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Abstract

A central goal in cognitive and developmental science is to develop models of behavior that can generalize across both tasks
and development while maintaining a commitment to detailed behavioral prediction. This paper presents tests of one such model,
the Dynamic Field Theory (DFT). The DFT was originally proposed to capture delay-dependent biases in spatial recall and
developmental changes in spatial recall performance. More recently, the theory was generalized to adults’ performance in a
second spatial working memory task, position discrimination. Here we use the theory to predict a specific, complex developmental
pattern in position discrimination. Data with 3- to 6-year-old children and adults confirm these predictions, demonstrating that
the DFT achieves generality across tasks and time scales, as well as the specificity necessary to generate novel, falsifiable
predictions.

Introduction

A central goal in cognitive and developmental science is
to develop models that capture the richness of human
behavior in specific situations and make behavioral
predictions that span across situations. Although many
models do an excellent job capturing the specific details
of behavior, most models are exclusively linked to a single
task and thus have relatively limited generalizability
(for discussion of this concern in categorization see, e.g.
Murphy, 2002). This is not a criticism of existing models:
it is difficult to capture the details of performance in a
single task, let alone generalize across multiple tasks
(for one exception, see Love, Medin & Gureckis, 2004).
And generalization over time – for instance, over the time
scale of development – can be even more challenging.
Thus, although theoretical specificity is an essential goal
in cognitive and developmental science, it often comes at
the cost of generalization.

There are a handful of  formal models that have
confronted this challenge, speaking to the processes that
underlie behavior, while still addressing multiple tasks
and time scales (e.g. Huttenlocher, Hedges & Duncan,
1991; Morton & Munakata, 2002). The research presented
here seeks to build on the lofty goals set by such models
while staying grounded in the specificity that is the
hallmark of cognitive models. In particular, we report
theoretical and empirical work that has generalized
a Dynamic Field Theory (DFT) of spatial cognition
across development as well as beyond the spatial recall
task that was central to establishing this theory.

In this paper, we focus on two behaviors – spatial
recall and position discrimination – with children and
adults. In particular, we focus on the effects of perceived
reference frames in these two tasks. In spatial recall,
memory for targets near reference frames shows system-
atic distortions, referred to as geometric biases (e.g.
Huttenlocher et al., 1991). These biases show a striking
developmental pattern: early in development, children
show memory biases toward frames of reference, whereas
older children and adults show biases away from reference
frames (Huttenlocher, Newcombe & Sandberg, 1994;
Schutte & Spencer, 2002; Spencer, Simmering, Schutte &
Schöner, 2007). The dominant account of this develop-
mental transition uses the Category Adjustment model
proposed by Huttenlocher and colleagues (1991; see
Conclusions for further discussion of this model). According
to this account, young children treat large spaces as a
single category and are biased toward the center of the
space, whereas older children and adults sub-divide large
spaces into two categories and show biases toward the
centers of the left and right regions. Although this account
proposes a specific developmental change to account for
the transition, there is no underlying developmental
mechanism that explains how this change occurs.

Visual reference frames also influence position discri-
mination performance: adults show enhanced discri-
mination near frames of reference, with psychophysical
models as the dominant account of performance (e.g.
Kinchla, 1971). More recently, we demonstrated geometric-
like effects in discrimination, with asymmetries based on
whether discrimination was tested in the direction of
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geometric biases or in the opposite direction (Simmering,
Spencer & Schöner, 2006). These data show continuity
across position discrimination and spatial recall, sug-
gesting that a single framework may capture perfor-
mance in both tasks.

In the sections that follow, we review the established
behavioral effects in both spatial recall and position
discrimination, as well as how the DFT can account for
performance in both tasks. We also describe a specific
developmental mechanism that captures the emergence
of the adult-like pattern of geometric biases in spatial
recall. We then combine our existing accounts of the
development of spatial recall and adults’ position discri-
mination performance to generate an ensemble of specific
behavioral predictions regarding the development of
position discrimination performance in young children.
Empirical data with 3- to 6-year-old children and adults
confirm the pattern of results predicted by the theory.
This study provides an important step in this line of
research, demonstrating that the DFT offers generality
across tasks and time scales without sacrificing specifi-
city. We conclude by considering implications of  our
theoretical and empirical work for other models in
cognitive and developmental science.

Overview of DFT and generation of novel 
model predictions

The Dynamic Field Theory is a process-based theory of
spatial cognition instantiated in a neural network model

that captures children’s and adults’ performance in spatial
working memory tasks (for a complete description of the
theory, see Spencer et al., 2007; see also Simmering,
Schutte & Spencer, 2008). Our use of dynamic fields
derives from Amari’s initial work on the dynamics of
cortical maps (Bastian, Riehle, Erlhagen & Schöner, 1998;
Bastian, Schöner & Riehle, 2003; Erlhagen, Bastian,
Jancke, Riehle & Schöner, 1999; Jancke, Erlhagen,
Dinse, Akhavan, Giese, Steinhage & Schöner, 1999), as
well as initial applications of this theoretical framework
to motor planning (Erlhagen & Schöner, 2002; Kopecz
& Schöner, 1995; Thelen, Schöner, Scheier & Smith,
2001; Wilimzig, Schneider & Schöner, 2006). In addition
to the spatial cognition application we describe here, this
framework has also been extended to address the real-
time processes that underlie the use and maintenance of
non-spatial features in visual working memory (Johnson,
Spencer & Schöner, 2006, in press), the processes that
drive infant habituation (Schöner & Thelen, 2006) and
infant categorization (Perone, Spencer & Schöner, 2007),
as well as the cognitive processes that underlie the flex-
ible behavior of autonomous robots (Bicho, Mallet &
Schöner, 2000).

