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Rule representation refers to the processes that construct and

maintain associations between stimuli and responses in the

service of guiding task-relevant actions in context. This collec-

tion of central cognitive processes falls under the umbrella of

executive functioning. Rule representation comes in different

flavors from simple stimulus–response associations, to condi-

tional associations that specify different responses for particu-

lar stimuli, to general task-setting rules that generalize beyond

stimulus and response details. For instance, some contexts

might require very specific rule representations: When the red

light goes off in the nuclear reactor, push the red button to shut

the reactor down. In other contexts, people have to extract

more general rule representations: It is acceptable for children

to move about the classroom and talk during free time, but

they are expected to sit in a circle during reading time and only

talk when called upon by the teacher.

The large variety of rule representations has made this a

challenging topic to study. This extends to the neural level

where different neural regions become involved in rule repre-

sentation processes depending on rule complexity. Rule repre-

sentations are also challenging to understand because they

change dramatically over time. This includes over learning

within a task, as well as over development. For instance, very

young children (e.g., 1- to 3-year-olds) can form rule

representations but often perseverate on a first rule when the

rule is changed (Buss & Spencer, 2014; Zelazo, Muller, Frye, &

Marcovitch, 2003). By contrast, human adults can construct

quite elaborate rules (Bunge, Kahn, Wallis, Miller, & Wagner,

2003; Crone, Wendelken, Donohue, & Bunge, 2006) and often

show rule-based behaviors after only a single instruction.

In the sections in the succeeding text, we focus on rule

representation processes in the brain and how these processes

differ relative to the nature of the task (e.g., which modalities

are used), the demands of the task (e.g., whether people must

switch from one set of rules to another), and the type of task

coordination (e.g., when people are asked to multitask). We

then extend this discussion to examine how rule representa-

tions change over learning and development. Finally, we high-

light recent theories of rule representation that are shedding

new light on how rule representations are implemented in the

brain.

 

 
 
 
 
 

Neural Representation of Tasks and Rules

At the neural level, rule representation, as with other aspects of

executive function, not only relies upon processes that are

localized to the frontal lobe but also involves processing in

the parietal lobe, temporal lobe, and basal ganglia. At the most

basic level, associations between actions and reward are sup-

ported by processing in the orbitofrontal cortex. This form of

learning is preserved if other regions of the frontal lobe, such as
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the dorsolateral prefrontal cortex (dlPFC) and ventrolateral

prefrontal cortex (vlPFC), are damaged (Izquierdo & Murray,

2004; Izquierdo, Suda, & Murray, 2004). dlPFC neurons, how-

ever, do encode the identity or magnitude of a predicted

reward (Watanabe, 1996).

More complex rules such as categorical rules where a range

of feature values are associated with each response not only are

most commonly localized to the lateral prefrontal cortex

(lPFC) but also involve a distributed network of temporal,

parietal, and subcortical regions. PFC receives extensive inputs

from subcortical, sensory, and motor regions (Fuster, 2000;

Miller & Cohen, 2001), making this region well positioned to

link perceptual or semantic information with response contin-

gencies. Processing within PFC is also mediated by the activa-

tion of basal ganglia that regulates the updating of rules or task

goals (Miller & Cohen, 2001; O’Reilly, 2006).

The lPFC is also sensitive to manipulations of the task type.

For instance, the lPFC is more active when the task contains

conditional rules as opposed to a response that is directly cued.

Conditional rules can specify, for example, a right-hand button

press in response to a green stimulus and a left-hand button

press in response to a blue stimulus. This type of rule could also

be more abstract and based on the relationship among stimuli.

For example, participants could be instructed to press a right-

hand button if two successively presented images are the same

but to press a left-hand button if two successively presented

images are different.

Importantly, rule-representation processes extend beyond

the frontal cortex with complex interactions between frontal

and more posterior cortical regions. The lPFC, along with

posterior middle temporal cortex, shows robust activation in

response to cues indicating which task to perform on an ensu-

ing trial, suggesting these regions are involved in the retrieval of

task rules (Bunge et al., 2003). Posterior middle temporal

cortex is thought to represent semantic information (Buckner,

Raichle, & Petersen, 1995; Fiez, 1997; Poldrack et al., 1999).

This region, then, associates semantic information with

response information.

vlPFC, presupplementary motor area (preSMA), and infe-

rior/superior parietal areas are involved in the maintenance of

task rules. Evidence for this comes from tasks that require

sustained activation of the task rule across a delay period

between the cue and the start of a trial. vlPFC, preSMA, and

parietal areas all show robust activation in such tasks, and

sustained activation is greater when the demands on rule rep-

resentation are greater such as in conditional-rule tasks com-

pared with simple response cuing tasks (Bunge et al., 2003).

