase when the model sorted by color was 547 time-
steps, while the latency for the pre-switch phase when the model sorted by
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shape was 425 time-steps. Thus, the model required slightly more time to
build a peak in the color field. This difficulty results from the overlap along
the feature dimension which leads to competition as the field tries to build
peaks at two neighboring color values. That is, extra inhibition is needed to
suppress the activation of a nearby taskrelevant color. This effect is
exacerbated in the post-switch phase when the model tries to sort by color.
In this case, the accumulation of Hebbian traces at both spatial locations
creates even more conflict. Consequently, the model perseverates and sorts by
shape.

Interestingly, we can ask the reverse question: if the 3-year-old model
typically perseverates, why does it succeed here when asked to sort by
shape during the post-switch trials? Although the behavioral result is the
opposite, the explanation is the same: because the colors are metrically
close, it is hard for the model to build peaks in the color field due to
competition. Consequently, the shape field wins out. Note that the
randomization of space actually helps in this case. In contrast to the Standard
DCCS task where there is competition in the post-switch field and cooperation
in the pre-switch field, here there is competition in both fields going into the
postswitch phase.

The PDP of the DCCS (Morton & Munakata, 2002) has addressed the
issue of saliency, though through different means. Saliency in the current
simulations was instantiated as perceptual similarity; however, saliency in the
PDP model was defined by the strength of latent memory traces for preferred
or nonpreferred stimuli. In the same way that saliency worked in the current
simulations, Morton and Munakata (2002) demonstrated that the PDP model
could switch more easily when switching from nonpreferred stimuli with weak
latent memory traces.

In summary, the same model and parameters used in our previous
simulations quantitatively captures data from Fisher’s first experiment. This is
nontrivial for the model because spatial locations were randomized. Thus, all
effects must come from the metrics of the feature dimensions themselves. In
this sense, then, these simulations demonstrate that our account of the
development of EF generalizes beyond spatially grounded effects.

Attentional-Weights

Another set of conditions presented in Fisher (2011) manipulated the
number of features per dimension. In particular, Fisher compared 3-year
olds’ ability to switch rules with two versus four features per dimension. This
was inspired by work suggesting that attention is a fixed resource (Nosofsky,
1984). Thus, the amount of attention given to a particular object or feature is a
function of the total number of features within the scope of attention. As
more items are added, less attention is given to each item. Consequently,
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attention becomes less attached to any particular feature value and can be
moved more easily to new features during the post-switch phase.

Fisher (2011) predicted that 3-year olds should show better rule-switching
behavior with more items based, once again, on the assumption that
automatic, but not voluntary, attention is robust by 3 years. The rationale was
as follows. Sorting two features should place a heavy demand on voluntary
attention because each item receives more of the attentional resource and,
therefore, requires a large voluntary shift of attention to overcome the
allocation. Thus, 3-year olds should have difficulty switching rules in this case.
Sorting four features, however, should create “lighter” allotments of
attention. This should facilitate rule switching because children can rely
more on automatic attention.

These predictions were tested in a version of the task comparable to the
feature saliency condition. Children were assigned to a condition with either
two or four features per dimension (see Figure 17). Eight trials were
administered during the pre- and post-switch phases, half of which were no-
conflict trials. Again, the spatial locations of the target cards were randomized
on each trial. Under these conditions, 3-year-olds had significantly less
difficulty switching with four features per dimension than with two features
per dimension on conflict trials (see Figure 18).

We examined whether the DNF model could capture these results with
the same 3-year-old parameters used previously. Inputs to the model and the
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FiGURE 17.—Cards used in the feature-weights version by Fisher (2011).
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Ficure 18.—Inputs to the object working memory (WM) model and quantitative fits of the
attentional-weights versions in Fisher (2011).

task structure were taken directly from the methods used by Fisher (2011).
Figure 18 shows the fit of the model. Once again, the model reproduces the
pattern of behavior displayed by 3-year olds. In particular, the model—like
children—showed correct sorting for all trials during the pre-switch phase.
During the post-switch phase, the model again had a high rate of correct
sorting for no-conflict trials with four or two features per dimension. Finally,
like 3-year olds, the model had little difficulty sorting conflict cards with four
features, and more difficulty with two features (although the model
performed better for conflict cards with two features than the children did).

Again, we can probe the source of the asymmetry in performance across
conditions. Two factors are important. The first is the fact that individual
features are presented less frequently in the four features condition. The
second is that the decisions about these features are more spatially distributed
since the model is making decisions at four locations instead of two. These
factors conspire to produce weaker Hebbian memories in the four-feature
condition at the end of the pre-switch phase. In particular, the average
strength of Hebbian memories with four features was 0.25U, while this
strength with two features was 0.48 U. Thus, using four features creates weaker
memory traces for where the features were sorted in space. Consequently,
there is less conflict heading into the postswitch phase due to weaker
Hebbian memories overall. This creates less need for inhibition and allows the
resting-level modulation to have a stronger influence on the decision-making
process. With only two features, Hebbian memories are more concentrated at
fewer locations. This creates more conflict and a greater need for inhibition.
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Summary of Quantitative Fits Across All Conditions

The simulations in this section demonstrate the versatility of the DNF
model, highlighting the role of both feature metrics and the distribution of
experience through space and time. These simulations, in conjunction with
the previous results, reveal the many factors that influence rule-switching in
early childhood. Rule-use between 3 and 5 years is softly assembled “in-the-
moment” based on a confluence of factors, including the target and test
inputs, memories for features at specific spatial locations, the trial-to-trial
dynamics of Hebbian learning, the boosting of attention to particular feature
dimensions, and the metric details or number of the stimuli. All of these
factors were captured by the DNF model with a single set of parameters at each
age.