In the present report, we focus on the dynamics of
three layers of spatially tuned neurons from our more
general theory (see Spencer et al., 2007). These three
layers are shown in Figure 1: a perceptual field (PF;
Figure 1A), a spatial working memory field (SWM;
Figure 1C), and a shared inhibitory field (Figure 1B). In
each field, the x-axis consists of a collection of spatially
tuned neurons; the y-axis shows each neuron’s activation

Figure 1 A simulation of the dynamic field theory performing one spatial recall trial with adult (A–C) and child (D–F) parameter 
settings. In each panel, location is along the x-axis, activation along the y-axis, and time along the z-axis. Solid and dashed arrows 
show excitatory and inhibitory connections between layers (respectively). The target was presented at 35° for 2 s, followed by a 
10 s delay. The reference frame (midline) was presented continuously at 0°. See text for details.
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level; lastly, time is captured along the z-axis, beginning
at the front of the figure. These layers pass excitation
and inhibition as indicated by solid and dashed arrows,
respectively. Activation from a retinal field (not shown)
is passed strongly to PF, and more weakly to SWM.
Neurons within PF and SWM have locally excitatory
interactions, while lateral inhibition is mediated by the
shared layer of interneurons (Amari, 1977). These locally
excitatory and laterally inhibitory interactions enable PF
and SWM to form self-sustaining ‘peaks’ of activation
that maintain themselves in the absence of input (though
the ability of PF to do this is limited due to interactions
with SWM; see below). This three-layer structure is
inspired by the cytoarchitecture of visual cortex (Douglas
& Martin, 1998; for a related architecture, see Edin,
Macoveanu, Olesen, Tegnér & Klingberg, 2007). The
following sections describe how the DFT captures the
development of spatial recall, how it has been generalized
to a second spatial working memory task, and how these
lines of research can be combined to generate novel pre-
dictions regarding the development of children’s position
discrimination abilities.

Generalizing the DFT across time scales: 
the development of spatial recall

In spatial recall tasks, participants see a target location
which they must remember for a short delay (e.g. 5–20 s)
before reproducing the remembered location. Adults show
systematic ‘geometric’ biases in such tasks: responses
aligned with visible edges and symmetry axes are accu-
rate, whereas responses to targets on either side of such
reference axes are biased away from the axes over delay
(e.g. Engebretson & Huttenlocher, 1996; Spencer & Hund,
2002; Tversky & Schiano, 1989; Werner & Diedrichsen,
2002). For instance, when adults remember a location to
the left of the midline symmetry axis of a large table,
they show biases away from midline that increase over
delays (e.g. Spencer & Hund, 2002).

Figure 1A–C shows the DFT performing a single
recall trial with ‘adult’ parameters. When the target is
presented, neurons tuned to respond to the stimulated
location become active in PF and SWM (see T in
Figure 1A and 1C). Because neurons in SWM have stronger
interactions, the SWM peak self-sustains after the target
input is removed, maintaining target information during
the delay (see Figure 1C). At the same time, input from
perceived reference frames in the task space – in this
case, the midline symmetry axis – leads to a reference
peak at 0° (see R in Figure 1A). If  the target peak in
SWM is aligned with the reference input to PF (i.e. the
target is presented at midline), the SWM peak remains
stably positioned over the delay and the model responds
accurately. If  the target peak is not aligned with the
reference, however, the lateral inhibition associated with
the reference peak repels the target peak in SWM away
from the reference axis. This occurs due to the shared
inhibitory layer (see Figure 1B): because the model is

simultaneously holding a reference peak in PF and a
target peak in SWM, inhibition from the reference peak
‘repels’ the target peak in the opposite direction – away
from midline – over delay (see ‘drift away from midline’
in Figure 1C). The reference peak, on the other hand,
remains stably centered at 0° due to the continued visual
input from midline.

Young children show markedly different biases in
spatial recall tasks – they show bias toward reference frames.
Specifically, 2- to 3-year-olds show strong attraction
toward the midline symmetry axis across a wide range of
spatial locations (Huttenlocher et al., 1994; Schutte &
Spencer, 2002; Schutte, Spencer & Schöner, 2003). This
pattern of bias changes gradually over development.
First, attraction narrows such that children’s responses
to locations far from midline show no attraction, while
closer locations show robust attraction (Schutte, 2004;
Schutte & Spencer, 2008). When bias away from midline
first emerges, it is localized to certain regions of space
(i.e. 20° from midline). Eventually, the region of repul-
sion expands such that, by 6 years of age, children show
biases away from midline from 10–60° on either side of
midline (Hund & Spencer, 2003; Spencer & Hund, 2003).

To account for this developmental transition, Spencer
and colleagues proposed the spatial precision hypothesis
(see Schutte et al., 2003; Spencer & Hund, 2003). This
hypothesis posits that early in development, locally
excitatory neural interactions are broad with weak lateral
inhibition. Over development, excitation narrows (i.e.
becomes more precise) as both excitatory and inhibitory
interactions strengthen (for support for this type of
neural change in cortex over development, see Edin et al.,
2007). Importantly, this type of change does not modify
the basic architecture of the model, nor does it require
the addition of a new module or computational unit;
rather, small quantitative changes in neural interaction
yield both quantitative and qualitative changes in the
‘behavioral states’ of the model over development (see
Simmering et al., 2008, for further discussion). For
instance, when implemented in the DFT, the spatial
precision hypothesis gives rise to the qualitative develop-
mental shift in recall biases.

Figure 1 D–F shows the DFT performing a recall trial
with ‘child’ parameters, that is, with a relatively broad
and weak local excitation/lateral inhibition profile. As
with the adult parameters, the presentation of the target
input forms a self-sustaining target peak in SWM (see
Figure 1F). During the delay, however, performance
with the child and adult parameters diverges. Although
there is reference input during the delay (to capture
continued perception of  the midline symmetry axis),
reference-related input to PF produces broad, diffuse
activation with the child parameters – there is not
enough focused excitation and inhibition to create a
reference peak (Figure 1D). Because activation in PF fails
to form a reference peak, there is no reference-related
inhibition to repel the SWM peak. Instead, excitatory
input to PF attracts the SWM peak across a broad spatial
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range (see ‘drift toward midline’ in Figure 1F). Gradually
over development, excitation becomes stronger and
narrower, which narrows the attraction effect. Eventually,
neural interactions in PF become strong enough to
create a reference-related peak and repulsion emerges in
recall. As interactions strengthen further, the repulsion
effect increases and extends across a broad spatial range
(see Schutte, 2004; Spencer et al., 2007).

