
Developmental Science 6:4 (2003), pp 392–412

© Blackwell Publishing Ltd. 2003, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.

Blackwell Publishing LtdBridging the representational gap in the dynamic systems 
approach to development

John P. Spencer1 and Gregor Schöner2

1. Department of Psychology, University of Iowa, USA
2. Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany

Abstract

We describe the relationship between the dynamic systems approach to development and a recent approach to the dynamics of
representational states – the dynamic field approach. Both approaches share an emphasis on the concepts of stability (attractor
states), instability (especially bifurcations), soft-assembly and flexibility. But the dynamic field approach adds the concept of
‘activation’ to capture the strength with which behaviorally relevant information is specified. By explicitly linking these dynamic
systems approaches, we allow for more direct comparisons between dynamic systems theory and connectionism. We note three
current differences between these two approaches to development: (1) the notion of stability is central to how representational
states are conceptualized in the dynamic field approach; (2) the dynamic field approach is more directly concerned with the
sensorimotor origins of cognition; and (3) the dynamic approach is less advanced with regard to learning. We conclude that
proponents of the two approaches can learn from the respective strengths of each approach. We suspect these differences will
largely disappear in the next 20 years.

Introduction

Dynamic systems theory and connectionism have had a
major impact in the last two decades on our understand-
ing of development. These two approaches have led to
new accounts of children’s performance in classic Piage-
tian tasks (e.g. McClelland & Jenkins, 1991; Munakata,
1998; Smith, Thelen, Titzer & McLin, 1999; Thelen,
Schöner, Scheier & Smith, 2001; van Geert, 1998), new
explorations of social-emotional development (e.g.
Fogel, Nwokah, Dedo & Messinger, 1992; Lewis, 2000;
Lewis, Lamey & Douglas, 1999), revolutionary ideas about
motor development (e.g. Thelen, 1995, 2000; Thelen &
Ulrich, 1991) and fundamental progress in the under-
standing of  how children acquire language (e.g. Bates
& Elman, 2000; Elman, 2001). Given these impressive
advances in overlapping domains, the question of this
special issue becomes pressing: What is the relationship
between these two theoretical approaches?

Although this question is timely, it is difficult to an-
swer for a variety of reasons. Connectionism is a broad
approach with many different flavors (e.g. Arbib, 1995;
Bullock & Grossberg, 1988; Mareschal, Plunkett & Harris,
1999; McLeod, Plunkett & Rolls, 1998; O’Reilly &
Munakata, 2000; Shultz, 1998). Similarly, within the
dynamic systems approach, different variants coexist

(e.g. Bidell & Fischer, 2000; Hartelman, van der Maas &
Molenaar, 1998; Newell & Molenaar, 1998; Thelen et al.,
2001; Thelen & Smith, 1994; van der Maas & Molenaar,
1992; van Geert, 1998). A difficulty, therefore, is to select
exemplary research programs and models to represent
this diversity. Even after exemplary models have been
selected, however, other problems wait in the wings. For
instance, along which dimensions should one compare
exemplary models (e.g. see Thelen & Bates, this issue)? Are
such comparisons even possible in some cases? How, for
example, does one compare the Munakata–McClelland
flavor of  connectionism (see this issue) which typically
deals with issues of cognition and representation with
one of the more well-known dynamic systems approaches
– the approach pioneered by Thelen, Smith and col-
leagues (e.g. Thelen & Smith, 1994) – which typically
deals with issues of motor control and development?

Faced with these daunting challenges, we opted to
focus on a specific (yet still challenging!) goal: to build
a ‘representational bridge’ from the dynamic systems
approach to motor control and development toward a
dynamic systems approach that includes the dynamics of
representational states – the very issue many connection-
ist models treat as central. This serves two main pur-
poses. First, the ‘dynamic approach’ as we perceive it is
changing. Readers are likely to be more familiar with the
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now classic ‘motor approach’ (e.g. Thelen & Smith,
1994; Thelen & Ulrich, 1991) than with our more recent
dynamic field approach that incorporates the dynamics
of representational states (e.g. Erlhagen & Schöner,
2002; Schöner, Dose & Engels, 1995; Schöner, Kopecz &
Erlhagen, 1997; Schutte & Spencer, 2002; Thelen et al.,
2001). Thus, this paper provides an overview of the new
dynamic approach and how this approach fits into the
broader purview of  dynamic systems theory. Second,
we contend that building a representational bridge
allows for more direct comparisons between the two
approaches. In particular, we highlight three issues that
currently differentiate dynamic systems and connection-
ist approaches: (1) within the dynamic field approach,
the notion of stability is central to how representational
states are conceptualized; (2) the bridge between the
motor and dynamic field approaches allows representa-
tional states to emerge from sensorimotor origins; and
(3) in contrast to connectionism, the dynamic approach
described here has not yet formalized a well-defined the-
ory of learning. In light of these differences, we conclude
that the two approaches can learn from their respective
strengths and weaknesses. Ultimately, we suspect these
differences will largely disappear in the next 20 years.