Further, activation in the left anterior insula and preSMA

increases as more stimulus–response pairings must be main-

tained in a given task (Stelzel, Kraft, Brandt, & Schubert, 2008).

The vlPFC also appears to support the retrieval of rules in a way

that is sensitive to rule complexity.
7025-1.00251-7 337
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In addition to maintaining task rules, the parietal cortex

shows stronger activation when multiple responses are cued

by additional irrelevant stimuli, such as in the flanker task

(Bunge, Hazeltine, Scanlon, Rosen, & Gabrieli, 2002). This

indicates that the parietal cortex plays a role in maintaining

response contingencies. Functionally, lPFC activation pre-

cedes that of the parietal cortex (Brass, Ullsperger, Knoesche,

von Cramon, & Phillips, 2005), suggesting that the lPFC

provides a task-relevant top-down biasing signal to help select

appropriate response contingencies in the parietal cortex.

Results from pattern analysis of fMRI data also show that

the lPFC, anterior insula, and intraparietal sulcus (IPS)

encode general task representations when there are multiple

tasks that could be cued.

Rule representations have also been reported in premotor

and visual areas. For instance, neurons in the lPFC and

premotor cortex selectively respond based on particular

stimulus–response associations (Asaad, Rainer, & Miller, 2000;

Muhammad, Wallis, & Miller, 2006; Wallis, Anderson, & Miller,

2001; Wallis & Miller, 2003). In addition, neurons in the visual

cortex are sensitive to task mappings and response coding along

with the encoding of color stimuli (Mirabella et al., 2007;

Woolgar, Hampshire, Thompson, & Duncan, 2011).

 

Rule Representation Across Modalities

A key aspect of rule representation is that any stimulus can

potentially be associated with any response. Standard research

paradigms have focussed on either visual or auditory stimuli

that are associated with spatial or vocal responses. Interest-

ingly, it is typically easier to associate visual stimuli with man-

ual responses and auditory stimuli with vocal responses. This is

presumably due to the overlap between visual–manual dimen-

sions and auditory–vocal dimensions.

Examination of this aspect of rule representation at the

neural level has revealed distinct networks that are associated

with different task modalities. Spatial response selection is

associated with activation in the right middle frontal gyrus

(MFG), bilateral dorsal premotor cortex, left superior parietal

lobule, and precuneus. Nonspatial response selection, by con-

trast, is associated with activation in the left MFG, left inferior

parietal lobule, left posterior parietal cortex, left middle tem-

poral cortex, and right middle occipital areas (Jiang & Kanw-

isher, 2003; Schumacher, Elston, & D’Esposito, 2003).

There are also areas that are commonly activated across

tasks regardless of the modality, including bilateral IPS, right

precuneus, bilateral frontal eye field, right cerebellum, and

bilateral middle frontal cortex (Jiang & Kanwisher, 2003).

Finally, research has identified a frontoparietal network

composed of the anterior lPFC, dlPFC, posterior lPFC, and

posterior parietal cortex that shows highly variable connectiv-

ity patterns. This network could provide a means of rapidly

establishing functional networks, linking different perceptual/

conceptual dimensions to different motor networks (Cole

et al., 2013). Such flexible processing ‘hubs’ might underlie

humans’ impressive ability to associate virtually any stimulus

with any response.
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Rule Switching

Rule representation processes have also been studied using

task-switching paradigms that require participants to alternate

between sets of rules or tasks. These tasks can involve univalent

(single-valued) rules in which different stimuli are used for

each task or bivalent (two valued) rules in which different

responses must be made for the same stimuli. For example,

participants can be instructed to respond with their index

finger to a house stimulus and middle finger for a flower

stimulus in one task but respond with the opposite fingers

for a different task (Hazeltine, Ruthruff, & Remington, 2006;

Schumacher et al., 2003; Stelzel, Schumacher, Schubert, &

D’Esposito, 2006).

The vlPFC and left superior parietal cortices show stronger

activation for bivalent rules compared with univalent rules and

stronger activation for rule switches compared with rule repe-

titions. Further, the caudate nucleus, a region of the basal

ganglia, and SMA/preSMA are selectively activated on bivalent

rule-switching trials (Crone, Wendelken, Donohue, & Bunge,

2006).

Bivalent rules can also involve processes of selective or

dimensional attention. For example, one task can specify

responding based on the color of a stimulus and the other

task can involve responding based on the shape of a stimulus.