In summary, the DFT captures delay-dependent
geometric biases in adults’ spatial recall performance.
When the spatial precision hypothesis is implemented in
this theoretical framework, the theory effectively captures
the delay-dependent geometric biases in children’s recall
performance as well. Thus, this dynamic field account of
spatial recall performance generalizes across multiple
time scales (for other developmental changes captured
by the spatial precision hypothesis, see Schutte et al.,
2003; Spencer, Simmering & Schutte, 2006; Simmering
et al., in press).

Generalizing the DFT across tasks: position 
discrimination

Recently, we have also generalized the DFT to capture
performance in a second spatial working memory task –
position discrimination (Simmering et al., 2006). In this
task, two stimuli are presented in quick succession and
participants judge whether the stimuli were in the same
or different locations. Although both spatial recall and
position discrimination are spatial working memory
tasks, these tasks have not previously been united within
a single framework. Discrimination has typically been
studied in adults and described with psychophysical
models that fail to generalize to recall performance (see
Simmering et al., 2006, for discussion; see also, Werner
& Diedrichsen, 2002). Conversely, models of spatial
recall have failed to capture discrimination performance.
One likely reason that these tasks have not been
previously modelled within a single theoretical frame-
work is that position discrimination is viewed as more of
a perceptual task due to the brief  presentation of the two
stimuli. Moreover, the tasks require different response
types – a same versus different judgment in discrimina-
tion and a pointing response in recall.

The first difference across tasks – the quick presenta-
tion of two stimuli versus the longer presentation of a
single stimulus – is straightforward to address in the
DFT: because the model operates in real time, we can
simply present two inputs to the model at the appro-
priate times. The second difference – the difference in
response type – presents more substantive challenges
for formal models because most models are designed to
generate only one type of response. As we demonstrate
below, however, the dynamic interplay between PF and
SWM in the DFT can lead to emergent same and differ-
ent decisions with relatively little modification. To
achieve the same/different response in the DFT, we
added two bi-stable neurons that are dedicated to these

labels (i.e. when the same node receives strong input,
it goes into a self-sustaining state that represents the
generation of this response). This allows the model to
generate an explicit response on each discrimination trial
(see below).

Figure 2 shows the adult parameters in the DFT
producing a same response in position discrimination.
Note that the simulations in Figures 2–4 were generated
using identical model parameters that produced the
adult recall responses in Figure 1, with the addition of
response nodes. As this figure shows, the different node
is coupled to PF, and the same node is coupled to SWM.
Activation from these fields is summed across the spatial
dimension and passed to the respective nodes. When the
nodes’ activation rises above threshold, they compete
with one another such that only one response is generated
– a winner-take-all type of interaction. The winner then
projects global excitation back to the coupled field,
stabilizing the current response and maintaining current
activation in the relevant field (PF for the different node;
SWM for the same node). To capture the task instruc-
tions, we keep the resting level of the response nodes low
before the response is required (i.e. at the beginning of
the trial); when the response is prompted, we raise the
resting level of the nodes.

For the simulation in Figure 2, both S1 and S2 were
presented at 35° (without midline input, for simplicity).
Figure 2A–C shows the same three layers from the recall
simulations in Figure 1; we have also added time-slices
through PF (Figure 2D, F) and SWM (Figure 2E, G) at
relevant points in the trial to highlight how responses are
generated in this task. To begin the trial, S1 is presented,
building activation in PF and SWM. When the input is
removed, the peak in SWM sustains during the delay
(Figure 2E), as in the recall simulations. Because of the
shared inhibitory layer, this peak produces a trough of
inhibition in PF (Figure 2D); thus, when S2 is presented
after a brief delay, activation in PF is relatively weak. When
the input is removed, then, activation in PF quickly decays
(Figure 2F). In SWM, on the other hand, activation
from S2 overlaps with the self-sustaining peak. This
peak sends activation to the same node (because there is
no above-threshold activation in PF at this point, the
different node receives no input). Given the strong input
to the same node, this node suppresses the different node
and the model correctly generates a same response.

The simulation in Figure 3 shows how the model
responds when S1 and S2 are presented in different
locations. This simulation begins exactly as the same
simulation (compare Figure 2D–E with Figure 3D–E).
When S2 is presented it is now shifted to the right of S1
(to 45°). Because S2 does not overlap spatially with the
working memory of  S1, activation builds more easily
in PF (Figure 3F); this, in turn, suppresses the SWM
peak associated with S1 (Figure 3G) due to the strong,
shared inhibition. Consequently, PF sends activation to
the different node, and there is no activation from SWM
to the same node, leading to a different response.
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Simmering et al. (2006) used these concepts to predict
a specific pattern of  adults’ position discrimination
performance based on factors that influence overlap
between activation in PF and activation in SWM.
Specifically, reference-related inhibition – the inhibition

associated with reference peaks in PF that produces
delay-dependent biases in spatial recall – should produce
two effects in position discrimination. First, directional
drift should influence overlap, as illustrated in Figure 4
(for simplicity, this figure shows only time-slices of PF

Figure 2 A simulation of the DFT responding same in a position discrimination trial. S1 and S2 were presented at 35° for 1 s 
each, with a 1 s delay in between. Panels A–C show the same three fields as Figure 1 (axes and arrows are as in Figure 1), with 
the addition of response nodes: PF is coupled to the different (D) node, and SWM to the same (S) node; these nodes mutually 
inhibit one another. Panels D–G show time-slices through PF and SWM at the end of the delay (D, E) and at response (F, G). 
Horizontal dotted lines in these panels indicate the zero threshold; arrows specify stimulus locations, and vertical dashed lines 
mark the position of S1 for comparison. Note that, for simplicity, we did not include reference input in these simulations.

Figure 3 A simulation of the DFT responding different in a position discrimination trial. S1 was presented at 35°, S2 at 45°. Panels, 
axes, and arrows are as in Figure 2.
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and SWM). Importantly, these simulations now include
midline input, which is the source of directional drift in
the model. Figure 4A–B shows the beginning of the
trial, when S1 is presented. At the end of the delay, the
peak in SWM has drifted slightly away from midline
(Figure 4B), and has produced a corresponding trough
of inhibition in PF (Figure 4A). Note that, because of
the much shorter delay (1 s compared to 10 s in the
recall simulation), the amount of drift is relatively small.
This drift is sufficient, however, to influence performance
based on the direction in which S2 is presented.1

If  S2 is presented away from midline – that is, in the
direction of drift – activation from S2 overlaps with the
drifted position of the peak in SWM (Figure 4D).
Because this region of PF is inhibited by the peak in
SWM, activation in PF dies as soon as the input is
removed (Figure 4C). In SWM, on the other hand, the
S2 activation overlaps with the S1 peak, maintaining the
SWM peak and generating a same response even though
S1 and S2 were in different locations. As such, the DFT
predicts that larger separations between stimuli are
necessary to generate a different response when S2 is
presented away from midline. In experiment, this corre-
sponds to higher discrimination thresholds, as shown by
the square marker in Figure 4G.