Given our stated goal, it is worth noting two things.
First, readers familiar with dynamic systems approaches
might be having heart palpitations right now: a dynamic
systems approach to representation!! Heresy! At face
value, such a thing seems counter to important arguments
against symbolic representation (see, e.g. Barsalou, 1999;
van Gelder, 1998). Although we discuss what we mean
by representational states later in the paper, we highlight
two characteristics of our use of the ‘R-word’ now. First,
throughout this manuscript, we use the term ‘representa-
tional states’ rather than ‘representation’. While some readers
might consider this window dressing, it is a reminder to
us that we are talking about a time-dependent state of
the nervous system, rather than a static thing sitting in
the head somewhere. Second, our use of the term reflects
a pre-cognitive revolution view of representation as mean-
ing, literally, re-presentation. Thus, a representational state
in our approach is a time-dependent state in which a
particular pattern of neural activation that reflects, for
instance, some event in the world is re-presented to the
nervous system in the absence of the input that specified
that event. Note that this view of re-presentation is
related to recent ideas that the brain runs ‘simulations’
of past events during many cognitive tasks (see, e.g.
Damasio & Damasio, 1994).

A second note of caution: this is not a review of
dynamic systems approaches to development en masse
(although some review is certainly included). Readers
interested in such topics are referred to other recently pub-

lished reviews (e.g. Fischer & Bidell, 1998; Lewis, 2000;
Thelen & Smith, 1998). Moreover, we make no claims
that our particular flavor of dynamics is completely rep-
resentative of other dynamic systems approaches to devel-
opment (e.g. Fischer & Bidell, 1998; van Geert, 1998;
van der Maas & Molenaar, 1992). We made an effort to
highlight points where our views converge with proposals
made by other researchers. And we have included a discus-
sion of differences among dynamic systems approaches
in the final section. Nevertheless, we had to sacrifice
breadth to achieve our stated goal. Similarly, we tended
to emphasize some flavors of connectionism over others.
As a basis for selection, we focused on those approaches
that appeared to be most prominent in the developmental
literature.

In the section that follows, we give a brief  review of
the dynamic systems approach to motor control and
development (i.e. the motor approach). Next, we des-
cribe our dynamic field approach and how this approach
incorporates central aspects of dynamic systems theory
– notions of attractors, stability and so on. In the final
section, we get to the business at hand: to evaluate how
the new dynamic approach – which now includes the
dynamics of representational states – differs from con-
nectionist approaches to development.

The dynamic systems approach to motor 
control and development

Stability is necessary

Watching infants learn new motor skills such as how to
reach is an often torturous experience. Early in the first
year, their arms flail about in seemingly random ways
as they stare intently, drooling, at the toy (Jones, 1996;
Thelen, Corbetta, Kamm, Spencer, Schneider & Zernicke,
1993). Even when they appear to be ‘getting it’, small
environmental events can perturb their efforts to grasp a
toy that is within reach – a change in the supportive
characteristics of  an infant seat (Spencer, Veriejken,
Diedrich & Thelen, 2000) or a change in the visual scene
(Lee & Aronson, 1974). Similarly, various processes
within the child’s nervous system can potentially inter-
fere with successful reaching. Early on, infants have dif-
ficulty activating the right sequence of muscles to move
their hands in the vicinity of the toy (Spencer & Thelen,
2000). Later, more subtle effects can be observed such as
when motor habits built up over the last few movements
‘pull’ the current reach onto the paths of previous
reaches (Diedrich, Thelen, Smith & Corbetta, 2000).

Why is something as simple as a reaching movement
such a complicated thing to learn? One reason is the
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complexity of the environments in which infants behave
and their own inner complexity – the multitude of dif-
ferent interconnected subsystems and elements that
make up nervous systems. These types of complexities
ensure that infants are regularly bombarded by both
external and internal ‘noise’ – unpredictable changes in
the world or unpredicted changes in the internal ele-
ments of the nervous system. The trick is to maintain
some goal state (a reaching plan) amidst this blooming,
buzzing confusion. That is, the child must, at least for
some small window of time, achieve a stable state – a
state that resists perturbation. This is a fundamental
challenge for the developing child. And understanding
how such states arise over development is a fundamental
challenge for developmental psychology.