In total, the current report presented simulation results for 14 different
conditions that reflect the model’s performance across 57,000 real-time
responses. Table 1 shows a summary of all simulated versions. The first
column indicates the number of data points simulated for each version. For
example, the Standard 3-year-old line has two data points corresponding to
the pre- and post-switch phases. (Recall that we verified the model showed
the correct pattern of pre-switch performance in each case, even though
we reported only post-switch performance in the simulation figures). The
2-Features version, on the other hand, has four data points corresponding to
the conflict and no-conflict trials in both the pre- and post-switch phases. The
second column lists the number of trials that were included in a single

TABLE 1

SumMARY OF DATA PoINTs AND NUMBER OF TRIALS SIMULATED FOR EacH VERsION oF THE DCCS

Condition Data Points Trials Total Trials
Standard 3-year old 2 12 3,600
Standard 4-year old 2 12 3,600
No-conflict standard 2 12 3,600
Negative priming 3-year old 2 12 3,600
Negative priming 4-year old 2 12 3,600
No-conflict negative priming 2 12 3,600
Partial change 2 12 3,600
Total change 2 12 3,600
Relational complexity 2 12 3,600
Training 3 18 5,400
2-Features 4 16 4,800
4-Features 4 16 4,800
To-salient 4 16 4,800
To-less-salient 4 16 4,800
Total 37 190 57,000
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simulation of each version. Finally, the third column indicates the total
number of trials across all simulations for each version.

To evaluate the model’s performance across the 37 data points we
quantitatively fit, we computed the root mean squared error (RMSE) between
the simulated and empirical data. The overall RMSE was very good at 0.06.
Thus, the model results were typically within 6% of the empirical values—an
impressive result, particularly given that we used the same parameters across
all variants of the DCCS task.
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MONOGRAPHS OF THE SOCIETY

RESEARCH IN CHILD DEVELOPME

VIi. GENERAL DISCUSSION

Executive function is an important aspect of cognition because control
and regulation are central in numerous cognitive domains. It is an especially
important topic of study in early childhood because it is during this period
that EF begins to emerge and undergo dramatic and lasting changes.
Moreover, measures of EF during early childhood robustly predict physical
health, substance dependence, personal finances, and criminal offending
outcomes nearly three decades later (Moffitt et al., 2011). Further, preschool
interventions aimed at improving EF have produced significant increases in
school achievement and behavioral function (Diamond & Lee, 2011). Thus,
EF is a central aspect of cognition that undergoes foundational changes in
early childhood.

The goal of the present work was to take a first step toward a new theory of
the development of EF using the DCCS task as a case study. The DNF model
presented here moves beyond previous theories of the DCCS by integrating
the processes of object WM and dimensional attention to construct a neurally
grounded model of rule use. Critically, we were able to quantitatively capture a
wide range of effects in the literature, focusing on a key transition in EF
between 3 and b5 years. Further, we generated a novel set of predictions from
the model that no other theory readily explains. In the sections that follow, we
situate DFT in the context of current theories of the DCCS task as well as the
broader literature on EF. We then discuss limitations of the theory and the
important challenges that lie ahead as we pursue a theory of autonomous
development and ties between DFT and the growing literature on the neural
bases of EF.

Comparing the DFT to Other Theories

The DFT of the DCCS shares many similarities with current theories of
the DCCS. Both CCC/CCC-r theory and the PDP model suggest that rule-use
and EF are emergent phenomena of a complex system. Likewise, rule-use in
the DNF model emerged from neural interactions within and across multiple
cortical fields. Our DNF model also implements a common conceptualization
of how inhibitory and working memory processes relate—specifically,
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inhibitory processes in the DNF are a result of activating a working memory
representation (see Marcovitch & Zelazo, 1999; Morton & Munkata, 2002;
Stedron et al., 2005; see also Roberts & Pennington, 1996; Roberts et al.,
1994). Further, CCC/CCC-r theory explains flexible rule-use as the product of
linguistically guided reflection on the task rules. The DNF model provides a
bridge to this view by using dimensional labels as the basis for selective
attention. In this respect, our model is also similar to the PDP model which
posits that “color” and “shape” representations in frontal cortex guide
attention to dimensions in the DCCS task. Finally, our developmental account
is similar to the account proposed by Morton and Munakata (2002). They
increased the strength of recurrent interactions in the PDP model, boosting
the active representation of rules in a bank of PFC nodes. Stronger neural
interactions in our dimensional attention system achieved a similar effect.

Although the DNF model shares similarities with existing accounts, there
are also critical differences. One key difference between the DNF model and
CCC/CCCr theory is that our theory is not strictly hierarchical. Although the
dimensional attention system can be characterized as a “top-down” rule
representation, rules in the DNF model are distributed across multiple
reciprocally coupled neural systems. For instance, the dimensional attention
system does not “know” all the details of the rules; rather, this system creates a
bias, but then off-loads the detailed decision-making to the feature WM fields.
Similarly, the feature fields “know” the details of the specific stimulus-
response mappings, but these fields do not “know” the higher order goals of
the task (e.g., sort by shape or color). This type of distributed neural
organization can enable flexible behavior and the “soft assembly” of rule-like
behavior, that is, success or failure can come from multiple sources. For
instance, the DNF model was able to explain effects that arise from
manipulations to the attentional saliency of the features across dimensions
(Fisher, 2011; see also Honomichl & Chen, 2011). CCC/CCC-r theory does
not explain how the featural properties of the objects influence the
representation of a rule hierarchy or the ability to consciously reflect on
the rule-structure.