If S2 is presented toward midline, on the other hand,
the DFT predicts better performance, even at the same
actual separation between S1 and S2. In this case, because
the S1 peak in SWM has drifted in the direction oppo-
site to the S2 presentation, S2 activation comes in to a
relatively uninhibited region of PF. After the input is
removed, then, the peak is maintained in PF (Figure 4E).
This deletes the SWM peak (Figure 4F) and leads to a
different response. As a result, the DFT predicts different

1 In the DFT, drift of the SWM peak begins as soon as the stimulus is
removed (provided there is a reference peak in PF to contribute inhi-
bition), and increases systematically over delays, leveling out after
approximate 15 s delay (see Spencer & Hund, 2002). Accordingly, the
DFT predicts systematic changes in discrimination performance as the
delay between S1 and S2 increases (i.e. asymmetries due to directional
drift should become more pronounced as the S1 peak drifts further;
we thank an anonymous reviewer for highlighting this aspect of the
model). Preliminary unpublished data from our lab suggest, however,
that this prediction may be difficult to test with the standard position
discrimination task because the task becomes much more difficult at
longer delays. For instance, after a 5 s delay in-between stimuli, parti-
cipants were near chance performance on same/different trials. 

Figure 4 The influence of directional drift on position discrimination in the DFT using adult parameters. Panels A–F show time-
slices through PF and SWM at the end of the delay (A, B) and at response when S2 was presented away from midline (C, D) or 
toward midline (E, F). Axes and arrows are as in Figure 2D–G. Behavioral predictions (G–I) show differences for targets near versus 
far from midline (x-axis), and when S2 is presented toward (solid line) versus away (dashed line) from midline. Low discrimination 
thresholds (along the y-axis) correspond to better performance. See text for further details.
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responses at smaller separations if  S2 is presented
toward midline. In experiment, this corresponds to lower
discrimination thresholds, as shown by the diamond
marker in Figure 4G.

These simulations illustrate the first novel prediction
of the DFT: position discrimination should be enhanced
(i.e. producing different responses at smaller separations
between S1 and S2) when S2 is presented toward midline.
Note that the DFT also predicts that this difference
across S2 directions should only be evident for spatial
locations where memory drift is relatively large, around
20–30° from midline (Spencer & Hund, 2002). Conversely,
directional drift should have little effect near midline,
where drift is minimal. This is captured in Figure 4G –
discrimination thresholds are comparable for the ‘near’
target. Note that these are qualitative predictions of the
DFT; we predict relatively higher or lower thresholds,
rather than specific discrimination thresholds (which
show marked individual differences; see Simmering
et al., 2006).

Reference-related inhibition in the DFT also predicts
a second effect on position discrimination, specifically,
that stronger inhibition near the reference should lead to
narrower peaks. Narrower peaks are less likely to over-
lap. Consequently, discrimination thresholds should be
consistently lower near midline versus far from midline
(see Figure 4H). Importantly, because both repulsion
from midline and enhanced discrimination near midline
arise through the same mechanism in the DFT, they
should combine to form the specific pattern of perfor-
mance shown in Figure 4I (i.e. Figure 4I shows the
summation of the predictions in Figure 4G and 4H). As
can be seen in this figure, the DFT predicts comparable
performance across locations when S2 is presented toward
midline, but impaired performance far from midline
when S2 is presented away from midline. Data with
adults confirmed this predicted pattern of performance
(Figure 4J, Simmering et al., 2006), supporting the DFT
account of discrimination and demonstrating that the
model generalizes across tasks.

Generalizing the DFT across tasks and time scales: 
novel predictions for the development of position 
discrimination

Thus far, we have described how the DFT captures the
spatial recall performance of children and adults as well
as how this theory has predicted novel effects in discri-
mination performance with adults. The goal of the present
paper is to combine these two accounts to generate and
test specific behavioral predictions regarding the develop-
ment of position discrimination. As with adults, children’s
discrimination performance should depend on overlap
between the S1 SWM peak and S2 input to PF, and
overlap should be affected by both directional drift and
peak width. The spatial precision hypothesis predicts
related changes in both of these factors over develop-
ment and, combined with our theory of the processes

underlying discrimination, leads to the specific pattern
of behavioral predictions shown in Figures 5 and 6.

First, the DFT predicts that directional drift should
influence children’s discrimination performance, just
as it influenced adults’ performance. However, because
young children show biases toward midline in recall, the
specific predictions based on directional drift are actu-
ally reversed, as shown in Figure 5. This figure shows the
same type of simulations shown in Figure 4, but now
run with the child parameters.2 Figure 5A–B shows the
beginning of the trial, when S1 is presented. At the end
of the delay, the peak in SWM has now drifted slightly
toward midline (Figure 5B), along with a corresponding
trough of inhibition in PF (Figure 5A). Again, this drift
is much smaller than that seen in recall, due to the
shorter delay.

If  S2 is presented away from midline (Figure 5C–D),
this is now the opposite direction of drift, and activation
from S2 falls outside of  the inhibitory trough in PF
(Figure 5C), resulting in a different response. Con-
sequently, in experiment, children’s performance should
be better when S2 is presented away from midline (see
lower thresholds for the square marker in Figure 5G).
If  S2 is presented toward midline (Figure 5E–F), on the
other hand, this is in the direction of drift. Now, activa-
tion from S2 overlaps with the S1 peak in SWM; as a
result, activation in SWM is maintained, producing
a same response. Consequently, the DFT predicts that
children’s performance should be worse when S2 is
presented toward midline (see higher thresholds for the
diamond marker in Figure 5G).