In dynamic systems terms, stability is defined as the
persistence of behavioral or neural states in the face of
systematic or random perturbations. Stability may arise
through a variety of mechanisms. In the simplest case,
the physics of the body itself  can provide stability. For
example, the elastic and viscous properties of muscles
can keep joints stable against perturbing forces (e.g.
Latash, 1993). Often, however, the nervous system gen-
erates stability by, for instance, constantly monitoring
and updating movements using sensory feedback.
Although these mechanisms of stability differ, the result-
ant stable states can be usefully characterized using the
concepts of dynamic systems theory (e.g. Braun, 1994).
In this framework, the space of possible states of a sys-
tem is spanned by state variables (or ‘behavioral vari-
ables’, see Schöner & Kelso, 1988a). For every possible
state (or value of the state variables), a vector predicts in
which direction and at which rate the system’s state will
evolve. Stable states are then values of the state variables
at which the rate of change is zero and to which the
system converges from nearby values (see Figure 1).

The need for instability

Although achieving behavioral stability is a fundamental
part of developmental change, there is a down side to
stability: it limits flexibility. Maintaining a stable beha-
vior means, after all, that change to a qualitatively dif-
ferent behavior is prevented. Thus, behavioral flexibility
requires that the stability of a particular state be dis-
solved; that the state be released from stability to allow
for a new behavior. In dynamic systems terms, a change
of a system that leads a particular state to become un-
stable is referred to as an instability (see Braun, 1994,
Chapter 4).

Under natural conditions, switches from one stable
state to another are often quite rapid. Adults, for in-
stance, will quickly and efficiently switch from a walking

to a running pattern at the appearance of an oncoming
car. In the laboratory, however, the release from stability
may be studied in detail by varying environmental con-
ditions gradually while monitoring stability. This was
the objective of the classic work on ‘finger twiddling’
(Kelso, 1984; Kelso, Scholz & Schöner, 1986; Schöner &
Kelso, 1988a). In these studies, adults reliably performed
rhythmic in-phase and phase-alternating finger movements
with low variable error when moving at a comfortable
speed. When movement frequency was gradually in-
creased, however, adults’ production of the alternating
pattern became increasingly variable, an indicator of
reduced stability. Indeed, at high frequencies, adults were
no longer able to maintain the alternating pattern and
spontaneously switched to an in-phase pattern.

These data demonstrate that instabilities are central to
behavioral switches from one pattern to another. Instab-
ilities also occur when a new pattern is learned. For
instance, Zanone and Kelso (Zanone & Kelso, 1992,
1994) asked adults to produce finger movements at a
relative phase of  90°, a pattern that was not initially
stable. Many participants had difficulty learning the new
pattern, in part, because they would often slip into either
an in-phase (0°) or a phase-alternating (180°) pattern.
After learning the new pattern, however, participants
were conversely attracted to 90° when attempting to per-
form other patterns, even, for some participants, when
attempting to perform the formerly stable in-phase and
phase-alternating patterns. Thus, learning not only stab-
ilized the new pattern, but also destabilized previously
stable states.

Figure 1 Plot of a hypothetical differential equation (see solid 
line) showing the rate of change (dx/dt) of a state variable, x. 
Arrows indicate the direction in which the state will change 
when the system is positioned near the value of x specified by 
the start of each arrow. The value of x where dx/dt = 0 is called 
a fixed point attractor: the system will return to this value even 
when pushed to other nearby values of x.
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Flexibility and levels

The necessary balance between stability and instability
makes the infant’s rise out of  the blooming, buzzing
confusion of development even more impressive. By this
view, development is not just a matter of  achieving
stability. Rather, the child must also acquire behavioral
flexibility – the ability to flexibly destabilize one stable
state and enter another as the situation demands.

Generating both stability and flexibility is a major
challenge because nervous systems do not contain two
separate systems dedicated to these two processes. To
clarify this point, consider how a roboticist designs the
motor control system for a non-autonomous robot. To
achieve stability in the robot’s behavior, the roboticist
programs a feedback, error-correction mechanism. To
make the robot flexible, however, the roboticist must
write separate programs for each new task. In nervous
systems, there is, of course, no programmer writing new
routines for each new encounter with the environment.
Rather, flexibility and stability must arise from the same,
densely interconnected neural system.