Regarding the PDP model, the key difference is that the DNF model
binds features together into integrated objects, while the PDP model is
uni-dimensional—it does not learn about the unattended feature values as it
“sorts” cards. Thus, when the connectionist model sorts a red circle to a red
star during the pre-switch phase, it forms no memory for the circle feature.
Rather, latent traces are strengthened only along the dimension used for
sorting on each trial. Critically, our quantitative simulations show that
learning along the irrelevant dimension plays an important role in several
variants of the DCCS task. For example, in the No-Conflict version, the overlap
of Hebbian memories and target inputs during the pre-switch phase for the
irrelevant dimension provided a sufficient boost when these features became
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relevant during the post-switch phase. This allowed the model to correctly
switch rules (for related results, see the No-Conflict Negative Priming
version). It is unclear how the connectionist model would explain children’s
successful performance in this condition. Further, in the Negative Priming
version, the conflict between Hebbian memories and target inputs along the
irrelevant feature dimension was critical for simulating children’s failure in
this version of the task. Here, it is unclear how the connectionist model would
capture these findings because latent traces during the pre-switch phase
would only be strengthened for the specific pre-switch feature values. Once
these values are changed during the postswitch phase, the model would not
have a bias to continue sorting by the pre-switch dimension.

Another difference relative to the PDP model is in our account of
development. We proposed that there is a refinement of the pattern of
connectivity between the frontal nodes and posterior cortical fields over
development in addition to changes in recurrent activation which are
common to both models (see Morton & Munakata, 2002). Future work will be
needed to determine whether this difference across accounts is an “in kind”
difference or simply a difference in emphasis that could be incorporated into
both accounts.

More generally, the DFT is unique among all accounts in the special role
space plays in the binding of features and the spatially grounded learning
across trials. This feature of the model was central to the novel predictions we
successfully tested in the present report. Moreover, our simulation results
suggest that spatial conflict or cooperation within feature fields plays an
important role in many different variants of the DCCS task. Finally, it is worth
noting that although our model differs from previous accounts in many
respects, the DFT was still able to account for key findings central to other
theories of the DCCS. For example, the model simulated the results from
versions in which the features were changed between the pre- and post-switch
phases (e.g., Negative Priming, Partial Change, or Total Change), which were
critical results for CCC/CCCr theory. The DNF model was also able to
capture the improvement in switching that results from training before the
post-switch phase, as predicted by the PDP model (Brace et al., 2006).

DFT and Executive Function

Although we focused on the DCCS task in the simulations reported
here, our findings provide a critical step toward a general theory of the
development of EF. In particular, unlike previous conceptual theories of
the DCCS, the DFT can address the multicomponent nature of EF. Critically,
DFT demonstrates how these components can emerge from system-wide
interactions in the neural architecture. For instance, building a WM peak in a
feature field can actively inhibit the prepotent response associated with a
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previously relevant feature value. Moreover, the formation of a WM peak can
be biased by the boost provided by a dimensional attention node as the system
attempts to switch rules. Thus, all three processes conspire together to enable
flexible behavior and to explain the myriad findings in the literature. Within
the DFT framework, the functional aspects of “inhibitory control,” “working
memory,” and “switching” all emerged from general neural dynamics around
the input structure of particular tasks.

Other work highlights how these processes in the DNF model offer a
robust framework for thinking about executive function more generally. For
example, Thelen et al. (2001) simulated the early development of inhibitory
control in the A-not-B task using the concepts of dynamic field theory. In this
case, successful reaches to the B location were driven by a peak of activation at
the B location that persisted over the delay after the cue to reach to the B
location. Relatedly, Spencer, Simmering, and coworkers (Simmering, 2008;
Simmering et al., 2008) have used a layered dynamic field architecture to
simulate critical aspects of working memory and change detection perfor-
mance, including increases in working memory capacity over development.
Changes in capacity resulted from increases in the strength of local-excitation
and lateral inhibition—the same developmental mechanism probed here
(Simmering, 2008). DFT has also provided a theoretical framework for
another aspect of EF—response selection. For instance, Erlhagen and
Schoner (2002) captured the Simon effect through competitive inhibitory
dynamics associated with the imperative stimulus and the spatial location of a
stimulus. And current work is trying to integrate aspects of these specific
models with the work presented here. For instance, we are currently using the
EF model presented here to capture canonical response inhibition tasks
(Simon, Go/No-Go), WM tasks (change detection), and tasks that tap task-
switching or task-coordination (DCCS, dual-task). The large goal of this work
is to understand how an integrated neural process model can give rise to
behavioral signatures of performance across these different tasks, including
the latent factor structure evident in studies of individual differences (Lehto
et al., 2003; Miyake et al., 2000).

Beyond these efforts, we are also working to generalize the concepts of
DFT beyond the laboratory into real-world EF. Sandamirskaya and Schoéner
(2010) used DFT to explore how an autonomous robotic system might
organize its behaviors in a real-world context in real time. Autonomous
robotics offers an exciting platform for probing the details of EF because
behavioral organization in the real-world creates novel challenges that are
typically not present in laboratory tasks. For instance, in the DCCS task, the
rule-switch is specified by the experimenter. But oftentimes, rule-switches
must be internally and autonomously generated. This requires that one
determine whether the current goal has been achieved by, for instance,
perceiving that the correct state of affairs has been created in the world. Next,

75



the current goal must be deactivated, and the new goal state must be brought
into an active neural state.

Sandamirskaya and Schéner (2010) showed that an autonomous robot
using DFT could actively organize its behavior in time. In one demonstration,
arobot was taught a sequence of colors. The robot was then allowed to freely
navigate in a playpen with an array of colored blocks. The task was to find the
blocks in the correct sequence. This is a challenging robotics task because the
robot must keep the current goal state actively in mind (e.g., find the green
object) as it navigates around the playpen. Once it detects green, it must then
navigate successfully to the object, avoiding obstacles along the way. When it
arrives at the green block, the color green dominates the camera image. This
was the “condition of satisfaction” used by the robot to destabilize the “green”
goal and bring up the next goal in the sequence. The robotic architecture
used by Sandamirskaya and Schoéner effectively learned a color sequence and
autonomously organized its behavior in the playpen to find the blocks in the
correct sequence. Importantly, the details of the robot’s behavior were not
pre-programmed; rather, the robot behaved in real time based on its own,
autonomously generated neural dynamics. Note, further, that details of the
robot’s neural architecture had several similarities with the DNF model
proposed in the present report. Most critically, the robotic model modulated
its own behavior through time by boosting cortical fields tuned to specific
features—the same neural mechanism implemented here.