These simulations illustrate the first novel developmental
prediction of the DFT: young children’s discrimination
performance should show the opposite directional pattern
from adults, with better performance when S2 is presented
away from midline (compare Figures 4G and 5G). As
with the adult parameters, the child parameters predict
that this difference across S2 directions should only be
evident for spatial locations where memory drift is
relatively large. Thus, directional drift should have little
effect near midline, where drift is minimal (see predic-
tions for ‘near’ targets in Figure 5G).

The second important factor for discrimination per-
formance in the DFT – peak width – should also be
changing over development. According to the spatial
precision hypothesis, broader interactions should lead to
broader peaks early in development. As such, discrimina-
tion performance should be (not surprisingly) worse in
young children, as shown by the relatively high thresh-
olds predicted in Figure 5H. Because the formation of
reference peaks in early development is predicted to be
rather tenuous, the modulation in peak width across near
and far targets should be relatively minimal (compare

2 Note that the separation between S1 and S2 was larger for the child
simulations. Because peaks are broader with the child parameters,
larger separations are needed to produce different responses. This
contributes to our developmental predictions that children will have
higher discrimination thresholds overall, compared to adults.
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Figure 5 The influence of directional drift on position discrimination in the DFT using child parameters. Panels, axes, and arrows 
are as in Figure 4.

Figure 6 Developmental predictions based on reference-related inhibition and increasing spatial precision in the DFT for 
discrimination performance: differences across locations and S2-direction based on only directional drift (A–D), only peak width 
(E–H), or both (I–L). Solid lines indicate predicted performance when S2 is presented toward midline; dashed lines indicate predicted 
performance when S2 is presented away from midline. Note that lower thresholds correspond to better performance. Predictions 
for young children (A, E, I) and adults (D, H, L) are reproduced from previous figures for comparison (see dashed boxes).
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near and far thresholds in Figure 4H to Figure 5H).
These factors should again combine to yield the pre-
dicted behavioral pattern for young children’s discri-
mination performance shown in Figure 5I. The DFT
predicts comparable performance across locations when
S2 is presented away from midline, but impaired per-
formance far from midline when S2 is presented toward
midline – the opposite of the pattern seen with adults.
Moreover, thresholds should be relatively high overall.

The DFT and spatial precision hypothesis make one
final developmental prediction for discrimination per-
formance: because changes in precision are gradual over
development, at intermediate ages, children should
show intermediate patterns of performance, as shown in
Figure 6. Note that the qualitative predictions for young
children and adults from Figures 4 and 5 are reproduced
here for comparison (see dashed boxes in Figure 6).
Figure 6A–D shows predicted changes based on directional
drift over development. Young children should show the
opposite pattern to adults, with better performance when
S2 is presented away from midline. At intermediate ages,
however, biases toward midline in recall first become
smaller before switching to biases away from midline.
This change is reflected in Figure 6B–C, in which the
predicted difference across directions first becomes less
pronounced, and then reverses, eventually showing the
adult pattern.

Figure 6E–H shows predicted changes in peak width.
As neural interactions become more precise, peaks
should become narrower, especially near midline. This
is reflected in a predicted overall reduction (i.e. improve-
ment) in discrimination thresholds. In addition, this
improvement should be more pronounced for locations
near midline (see Figure 6F–G), as reference-related inhi-
bition emerges. Finally, the DFT predicts that these
factors should combine to produce the pattern shown in
Figure 6I–L. For young children (Figure 6I), thresholds
should be highest for the far target when S2 is presented
toward midline. At intermediate ages (Figure 6J–K), this
difference based on S2 direction should reduce and
eventually switch. Critically, when this switch occurs, the
difference across Toward and Away conditions should be
small. Ultimately, the advantage when S2 is presented
away from midline should increase, leading to the adult
pattern of performance (Figure 6L).

We tested these predictions in the present study with 3-
to 6-year-old children and adults, using a procedure modi-
fied from Simmering et al. (2006). Note that, although the
predictions based on only directional drift are similar to
the combined predictions, there are important differences.
For instance, directional drift (Figure 6A–D) predicts
that performance in the enhanced direction (i.e. Away
for children, Toward for adults) will show a difference
across target locations, with lower thresholds for the far
target. But combining directional drift with peak width
changes this prediction – instead, there should be no
difference across near and far target locations for the
enhanced direction for both children and adults, even

though the enhanced direction shifts over development
– away from midline for young children (dotted line in
Figure 6I) and toward midline for adults (solid line in
Figure 6L).3

Empirical test of predictions

Method

Participants 

One hundred and eighty children and 22 adults parti-
cipated in this experiment (see Table 1 for details).
Child participants were recruited from a database at the
University of Iowa and were given a small gift for parti-
cipating. Parents of child participants gave informed
consent. Adult participants either volunteered or were
recruited from an introductory psychology course and
received research exposure credit for their participation.
All participants had normal or corrected-to-normal vision.

Apparatus

Sessions were conducted in a dimly lit room with black
curtains covering the walls and ceiling to limit parti-
cipants’ use of  external reference cues (see Simmering
et al., 2006, for description). For training, black cardstock
flashcards of two yellow smiley-face ‘twins’ were hidden
under a larger piece of black cardstock with three cut-
out flaps. For testing, participants sat on a chair placed
within an arc cut out from the side of  a large table (see
Figure 7), with a female experimenter seated behind
them, out of view. For child participants, a parent was
also seated out of view in the testing area, at the corner
of the table.

3 Note that although we predict a specific pattern of performance over
development, these predictions are still of a qualitative nature – we do
not predict the quantitative values of discrimination thresholds.

Figure 7 Testing apparatus and stimuli. Note that stimuli are 
presented schematically and are not drawn precisely to scale. 
See Apparatus section for exact stimulus details.
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Stimuli were projected onto the rear-projection surface
of the table from below using a Barco 708 data projector.
Throughout the procedure, the tabletop appeared black
to participants. Two types of images were used: yellow
smiley-face target dots and green reference lines. Target
dots were 7 pixels in diameter, and presented in a 15 cm
deep by 22.5 cm wide area extending rightward from the
center of the tabletop. Green reference lines were 4 pixels
in width and were presented along the midline symmetry
axis of the table, with a gap in the center by the stimulus
presentation area (see Figure 7).