Dimension switching activates a particular network of regions

including the left inferior frontal gyrus, IPS, superior parietal

cortex, and supramarginal gyrus (Morton, Bosma, & Ansari,

2009; Nagahama et al., 2001; Philipp, Weidner, Koch, & Fink,

2013). Interestingly, switching responsemodalities, rather than

stimulus dimensions, only activates the left IPS and the supra-

marginal gyrus (Philipp et al., 2013). Inferior frontal junction

(IFJ) shows a more complex pattern in related tasks: different

types of switches – switching rules versus switching response

hands – yield different patterns of functional connectivity. In

particular, switching rules reveals connectivity with the anterior

PFC, superior frontal cortex, and hippocampus, but switching

response hands reveals connectivity withmotor regions around

the central sulcus (Stelzel, Basten, & Fiebach, 2011).
Rules and Task Coordination

In multitasking situations, participants are asked to perform

two tasks simultaneously (dual-task paradigms) or in rapid

succession (as in the psychological refractory period para-

digm). The inferior frontal cortex, a region of the vlPFC,

shows robust activation in multitasking situations. This is the

case across any different pairing of stimulus (visual or audi-

tory) or response (manual or vocal) modality (Dux et al., 2009;

Stelzel et al., 2006, 2008, 2011), suggesting that the inferior

frontal cortex is uniquely associated with task order control

(Stelzel et al., 2008).

Although the inferior frontal cortex is robustly activated by

any pairing of stimulus and response modality, the specific

details of the pairing modulate the neural response. Tasks

can be characterized as using a standard pairing if they

pair visual–manual or auditory–vocal dimensions or as
ce, (2015), vol. 3, pp. 337-341 
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using a nonstandard pairing if they pair visual–vocal or

auditory–manual dimensions. With nonstandard pairings,

there are larger behavioral interference and larger dual-task

related activation in the IFJ (Stelzel et al., 2006). Thus, IFJ is

sensitive to the amount of overlap or the amount of translation

that needs to be accomplishedwhenmapping a stimulus dimen-

sion onto a response dimension in multitasking situations.
 
 
 
 
 

Rule Representation over Learning and Development

Studies have also examined changes in performance and neural

activation as rule representations change over the timescales of

learning and development. One line of work has examined

how rule use changes as a task is practiced. Early in learning,

the vlPFC shows the strongest rule-related activation. With

practice, however, SMA/preSMA shows the strongest rule-

related activity (Boettiger & D’Esposito, 2005; Muhammad

et al., 2006). IFJ shows a similar pattern: over learning, neural

activation in IFJ is reduced as performance on dual-task trials

becomes equivalent to performance in single-task conditions

(Dux et al., 2009).

Other tasks, such as the Wisconsin Card Sorting Test,

require participants to learn rules based on trial and error

feedback. In this task, participants sort cards containing multi-

ple dimensions, such as color, shape, and number. Participants

must learn the correct rule on the fly based on spontaneous

sorting and feedback from the experimenter (i.e., ‘correct’ or

‘incorrect’). Critically, as the task progresses, the experimenter

changes the rule and participants must flexibly switch or

update the rules they are using.

As might be expected from the complex nature of this task,

rule learning and updating are mediated by a large network of

regions including the left fusiform cortex, angular gyrus, MFG,

medial frontal gyrus, bilateral inferior frontal gyrus, retrosple-

nium, middle temporal gyrus, striatum, and superior parietal

lobule. Further, regions including the rostral/caudal anterior

cingulate cortex (ACC), bilateral temporal parietal junction,

right posterior supplementary frontal sulcus, right superior

frontal gyrus, right MFG, right anterior supplementary frontal

sulcus, and left anterior inferior frontal sulcus are more

strongly activated when rules must be deduced from feedback

compared with when the relevant dimension is directly cued

(Lie, Specht, Marshall, & Fink, 2006). Finally, bilateral inferior

frontal sulcus is sensitive to the number of dimensions

involved in the task (Konishi et al., 1998).

Another type of paradigm in which rules must be deduced

from feedback is categorical rule learning. In this paradigm,

participants are shown a sequence of stimuli that vary along a

single or multiple dimensions. As participants categorize the

stimuli, theymust determine where a response category bound-

ary lays along the stimulus dimension(s). Category boundaries

can be verbalizable (e.g., the boundary requires attention to a

single dimension) or implicitly learned by integrating across

multiple dimensions. Verbalizable rules are associated with

activation of anterior medial temporal lobe, along with clusters

of regions in the superior and medial PFC. Implicit category

learning, on the other hand, is associated with activation in the

caudate body and lentiform nucleus (Nomura et al., 2007).
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Thus, implicit category learning does not seem to recruit rule-

representation processes in the frontal cortex.

In addition, neural activation changes in categorical rule

learning tasks as stimulus features become familiar through

practice with different networks activated in response to

novel or familiar rules. The MFG (right dlPFC), precentral

gyrus, preSMA, bilateral insula, inferior frontal sulcus, frontal

operculum, and caudate show stronger activation for novel

category members compared with familiar category members

that were previously presented. Superior frontal gyrus, fronto-

polar gyrus, rostral ACC, and insula, however, show stronger

activation for familiar category members compared with novel

category members (Boettiger & D’Esposito, 2005).