Neural Basis of EF and Rule-Use

A critical strength of DFT is the ability to explicitly tie the dynamics of the
model to neural function. DFT operates based on general properties of
neural activation distributed across cortical layers (Douglas & Martin, 1998),
and the local-excitatory/laterally inhibitory interactions that arise from such
interactions. These interactions give rise to stable neural patterns (Durstewitz,
Seamans, & Sejnowski, 2000) that form the basis of thinking and decision-
making in DFT. Critically, these neural dynamics have been shown to be
robustly linked to single- and multi-unit recordings in both visual and motor
cortex (Bastian etal., 1998, 2003; Erlhagen et al., 1999; Jancke et al., 1999), as
well as to neural population dynamics measured using voltage-sensitive dye
imaging (Markounikau et al., 2010).

An important next step for DFT is to link to neural measures from human
cognitive tasks. An initial step has been taken in this direction by linking DFT
to ERP measures in the context of movement planning and multi-object
tracking (McDowell et al., 2002; Spencer, Barich et al., 2012). We have also
been developing an approach that links DFT to the BOLD signal recorded
with fMRI based on biophysical work that suggests that such a mapping is
possible (Deco & Rolls, 2004; Logothetis et al., 2001). In this approach, we
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record a real-time neural signal analogous to a local field potential from each
cortical field in our model. We can then use this real-time neural signal to
generate hemodynamic responses directly from the model. These can then be
analyzed using the same tools used in fMRI research. The question is whether
the simulated hemodynamics from the model quantitatively match hemody-
namic data measured with fMRI.

This can achieve multiple goals. First, we can ask whether the neural
dynamics within different fields in the model reflect the localized neural
dynamics measured with fMRI. When we introduced the model in Chapter I,
we made several localization assumptions based on the extant fMRI literature,
but it will be important for future work to probe these localization
assumptions directly. Second, efforts to map from simulated neural field
activity to fMRI can constrain modeling efforts, asking whether we can
simultaneously capture both behavioral and neural dynamics (Ashby &
Waldschmidt, 2008). It is possible, for instance, that multiple collections of
model parameters can capture relevant behavioral data, but only a small
subset of parameters can capture both behavioral and fMRI data. Third, if the
mapping between the DNF model and fMRI is robust, we can test the DNF
model by generating not only behavioral predictions, but also neural
predictions based on how activation evolves over time as the model, for
instance, sorts cards in variants of the DCCS task.

This could be particularly useful in the case of EF given the complexity of
the frontal systems involved in cognitive flexibility. For instance, model-based
approaches to fMRI might help unpack the frontal system in our current
architecture by isolating different functional components that are associated
with activity in different frontal regions. In this way, we can use fMRI to go
beyond simply asking where a cognitive function is localized to address how
neural activity is functionally related to cognition (Ashby & Waldschmidst,
2008). This is a critical step in probing the neural mechanisms underlying EF.

We have taken a first step in this direction by using a dynamic field
architecture similar to the one reported here to capture aspects of dual-task
performance including changes in behavioral (reaction times) and fMRI data
over learning (Buss et al., 2014). The dual-task model has posterior neural
populations that associate visual or auditory stimuli with manual or vocal
responses. These two-dimensional neural fields are coupled to a dimensional
attention system that modulates the resting level of the posterior fields when a
stimulus is presented.

We used this model to capture a behavioral and neural dataset reported
by Dux et al. (2009). This study exposed participants to dual- and single-task
conditions over 8 days of practice with fMRI conducted at the beginning,
middle, and end of training. These researchers identified a region in inferior
frontal cortex that closely followed dual-task costs over practice. That is, early
in learning, inferior frontal cortex showed a large response that reduced to
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single-task levels by the end of practice. The model showed these same neural
signatures due to Hebbian learning in both the modality-specific, posterior
fields and the dimensional attention system (see Buss et al., 2014). Most
critically, after exposing the model to the training regimen used by Dux et al.
(2009), we found that changes in the hemodynamic response generated from
the dimensional attention system closely paralleled changes in inferior frontal
cortex activation over learning. And the same model produced reaction times
that quantitatively matched the empirical data from both single and dual-task
conditions over learning.

Work in our laboratory has also examined the developmental changes in
frontal activation in the DCCS task reported by Moriguchi and Hiraki (2009).
Initial simulations using our approach to generating hemodynamics from
the DNF model show that the autonomous dimensional attention system
reported in Chapter III can qualitatively reproduce the frontal activation
differences from Moriguchi and Hiraki (see Spencer & Buss, under review). This
opens up exciting possibilities to probe specific hemodynamic predictions over
development using our EF model (see Spencer & Buss, under review).

Limitations of the DFT and Future Directions

In the present report, we used DFT to show how an autonomous
dimensional attention system coupled to an object WM model could capture
children’s performance in the standard DCCS task. Nevertheless, when we
simulated children’s performance in quantitative detail, we simplified the
dimensional attention system by using distributions of boost and shift
parameters for each age group. This allowed us to probe whether specific
developmental changes to the dimensional attention system were sufficient to
capture children’s performance. A critical next step in theory development,
therefore, is to probe whether we can capture developmental changes in EF
within a fully autonomous neural system.