Procedure 

The task was explained as a ‘hiding game’ in which two
smiley-face twins hid, and participants reported whether
they hid together or apart. Children who had not yet
mastered use of the terms ‘together’ and ‘apart’ used
either ‘same place’ and ‘different place’ or hand gestures
to respond. The experimenter and participant sat on
the floor outside the testing area for training with the
flashcards. The experimenter showed the twins hiding
sequentially, and the participant responded if  they were
together or apart. Once the participant understood the
task, they moved to the testing table, where the experi-
menter used demonstration trials showing the twins
hiding together or apart until the participant understood
the task.

Each test trial began with the presentation of green
reference lines (see Figure 7), along with an auditory
message ‘We’re going to hide’ and a 100 ms tone. This
message was followed by a 1 s delay and then a 1 s
presentation of the first stimulus dot (S1). Next came a
500 ms delay (consisting of a 200 ms delay, a 100 ms
tone, and a 200 ms delay), followed by a 1 s presentation
of the second stimulus dot (S2). Once S2 disappeared,
the experimenter prompted the participant for a response.
If  the participant did not see one of the dots, the experi-
menter could re-present the trial. The experimenter
entered 1 for same or 3 for different on a keyboard, which
ended the trial and removed the green reference lines.
When the participant was ready to go on, the experimenter

pressed ‘G’ on the keyboard to begin the next trial. To
keep children motivated, pictures of cartoon characters
appeared on the tabletop after every five trials, with audio
messages like ‘Great job!’

Experimental design 

S1 was presented at two target locations – 10° and 30° to
the right of midline, with green reference lines presented
along midline (see Figure 7, Simmering et al., 2006). S2
was presented relative to S1 at a distance of 0–20 pixels
(in 4-pixel steps) for children, or 0–10 pixels (in 1-pixel
steps) for adults. Note that we refer to S2 positions in
pixels rather than visual angles because children could
shift their viewing angle freely in the experiment (see
Table 2 and Simmering et al., 2006, for approximate
visual angles of the stimuli). Across conditions, S2 was
presented toward midline (coded as negative) or away
from midline (coded as positive). Children were randomly
assigned to the Toward or Away condition. Adults
completed both conditions in a single session, with the
order counter-balanced across participants.

To minimize the number of trials required of child
participants, we designed a staircasing procedure based
on the method of descending limits described by Abrimov
and colleagues (Abrimov, Hainline, Turkel, Lemerise,
Smith, Gordon & Petry, 1984). Participants completed
up to four runs per target. One target was randomly
selected to begin the first run, and S2 was presented at
the largest separation (i.e. 20 pixels for children, 10 pixels

Table 1 Participant ages and sample sizes

M SD N (total)a N (means) N (var.) Excluded from all analyses

3-year-olds 3,8 0.5 51 41 35 8 (incomplete data)
2 (outliersb)

4-year-olds 4,4 0.6 49 42 36 7 (incomplete data)
5-year-olds 5,4 2.0 40 39 37 1 (incomplete data)
6-year-olds 6,3 1.7 40 39 38 1 (equipment problems)
Adults 20,5 25.1 23 20 20 2 (equipment problems)

1 (experimenter error)

Note: Mean ages are in years and months; standard deviations are in months.
a Participants must have completed at least one run to each target to be included in analyses of means; otherwise, data were considered incomplete and were excluded
from all analyses. In addition, at least two runs per target were required to be included in analyses of variability, leading to slightly smaller sample sizes for these analyses.
b To evaluate data for outliers, we computed a threshold difference score (threshold for the 10° target minus threshold for the 30° target) for each participant. We
compared these scores within age groups by plotting scores in histograms with 2-pixel bins. In each age group, the data formed approximately normal distributions. Only
in the 3-year-olds’ data did any scores appear to fall outside of the distribution. In this case, 2 children’s data fell more than three bins (i.e. 6 pixels) from the nearest
score; these children were considered outliers and their data were excluded from all analyses.

Table 2 Approximate visual angle to stimuli at various pixel
separations

Target separation

Location 0 pixels 2 pixels 4 pixels 6 pixels 8 pixels

10° 2.57° 2.80° 3.04° 3.28° 3.51°
30° 7.41° 7.64° 7.89° 8.13° 8.36°

Note: Visual angle = angle from table midline to stimulus. The 0-pixel separation
corresponds to the position of S1. All measurements were based on an adult
sitting in a chin rest centered at midline (see Simmering et al., 2006).
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for adults) in the direction specified by the condition.
After the participant responded different, subsequent
trials stepped through sequentially smaller separations
(switching direction if  necessary) until the participant
made a same response. Then, the next run began at the
other target. Runs were terminated if  the participant
reached the second-largest separation in the opposite
direction (i.e. 16 pixels for children, 9 pixels for adults)
without responding same. The second through fourth
runs to each target were similar, except that the second
trial of each run (after the largest separation) presented
the separation two steps larger than the previous same
response for that target (see Abrimov et al., 1984). Targets
were presented on alternating runs until four runs were
completed to each target or the participant chose to end
early. Data were considered incomplete and excluded
from all analyses if  a participant did not respond same
in at least one run to each target (see Table 1).

Results

We computed participants’ discrimination thresholds as
the mean pixel separation at which they responded same
across runs. We also computed threshold variability –
the standard deviation of  thresholds across runs for
participants with at least two runs per target (see Table 1).

We analyzed children’s data in a three-way ANOVA with
Target (10°, 30°) as a within-subjects factor and Direc-
tion (Toward, Away) and Age (3, 4, 5, 6) as between-
subjects factors. Adults’ data were analyzed separately in
a two-way ANOVA with Target (10°, 30°) and Direction
(Toward, Away) as within-subjects factors.

Mean discrimination thresholds 

Figure 8A shows mean thresholds separately for each
direction across targets and ages. Three- and 4-year-olds’
thresholds were generally highest, with better perform-
ance (i.e. lower thresholds) at the 10° target and in the
Away condition. Five-year-olds showed more similar
performance across directions and targets, although
thresholds were still lower for the 10° target and in the
Away condition at the 30° target. Six-year-olds and adults
had the lowest thresholds, with better performance at
the 10° target but the reversed direction effect – better
performance in the Toward condition.