Developmentally, research has examined changes in neural

activation as rule representation develops. A region of the

bilateral lPFC shows increases in activation as task switching

emerges in early childhood between 3 and 5 years (Moriguchi

& Hiraki, 2009). Neural activation continues to change into

later childhood as rule-representation processes are refined.

Specifically, 8- to 12-year-olds display a less-differentiated pat-

tern of neural activation relative to adults. These children

engage the preSMA for rule representation, not simply for

rule switching as with adults. Further, while adults show

heightened vlPFC activation for bivalent rules on both rule-

repeat and rule-switching trials, children show greater activa-

tion in this area for both univalent rules and switch trials

(Crone, Donohue, Honomichl, Wendelken, & Bunge, 2006).

Finally, data suggest refinement of rule-switching processes in

adolescence in that adults show larger activation than adoles-

cents in rule-switching tasks in the superior frontal cortex,

thalamus, superior parietal cortex, and fusiform cortex

(Morton et al., 2009).
Theories of Rule Representation

Rule representation processes are clearly complex – there are

different types of rules, complex patterns of neural activity

depending on the type of rule and the type of task, and changes

in rule representations over learning and development. How

can we make sense of this level of complexity? One approach is

to use theoretical models that implement critical aspects of rule

representation and executive processes.

For instance, Anderson and colleagues had implemented a

production model using the ACT-R framework to explain

human performance across a variety of rule-guided situations

(Anderson, Taatgen, & Byrne, 2005; Anderson et al., 2004; Jilk,

Lebiere, O’Reilly, & Anderson, 2008). This model has

accounted for human performance across a diverse array of

cognitive processes and has shed light on how people organize

knowledge and produce goal-directed behavior. Other compu-

tational approaches mimic key aspects of neural function in an

effort to understand both brain and behavior. For instance,

O’Reilly and colleagues (Huang, Hazy, Herd, & O’Reilly, 2013;

O’Reilly, 2006; Rougier, Noelle, Braver, Cohen, & O’Reilly,

2005) had implemented a parallel distributed processing

model, focussing on the role of the basal ganglia in the medi-

ation of representations in the frontal cortex. This work has

demonstrated how simplified biological neurons can establish
nce, (2015), vol. 3, pp. 337-341 
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links between neural and behavioral processes in human

response selection. Moreover, recent work by Huang et al.

(2013) demonstrates how this system can construct task map-

pings on the fly.

A different theoretical perspective – dynamic field theory –

has also made important strides integrating the behavioral and

neural processes that underlie rule representation. Dynamic

field models capture key aspects of neural population dynam-

ics within cortical fields (Bastian, Riehle, Erlhagen, &

Schöner, 1998; Bastian, Schöner, & Riehle, 2003; Erlhagen,

Bastian, Jancke, Riehle, & Schöner, 1999; Jancke et al., 1999;

Markounikau, Igel, Grinvald, & Jancke, 2010) in a way that

integrates cognitive and sensorimotor processes (Spencer,

Perone, & Johnson, 2009; Spencer & Schöner, 2003). For

instance, Buss and colleagues (Buss & Spencer, 2014; Buss,

Wifall, Hazeltine, & Spencer, 2014; Spencer & Buss, 2013)

had implemented a distributed rule representation system

using multiple coupled dynamic fields. In these models, the

lPFC is involved in representing different dimensions or

modalities that are relevant for a given task. Neural activation

within lPFC biases processing in object representation areas

that directly associate stimuli with responses via two-

dimensional neural fields that are tuned to different sensory

and motor dimensions. This framework has quantitatively

simulated the behavioral and neural dynamics associated

with the emergence of flexible rule use in early childhood

(Buss & Spencer, 2014; Spencer & Buss, 2013) and has also

been used to understand changes in IFJ activation over learning

in a dual-task paradigm (Buss et al., 2014; see also Dux

et al., 2009).

 

Summary

Rule representation relies on an extensive network of frontal,

temporal, parietal, and subcortical regions. Systematic manip-

ulation of different aspects of rule representation has revealed

specific functions across areas. The lPFC is involved in associ-

ating stimuli with responses, the inferior frontal cortex is

involved with attention to dimensions and modalities, SMA

and preSMA are engaged in rule representation for well-learned

tasks, the parietal cortex is involved with maintaining and

selecting response contingencies for a particular task, and dif-

ferent regions of the temporal cortex are involved with

modality-specific representations of stimuli and their associ-

ated responses. Neurocomputational models show promise for

integrating behavioral and neural dynamics over the multiple

timescales across which rule representation unfolds. Although

the current literature has mapped out key aspects of rule rep-

resentation and rule use, future research will need to account

for the processes that allow tasks to be constructed ‘in the

moment,’ how different input and output modalities can be

flexibly associated to form a task representation, and how

neural representations of rules are used to guide action and

attention.
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