In principle, each developmental change implemented by hand in our
model could emerge from a Hebbian learning process. The first develop-
mental change we implemented increased the strength of excitatory and
inhibitory neural interactions within the dimensional attention system. It is
likely that this modification can emerge from the same Hebbian process
already incorporated in the DNF model if the model’s behavior were
simulated across many, many trials. In particular, as the model repeatedly
activates the “color” or “shape” node, this will increase the strength of the
Hebbian trace for a particular node. Stronger excitation can, in turn, lead to
an effective strengthening of inhibitory interactions as the nodes competi-
tively interact. Indeed, these types of changes were evident in our simulations
of the dual-task model, which autonomously learned to organize its behavior
over practice (Buss et al., 2014).
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The second developmental change we implemented by hand refined the
pattern of connectivity between the frontal and posterior systems. Again, in
principle, this can be tackled with a Hebbian process that learns the patterns
of covariance between, for instance, activation of a “color” node and activation
patterns in the color WM field (see, e.g., Sandamirskaya & Schoner, 2010).
But this points toward another critical piece of the developmental puzzle.
Conceptually in the model, the dimensional nodes represent a mapping
between a neural population representation in frontal cortex and cortical
fields in posterior brain regions tuned to different feature dimensions. Left
out of our developmental account, at present, is that fact that children are, in
reality, learning something specific about dimensional attention as they learn
dimensional labels in early word learning (e.g., Sandhofer & Smith, 1999,
2001). This highlights the need to link our theory to the literature on early
word learning, which will require consideration of the learning opportunities
that children have and the developmental time course of dimensional label
learning. Although challenging, linking to this literature will undoubtedly
provide robust constraints for theory development as we attempt to integrate
findings from multiple paradigms across different domains of cognitive
development.

Note that related work with DFT has already moved in this direction.
Specifically, Faubel and Schéner (2008) implemented fast word learning
using dynamic neural fields in an autonomous, interactive robot. In their
work, the perceptual features of objects were bound together along a label
dimension similar to how features are bound through space in the model
presented here. Using relatively few training trials, the robot was able to form
categories of objects using the graded associations between features and
labels, which facilitated accurate recognition of an assortment of real-world
items. This work demonstrates that an associative mechanism within dynamic
neural fields can serve as a basis for functionally linking labels and feature
fields. And, critically, labels in this context need not be associated with specific
features; rather, labels such as “shape” and “color” can be associated with
entire feature dimensions (for related work in early word learning with
children, see Samuelson, Schutte, & Horst, 2009; Samuelson et al., 2011). In
summary, then, although our theory, at present, lacks an autonomous
account of development, we contend that this key goal is within reach.

Finally, we note that there are variations of the DCCS task that require
model modification to effectively capture findings from the literature. For
instance, Kloo and Perner (2005) showed that separating the dimensions on
the test cards improved rule switching with 3-year-olds (see Figure 1H), but
separating the dimensions on the target cards had no such effect. To examine
whether we could capture this version with the DNF model, we first separated
the features on the target cards. This resulted in high levels of perseveration in
the model (75% perseveration), comparable to empirical findings (see Kloo
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& Perner, 2005). This decomposition of features at separate spatial locations
has little impact because the posterior fields still have the canonical layout of
cooperation or competition across fields, now just distributed across four total
locations instead of two.

But what about separating the features on the test cards? Here we must
consider how visual attention might be modulated by this manipulation.
Recall that the test card inputs come into the posterior fields as ridges.
Conceptually, this reflects input from early visual areas as the model attends to
the features on the test card (see, e.g., Spencer, Austin, et al., 2012). With the
features separated in the space of the test card, it is possible that children
might spatially attend slightly more to the task-relevant features, producing an
imbalance in the strength of inputs for the different dimensions (see,
Harrison & Tong, 2009). To examine this hypothesis with the model, we
applied the shift and boost parameters to the strength of ridge inputs for the
test cards. With this manipulation, the model now showed a high rate of
switching (80% rate of switching) similar to the effect reported in the
literature (Diamond et al., 2005; Kloo & Perner, 2005; Zelazo et al., 2003).
Thus, these results are within reach with a modest change to the model
implementation.

Other results are more clearly beyond what the current model
architecture is capable of simulating. Some of these would require a more
extensive autonomous dimensional attention system. For example, Yerys and
Muankata (2006) showed that different manipulations to the labels for the
games or the features used in a task can make switching easier for 3-year-olds.
This effect may be within reach as we pursue links between the emergence of
EF in development and how children use words for the different “games” they
play in the DCCS task.

Similarly, CCC explains changes in flexible rule-use through conscious
reflection rather than the real-time dynamics of representing and using a set
of rules. For example, one study that has been used to support CCC/CCCr
theory instructed children to wait and think about the rules before the
start of the post-switch phase (Dedk et al., 2004). In this case, performance
significantly improved when children were given this additional opportunity
for reflection. Although conscious reflection has no explicit role in the DNF,
it too could be depicted as an emergent outcome of the ability to robustly and
selectively activate a dimensional label. For example, if we were to de-boost the
object representation system to prevent it from making a decision, this would
allow the dimensional attention system to accumulate more activation from
the rule input. In the autonomous version of our model, this could result in
enhanced performance for the “young” model.

In another version, 4- and 5-year-old children were given no-conflict cards
at the beginning of the postswitch phase. These children—who would
typically be able to switch rules—made more errors in the postswitch phase
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with an increasing number of no-conflict trials (Marcovitch, Boseovski, &
Knapp, 2007). The authors termed this goal-neglect. When the need to
maintain a goal is no longer needed (as in the case with no-conflict cards),
focus becomes relaxed and the goal can ultimately be neglected once it needs
to be used again (on a conflict trial). In principle, such an effect could stem
from the reciprocal coupling between the feature WM fields and the
dimensional attention system. For instance, we might modify the dimensional
attention system such that it is only engaged when conflict must be resolved
(for related ideas, see Botvinick, Braver, Barch, Carter, & Cohen, 2001). In
this context, a series of no-conflict trials could slow down subsequent build-up
of activation of the dimensional attention system.