The ANOVA on children’s data revealed significant
main effects of Target, F(1, 153) = 18.06, p < .001, and
Age, F(3, 153) = 5.04, p < .01, as well as a significant
Age × Direction interaction, F(3, 153) = 4.31, p < .01,
and a significant Target × Direction × Age interaction,
F(3, 153) = 3.27, p < .05. Tests of simple effects revealed

Figure 8 Mean discrimination thresholds (A) and mean threshold variability (B) across Targets and Ages, separately for each 
stimulus Direction. Solid lines indicate the S2-Toward condition; dashed lines indicate the S2-Away condition. Lower discrimination 
thresholds (along the y-axis in A) correspond to better performance.
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a systematic shift across ages from better performance in
the Away condition to better performance in the Toward
condition.

Simple effects tests of 3-year-olds’ data showed a sig-
nificant main effect of Target, F(1, 39) = 5.88, p < .05,
and a significant Target × Direction interaction, F(1, 39)
= 7.26, p < .05. Further tests of  simple effects showed
no difference at the 10° target, but significantly better
performance in the Away condition at 30°, F(1, 39) = 8.39,
p < .01. Additional tests of simple effects revealed no
difference across targets in the Away condition, F(1, 19)
< 1, as predicted by the combined effects of directional
drift and peak width (see Figure 6I). Thus, 3-year-olds’
performance showed the predicted pattern of results: lower
thresholds near midline and in the Away condition.

For 4-year-olds, tests of simple effects showed signifi-
cant main effects of Target, F(1, 40) = 6.67, p < .05, and
Direction, F(1, 40) = 8.96, p < .01, indicating better
performance at 10°, and in the Away condition. For 5-
year-olds, there was only a significant Target main effect,
F(1, 37) = 4.83, p < .05, with better performance at 10°.
Thus, as predicted, the difference across Toward and
Away conditions was eliminated near the developmental
transition. Finally, tests of simple effects for the 6-year-
olds showed only a significant Direction main effect,
F(1, 37) = 6.70, p < .05, with the predicted switch to
better performance in the Toward condition.

The ANOVA on adults’ data revealed significant main
effects of Target, F(1, 19) = 14.15, p < .01, and Direc-
tion, F(1, 19) = 5.71, p < .05, which were subsumed by
a significant Target × Direction interaction, F(1, 19) =
4.31, p = .05. Tests of simple effects showed that this
interaction was driven by no difference at 10° and signifi-
cantly better performance in the Toward condition at
30°, F(1, 19) = 8.90, p < .01. Additional tests of simple
effects revealed no difference across targets in the Toward
condition, F(1, 19) < 1, as predicted by the combined
effects of directional drift and peak width (see Figure 6L).
Thus, adults’ performance replicated our previous find-
ings (Simmering et al., 2006), with lower thresholds near
midline and in the Toward condition – the opposite of
the pattern observed with 3-year-olds. These analyses
confirmed the developmental pattern predicted by the
DFT and the spatial precision hypothesis (see Figure 6).

Variability of discrimination thresholds 

Figure 8B shows threshold variability separately for each
Direction across Targets and Ages. Variability generally
decreased over development, but was higher when S2
was presented in the direction of drift – toward midline
for younger children and away from midline for older
children and adults. The dramatic reduction in variability
over development in the Toward condition parallels the
mean threshold results.

The ANOVA on children’s data revealed a significant
Age main effect, F(3, 137) = 3.88, p < .05, which was
subsumed by significant Target × Age, F(3, 137) = 3.29,

p < .05, and Direction × Age, F(3, 137) = 2.99, p < .05,
interactions. Tests of simple effects showed a significant
Target main effect for only 3-year-olds, F(1, 33) = 7.35,
p < .05. As Figure 8B shows, this effect was driven by
higher variability at 10° (M = 5.27 pixels) than at 30°
(M = 4.04 pixels). This is consistent with results from
Schutte (2004), in which 3-year-olds’ attraction toward
midline was larger for targets close to midline. In the
DFT, greater drift leads to higher variability because
small differences in the rate of peak drift across trials
amplify variability.

Additional tests of simple effects revealed marginally
significant Direction main effects for 3-year-olds, F(1, 33)
= 3.49, p = .071, and 6-year-olds, F(1, 36) = 4.03,
p = .052. As Figure 8B shows, these effects were driven
by higher variability in the Toward condition for 3-year-
olds (M = 5.40 pixels, Away M = 3.77 pixels), but in the
Away condition for 6-year-olds (M = 3.80 pixels, Toward
M = 2.87 pixels). Thus, variability was higher in the
direction of drift for both age groups, as the direction of
drift reversed across this age range.

The ANOVA on adults’ data showed a significant
main effect of Target, F(1, 19) = 4.24 p = .05, with lower
variability to 10° (M = 0.86 pixels; 30° M = 1.09 pixels).
Note that this effect is opposite to that seen in the 3-
year-olds’ data. Thus, the pattern of variability across
targets reversed over development, consistent with the
directional shift in spatial recall biases. As the direction
of drift changes, thresholds for that direction are higher
and more variable.

Discussion

Analyses of mean discrimination thresholds confirmed
the developmental pattern predicted by the DFT and the
spatial precision hypothesis. Early in development, when
peaks are broad and memory drifts toward midline,
3-year-olds showed better performance to targets in the
Away condition. Four-year-olds performed similarly,
with a large advantage in the Away condition and better
performance near midline. Later, when peaks become
narrower and drift is minimal, 5-year-olds showed com-
parable performance across Targets and Directions. As
peaks narrow further, strong repulsion emerges and 6-
year-olds showed better performance in the Toward
condition. Finally, adults showed the same pattern as
in Simmering et al. (2006), with a reversal of the pattern
seen with 3-year-olds.

Threshold variability showed a converging pattern of
results. Three-year-olds’ performance was more variable
for the near target, whereas adults’ performance was
more variable for the far target. Additionally, variability
was higher in the Toward condition for the 3-year-olds,
but in the Away condition for the 6-year-olds. These
results are consistent with the DFT and the spatial
precision hypothesis: variability should be higher in the
direction of drift, especially early in development when
SWM peaks are quite unstable (see Schutte et al., 2003).
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Conclusions

The goal of this paper was to achieve both specificity
and generality within a single model of spatial working
memory, the DFT. To evaluate whether we indeed
accomplished this goal, we first consider specificity. By
combining the real-time predictions from our work on
position discrimination with adults with the develop-
mental account of spatial recall biases (i.e. the spatial
precision hypothesis), we were able to predict a specific,
complex pattern of performance over development in
position discrimination (see Figure 6I–6L). Empirical
data confirmed these predictions (see Figure 8A), demon-
strating a degree of  specificity for a priori behavioral
predictions not often achieved in the developmental
literature.

Because these predictions also covered a broad period
of development, they address a second part of our goal
– generality across time scales. Indeed, these data pro-
vide the last step in two parallel tracks of study in our
lab pursuing generality across time scales and tasks. In
particular, the DFT has captured behaviors in two tasks
– spatial recall (e.g. Spencer & Hund, 2002) and position
discrimination (Simmering et al., 2006) – and the imple-
mentation of the spatial precision hypothesis in the DFT
has now captured developmental changes in both tasks
(Hund & Spencer, 2003; Schutte, 2004; Schutte &
Spencer, 2002; Schutte et al., 2003; Spencer & Hund,
2003; Spencer et al., 2006).

As noted in the introduction, however, our model is
not the first to attempt to capture both specificity and
generality. Have we accomplished anything new? We
contend that the answer is ‘yes’, both within the domain
of spatial cognition and within cognitive and develop-
mental science more generally. Ours is the first model to
formally link spatial recall and position discrimination,
not only with adults but also over development, and
then test specific, novel predictions in both tasks. As a
contrast, consider the Category Adjustment (CA) model
(Huttenlocher et al., 1991), the dominant model of
spatial recall biases. Although this model has also been
applied in other domains (e.g. representation of time;
Huttenlocher, Hedges & Prohaska, 1988; and memory
for continuous features; Huttenlocher, Hedges & Vevea,
2000), in each case the task requires estimation along a
continuous dimension. With the DFT, we have gone a
step beyond estimation responses in recall to incorporate
the same/different decision required in position discri-
mination. Thus, although the CA model and DFT
offer similar accounts of recall biases (but with critical
differences, see Simmering et al., 2008; Spencer et al.,
2007), only the DFT has gone on to capture other
behaviors as well (for a second example of generalization
across tasks and response types, see Spencer et al., 2006).

The DFT is also the first model in this domain linked
to a specific developmental hypothesis that can capture
the details of behavior across developmental transitions.
For instance, Huttenlocher and colleagues have used the

CA model to explain the shift in recall biases from
toward midline to away from midline: the change results
when children shift from treating the task space as one
category with a prototype at the center of  the space
to two categories with a boundary along midline and
prototypes in the center of  each half  (Huttenlocher
et al., 1994). Although this account captures the general
change in recall biases, it fails to address, much less predict,
the gradual nature of this change shown by Schutte
(2004). By contrast, our theoretical account includes a
specific developmental hypothesis that has now success-
fully predicted detailed behavioral changes in two spatial
working memory tasks across this developmental transi-
tion. Moreover, we do not need to posit a mechanism for
determining prototypical locations because our account
of geometric biases does not rely on prototypes – instead,
biases in our model arise from interactions between
perception of available geometric structure in the task
space and the on-line maintenance of activation in work-
ing memory (Simmering & Spencer, 2007).

Although the spatial precision hypothesis and the DFT
can account for developmental changes in spatial recall,
it is important to note that future work must specify the
mechanism that gives rise to the changes in neural inter-
action captured by this hypothesis. Such changes in neural
interaction could arise from basic Hebbian processes
(see Spencer et al., 2007, for discussion). Hebbian learn-
ing has been shown to produce the type of continuous,
graded, metric changes captured by the spatial precision
hypothesis (e.g. Kohonen, 1982). Concretely, we could
implement a Hebbian learning rule that would gradually
modify the strength with which neurons in our model
interact (see also Westermann & Mareschal, 2004, for
discussion of possible sources of developmental changes
in cortical tuning). Although the instantiation of the
DFT presented here does not include this type of learn-
ing mechanism, we contend that this type of account is
within reach.

It is also important to note that a growing body of
neural data from studies of brain development is con-
sistent with the spatial precision hypothesis. For example,
Durston and colleagues (Durston, Davidson, Tottenham,
Galvan, Spicer, Fossella & Casey, 2006) demonstrated
that overall neural activation decreases over development
(between about 9 and 12 years of age), reflecting a shift
from diffuse to focused activation as older children show
less activation in areas of the brain that are not considered
relevant to the task at hand. More recently, Edin and
colleagues (2007) used a neural network architecture
similar to the layered architecture of the DFT to predict
developmental changes in BOLD signals (measured with
fMRI) during a working memory task. Predictions were
based on implementations of five hypotheses about how
neural interactions change over development. These
researchers found that neural interactions with ‘higher
contrast’ over development effectively captured changes
in fMRI activity between 13 years of age and adulthood.
Higher contrast in their model consisted of strengthening
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connections both within and between regions (similar to
our excitatory projections), as well as ‘pruning’ or streng-
thening of  lateral inhibitory connections. Thus, the
most effective developmental hypothesis in their simula-
tion and fMRI study mirrored the changes in local
excitation/lateral inhibition captured by the spatial
precision hypothesis.

The contrasts with the CA model above establish the
DFT as the first model of spatial recall biases to propose
a specific developmental mechanism, and then generate
a host of specific, testable predictions in multiple tasks
(e.g. Schutte, 2004; Schutte et al., 2003). But we also
contend that we have accomplished something new in
the field of cognitive and developmental science more
generally. Beyond the domain of spatial cognition, the
number of models that are able to achieve both specifi-
city and generality is limited. The theoretical and empir-
ical work presented here demonstrate that the spatial
precision hypothesis and DFT offer a detailed account
of how real-time behavior changes over the time scale of
development, thus adding to the relatively small collec-
tion of models that achieve both specificity and generality.
More generally, this approach may provide a framework
for thinking about the processes that underlie perform-
ance in multiple contexts across multiple time scales,
without giving up a core strength of process models –
tight theory–experiment relations.
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