One further version that challenges our model showed that 3-year-olds
perseverate even after only a single pre-switch trial (Zelazo etal., 1996). This is
also the case with many model simulations; however, 70% of the simulations
showed an intermediate pattern of switching where three out of the six post-
switch cards were sorted incorrectly. The model only received one test during
the pre-switch phase and, thus, only established Hebbian memories for those
features. During the post-switch, then, the models tended to incorrectly sort
the card it received in the pre-switch while correctly sorting the card it did not
receive during the pre-switch phase. Thus, although these simulation results
match the empirical findings once we drop intermediate responding (see
Zelazo et al., 1996), the simulated data do not match the fact that only 8% of
children showed intermediate responses during the post-switch trials. The
majority of models (>75%), however, perseverate in this version when we
implement demonstrations of the pre-switch rules as in the standard
procedure (Zelazo etal., 2003, 1996). Demonstrations were not administered
in the simulations we presented in previous chapters to simplify the
implementation of the task. With demonstrations in this version, though,
Hebbian memories are established for both conjunctions of features on the
test cards leading to perseveration along both test cards. These simulation
results point to a possible role of pre-switch demonstrations in perseveration,
which has not previously been explored in the literature. We will probe this in
future work as we implement a more expansive autonomous dimensional
attention system.

CONCLUSION

The theory we presented here shows promise in its ability to integrate the
multiple processes of EF. These emerged from interactive neural dynamics
across multiple cortical fields and the details of the DCCS tasks we simulated.
The DFT was able to quantitatively capture a wide array of empirical results
from a canonical task used to examine the early development of EF.
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Moreover, this theory generated a set of novel predictions that we successfully
tested here. In this context, DFT offers the most comprehensive account of
children’s performance in the DCCS task to date and provides a robust
starting point for a theory of the development of executive function.

EF undergoes critical changes in early childhood that have lasting effects
later in life, predicting academic achievement and life-time satisfaction. What
are the implications of our work for this literature? As we sketched above, we
are moving from simple tasks like the DCCS that are ideal for use in early
development to the array of tasks used with older children and adults. As we
do this, it will be important to connect up with the complex neural literature
on this topic. In this regard, efforts to map activation dynamics in DNF models
to ERPs and fMRI offer an innovative approach to link our theory to neural
data. In addition, we are moving from laboratory tasks to real-world contexts
in collaboration with our colleagues using autonomous robotics to geta better
understanding of EF “in the wild.” Together, this work will paint a broad
picture of how EF is organized across tasks, across the levels of brain and
behavior, across development, and across contexts.

Moreover, DFT presents the opportunity to bridge to intervention
settings in a way that can speak to both cognitive and neural development. For
instance, one possibility is that we could capture the performance of both
typically and atypically developing individuals to simulate individual
developmental trajectories (for discussion, see Perone, in press). We could
then try out specific interventions with the model and predict which types of
intervention might be most useful. There is precedent for this type of an
approach in the literature. For instance, models have played an instrumental
role in several studies examining the processes that underlie dyslexia (Harm
& Seidenburg, 1999; Plaut, McClelland, Seidenberg, & Patterson, 1996) and
specific language impairment (Joanisse & Seidenberg, 2003; McMurray,
Samelson, Lee, & Tomblin, 2010). Although formalizing such an approach to
intervention work is in its infancy, this would constitute an exciting
opportunity to not just use computational models as tools for understanding
and integrating findings in the literature, but for moving beyond what is
known to predict what might matter in the real world.
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MONOGRAPHS OF THE SOCIETY

RESEARCH IN CHILD DEVELOPME

APPENDIX

Model Equations

The basic formulation for a one-dimensional neural field tuned to, for
instance, spatial information is given in Equation (1). The rate of change of
activation in a cortical field, w, evolves over time, ¢, at each location in the field, x.

Tow(x, t) = —w(x, t) + hy + S(x, ) + / Cow(x — X ) A(w(x, 1))dx

©0000000CGOOGOOIOIOIOIOIOIOIS (1)

+/cwv(x—x/)A(v(x',t))dx’

The first part of Equation (1), underlined with a dotted line, captures the
neural resting level (A, < 0), stimulus input at particular locations presented at
specific times in an experiment (S(x, #)), and a stabilization term (—w(x, t)).
The resting level determines how far a field is from the activation threshold.
The stabilizing term serves to maintain activation around an attractor state.
Thatis, as the system is pushed away from its stable state, the rate of change goes
in the opposite direction of the perturbation. Note that the tau parameter,
7,» captures the timescale at which activation approaches the attractor state.

The remainder of the equation specifies the excitatory (section under-
lined with a dashed line) and inhibitory neural interactions (portion
underlined with a solid line). Neural interactions within a field are
determined by the convolution of a sigmoidal threshold function and a
Gaussian projection. The term A (w(x, ?)) is the sigmoided value of activation
at each location in the working memory (WM) field (w) used for the self-
excitatory projection, while A (v(x, 7)) is the sigmoided value of activation at
each point in the Inhib field (v) used for the inhibitory projection into the
WM field. The sigmoid function is given by Equation (2).

1
A = T e ?

The B parameter defines the slope of the sigmoid function that transforms
field activation into neural output. Here, the activation threshold is represented
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by the point where the sigmoided output reaches 0.5, which is 0. With a large
B value, the slope is steeper and there is a more abrupt transition in the
sigmoided output, approaching a step function. Thus, weak levels of activation
in the field contribute relatively little to activation and peak formation, while
strong levels of activation in the fields engage in robust interactions with
associated neurons.

The spread and strength of neural interactions is determined by a
Gaussian interaction kernel, which is generically defined in Equation (3).

(=) = cexp | U ®)
(x—x)=cexp|———
P 202

The parameter denoted by ¢ scales the strength of the projection while
the width of the interaction kernel is given by o. Finally, these terms are
integrated to combine the contributions at each location, x, from all other
locations, ¥ (see Equation 1).

The equation for the inhibitory layer takes the same general form as the
equation for the WM field and is given by Equation (4):

T,0(x, t) = —v(x, t) + hy + / Cow(x — x) A(w(x', t))dx (4)

The timescale of activation in this field is given by 7, while its resting level is
denoted #,. In this equation, input to the inhibitory layer is the integration of
above-threshold activation within the WM field, A (w(x, #)), with the spread and
strength of this projection given by the Gaussian interaction kernel, ¢,,(x — ).

A further contribution to the dynamics in the WM field comes from a
Hebbian layer (HL) which is now added in Equation (5).

tow(x, 1) = —w(x, 1) + hy + S(x, t) + / Cow(x — &) Alw(x, t))dx’

+ / Coo(x — ') Av(x,t))dx’ + / en (x — &) wpp (x, ¢)dx’
(5)

The Gaussian interaction kernel, ¢y (x — x'), determines the strength
and width of the projection from the HL into the WM field. The dynamics of
the HL (wyyr; Equation 6.0) are divided into two components (Equations 6.1
and 6.2) that capture the build and decay dynamics of HL separately:

wyL (X, t) = WHLbuild (X, ) 4+ WHLdecay (%, 1) (6)
TbuildeLbuild(xa t) = [—wHL(x, t) + A(w(x, If))} . G(w(x, t)) (61)
TdecaywHLdecay(xy t) = —wHL(x, t) : [1 — Q(w(x, If))] (62)
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The shunting term, 6, gates activation into the HL from the WM field
(0=1 when w(x, {) >0, and 6= 0 otherwise). With 6 =1, Equation (6.1) is
engaged and drives the accumulation of activation in the HL at sites
associated with above-threshold activation in the WM field. By contrast, when
0=0, Equation (6.2) is engaged and activation levels in the HL decay.
Separating the build and decay mechanisms approximates accumulation and
depression of synaptic change (Deco & Rolls, 2004). The build timescale
(e.g., Thita=200) is shorter than the decay timescale (e.g.,Tgecay = 1,000),
which makes activation in the HL build more quickly relative to the rate of
decay; however, both of these are significantly slower than the timescale for
the WM field (i.e., t=40). Thus, as inputs are presented to the WM field and
peaks of activation are built, activation accumulates slowly in the HL. This
accumulated activation acts as an input to the WM field, which can have
various influences on the stability properties of this field. This source of
activation can make particular modes of behavior more stable than others,
build up biases, or make peaks of activation build more quickly.

The Object WM Model

In this section we describe the equations governing activation in the
full object representation model used to quantitatively fit 3- and 5-year-olds
behavior in the DCCS. The parameters for the excitatory and inhibitory field
dynamics are given in Table Al. The parameters for the spatial interactions
among the WM fields are given in Table A2. The spatial WM field is given by
Equation (7).

TABLE Al

FIELD PARAMETERS AND LATERAL INTERACTION STRENGTHS

Resting Level Lateral Excitation Lateral Inhibition Global Inhibition
hys=—4 Gew=0.9 Covs =1.75 Cvsg = 0.4
hys=—4 Cows = 1.35

Iy =7 i1 =0.7 i1 =0.3 Gvflg = 0.5

hypr = —4 i1 = 0.65

Iy =—4 o2 = 0.65

Note. The time constant for all working memory (WM) fields (w) is =40 while the time constant for all
inhibitory fields (v) is T=>5. The lateral excitation width are oy.s = Oywi1 = Oz = 3 and the lateral inhibition
width are oy = Oyy1 = Oy = 20. The sigmoid steepness for all if the local-excitatory and laterally inhibitory
interactions within the fields is Byws = Buvs = Buws = Buwit = Buwit = Bowi1 = Buwiz = Buniz = Pz =5. The
parameters for the Hebbian layer are: HLyuia=500, HLgecay= 2,000, ¢ =0.065, omifearure =5,
OHLspace = 10.
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TABLE A2

PARAMETERS OF SPATIAL INTERACTIONS BETWEEN FIELDS

Excitatory Strength Kernel Width
Coswfl = 0.2 Owswfl — 2
Cwswi2 = 0.2 Owswi2 = 2
Curtws = 0.1 Owflws = 2
Cwfows = 0.1 Owf2ws = 2
Gurtwrz = 0.35 Owrlwz =2
Gurowit = 0.35 Owiowrl =2
Note. The sigmoid steepness for all interactions between fields is Bysti = Bus2 = Butiws = Buizws = Bwriwie =
Burzwin = 1.

T, Ws(x, 1) = —w(x,t) + hy + / Com, (X — &) A(wy(, £))d’

+ Cum/ )A(’US(X t))d '

+ [ ¢

wswfl /) (wfl(xla t))dx/

_|_

Cu; le ) WHI, (X t)d

+

/

/
[ ol Dt e
/

/

Cwm()lse - X )%-(X, t)dx/

w(x, t) specifies the rate of change of the field at every location, x, along
the spatial dimension as a function of time. The constant 7,, determines the
time scale of the dynamics (Erlhagen & Schoner, 2002), while —w(x, ?) is the
stabilizing term that serves to drive activation toward h,,, the resting-level of the
field. Next, the field is influenced by the self-excitatory and laterally inhibitory
projections, [ ¢y, (x — &) A(ws(x', t))dx'and [ ¢y, (x — x') A(vy(¥, ))dx/, re-
spectively. Projections between fields are defined as the convolution of a sigmoid
function (e.g., A(ws(«x,¢))) with the Gaussian interaction kernel (e.g.,
Cow, (X — X)).

The next terms in Equation (7) are the projections of activation from wp
and wp (the color and shape WM fields, respectively) into w,. These are
followed by the influence from accumulated HTs, [ ¢y (x — %) wir
(¥, t)d«’, and spatially correlated noise added to the field.
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The inhibitory layer for the spatial system is given by Equation (8):

Ty 05(x, 1) = —vg(x, 1) + hy, + / o, (x — &) A(w(«, £))dx’ +/ Comoise (x — &' )E(x, t)dx

(8)
As with the equation for the WM field, v,(x, ¢) is the rate of change of
neural activity in the inhibitory field at every location, x, along the spatial
dimension as a function of time. The term —uv(x, ) is a stabilizing influence
that drives activation toward the resting level of the field, %,,. Input to this field
comes from the convolution of the sigmoid of activation in the WM field,
A(w(«, t)), with the Gaussian interaction kernel, ¢, (x — x'). This field also
has a spatially correlated stochastic influence. The dynamics of the HL for the
spatial WM field are given by Equations (6.0)—(6.2) above.
The feature WM field (in this example, itis the color WM field) is given by
Equation (9):

T (%, 9, 1) = —wpi(%, 9, 1) + hupy + Sup (%, 9, 1)
+ ff Cwwyy (x - x/’y - y,)A(wﬂ (xlvylv t))dx,dyl
+ ff Cw"ﬂ(x - X/J - y/)A(Ufl (xlvylv t))dx/dy,
+ f Cu’/lws('x - x,’y - yl)A(wS(x/’ t))dx,
+ ff 610/114//2(96 - xld’ - y,)A(w/Y(x,?y,’ t))dxldyl
+ ff walu)HLﬂ (x - xl7y - yl)wHLﬂ (xlvy/7 t)dx/dy/
+ CwicolorColor A ( iColor ( t) ) + Cwic JolorShape A ( iShapC ( t) )
+ ff Cwﬂnoise(x - x',y - y,)g(xlay/a t))dx/dy,
The color WM fields have five excitatory inputs: a self-excitatory
projection ([ cuu, (x — &',y = ¥)A(wyi (¥, ', 1))dx’dy), a projection from
the spatial field ([ ¢y, (x — ¥,y — ') A(w(«', 1))dx’), a projection from the
second feature field ([ cuyup(x — &',y — ) A(wpa(x', ¥, 1))dx'dy), a projec-
tion from its associated HL ([ Cupyun, (x =&,y =y )wnr, («, ¥, )dx'dy),
and inputs from the “shape” and “color” nodes (Cuyiycoe A(icolor(?)),
Coicomsnpe A(Ishape(t))). The projection from its associated inhibitory field is
given by ([f cwo, (x — &',y =) A(vp(x, ¥, 1))dx'dy). Finally, this field is
influenced by two-dimensional spatially correlated noise.
The associated two-dimensional inhibitory field is given by Equation (10).

(9)

va] 'Uf] (x7y, t) = —'Uf] (x7y, t) + h'U/‘l + // Cwum (X - x/J’ - yl)A(Wfl(x/,y/7 t))dxldyl

+ // Cvflnoise(x - ley - }’,)f(xlyy/7 t))dx/dy/ (10)
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The input to this field is the convolution of the sigmoid of activation in w
with a Gaussian interaction kernel ([ cyu, (x — &',y =) A(wpi(¥,y,1))
dx’dy’). The last term in this equation is the influence from two-dimensional
spatially correlated noise.

The dynamics of HL in the 2D fields are governed by Equations (11.0)-
(11.2). The parameters for these equations are given in Table Al.

Wiy, (%, 9, £) = WHLbuild; (X, 9, £) + WHLdecay,, (%, 9, 1) (11)

Thuild WHLbuild, (X, 5 ) = [wh,, (x, 9, 1) + A(wp1(x, y, 1))]
-0(wpi(x,y,1)) (11.1)

TdecayiUHLdecay/1 (X, Y, t) = wHLﬂ (xa Y, t) . [1 - e(wfl(x7 Y, t))} (112)

Note that the same equations govern activation in the shape WM,
inhibitory, and HL fields (wp).

Finally, the dynamics of the “shape” and “color” nodes are given by
Equations (12) and (13). The parameters relevant for these nodes are given in
Table A3.

T.l-shape(t) = _ishape(t> + Rigpe F Siuape (1) + CiiexcneA(ishape(t))
= Ciigip A ( iCOlOY(t)) Tt Ciwshapecolor Z Z A(wﬂ (t)) (12)
Tt Ciwsnapeshape Z Z A (wf 2(t>)

TABLE A3

PARAMETERS FOR THE DIMENSIONAL ATTENTION NODES

3-Year-Old Model 4-Year-Old Model

h=-4 h=—4
Gi_excite = 1 Gii_excite =D

Gi_inhib =D Gi_inhib = 20

Giw_ColorColor = 0.005
Giw_ColorShape = 0.0025
Ciw_ShapeShape = 0.005
CGiw_ShapeColor = 0.0025
Gwi_ColorColor = 1
Gwi_ColorShape = -D
Gwi_ShapeShape = 1

CGwi_ShapeColor = 0.5

Ciw_ColorColor = 0.3
Giw_Colorshape = 0.001
Ciw_ShapeShape = 0.3
Ciw_ShapeColor = 0.001
Gwi_ColorColor = 3
Gwi_Colorshape = 0.1
(wi_ShapeShape =3
Cui_ShapeColor = 0.1
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T.icolor(t) = —icolor(?) + Pigger F Sicgror (1) F Ciieyese Aldcolon (1))
= Ciigin A ( ZvShape ( t) ) F Ciwcotorshape Z Z A ( wr2 ( t) ) ( 1 3)
T Ciwcolorcolor Z Z A(wﬂ (t))
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