Although there are not separate stability and flexibil-
ity levels in nervous systems, the notion of levels of con-
trol can still be used to understand how these two
characteristics emerge from one complex system. Goal-
directed movements, such as reaching for an object,
involve at least three levels of control (Schöner, 1995).
First, the person must specify global characteristics of
the reach, for instance, its direction and amplitude (see
Figure 2). Second, the person must determine timing –
how fast or slowly he or she moves. Third, the mover
must produce the precise forces needed to move the seg-
ments of the arm. Importantly, these levels of control are
mutually coupled and interactive (see bidirectional
arrows in Figure 2), rather than being linked hierarchic-
ally where one level controls another. Moreover, all
three levels evolve in time and are continuously linked to
sensory information (see ‘world’ in Figure 2). Thus,
although we can measure movement direction, timing or
muscular forces in the laboratory, these aspects of a
reach are never generated in isolation, but are always
part of a multiply-connected and interactive system.

In this multi-level framework, a stable reach is the re-
sultant interplay of all the interlinked levels. The reach is
stable because it has highly redundant levels of control.
For example, an adult can achieve stable timing from
multiple and distributed processes by several means (see
Schöner, 2002): by controlling a timing pulse directly, by
adjusting the amplitude of the reach, or by making
adjustments at the level of forces (e.g. Gracco & Abbs,
1988; Kelso, Putnam & Goodman, 1983; Kelso, Tuller,
Vatikiotis-Bateson & Fowler, 1984; Sternad, Collins &

Turvey, 1995). Moreover, the whole system can be ‘softly-
assembled’ to meet the demands of a given context.
When people catch a ball, for instance, they adjust the
timing of their limbs to their visual estimation of the
ball’s contact. When people jog on a treadmill, however,
the timing of their limbs is tuned to the speed of the
treadmill and visual cues are much less important.

It is precisely this same redundancy that gives
dynamic systems flexibility. Because such systems are
multiply-determined, there are many ways for patterns
to become destabilized and reorganize in new ways.
Consequently, there is no need for a central executive.
Reorganization can occur when new perceptual informa-
tion specifies a new state, but may also result from
changes within the system itself. Thus, adults can change
the phase relationships between two fingers in response
to pacing by a metronome (e.g. Tuller & Kelso, 1989),
but changes in timing may also arise due to muscular
constraints when one limb moves a heavier weight than
another (e.g. Sternad et al., 1995). Similarly, infants re-
organize their movements as support from the environ-
ment changes, but also when they grow or develop the
ability to assume new postural configurations. Flexibility
arises from the same system properties that generate
stability.

Figure 2 A multi-leveled, dynamic systems view of how goal-
directed actions are controlled. Each box represents a dynamic 
system responsible for a particular aspect of action control. 
Planning = selection of global movement parameters; Timing 
= timing of signals to the motor system; Control = coordination 
and control of force production at the effector level. Each level 
is mutually coupled to the other levels, and each level receives 
sensory feedback from the world.
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Changes in stability and flexibility over development

The fundamental question of development is how new
behavioral forms are created. The multi-leveled dynamic
systems view discussed above provides a framework
within which this question can be addressed. One chal-
lenge for the developing child is to identify which beha-
vioral dimensions (i.e. which levels) are more or less
related to the stability of a particular behavior. More-
over, the child must determine how the levels interact,
that is, what types of coupling allow information to be
exchanged among levels in such a way that the levels
don’t perturb one another. Finally, the child must learn
to switch from one stable behavior to another as the
context changes. Development is therefore not merely
the evolution toward greater stability of particular beha-
vioral states (akin to getting better over learning), but
also the evolution toward an ability to release states from
stability in targeted and meaningful ways (for related
ideas, see Fischer, Rotenberg, Bullock & Raya, 1993).

The proposal that stability emerges from an ensemble
of processes at multiple levels is consistent with a recent
longitudinal study of the development of reaching (e.g.
Corbetta & Thelen, 1996; Thelen et al., 1993; Thelen,
Corbetta & Spencer, 1996). Early in the first year, the
infants in this study moved their arms in seemingly ran-
dom ways through many different regions of the task
space using a variety of muscle contraction patterns. At
this point in development, infants had difficulty stabiliz-
ing force production around the joints of the arm to
move the hand in a controlled manner through space.
The week when infants first began reaching, however,
they learned to stabilize force production in a clever, but
rather brute force way: infants began using the muscles
of the upper arm to get the hand moving in the right
direction and then co-contracted many arm muscles to
keep the hand in the vicinity of  the toy (Spencer &
Thelen, 2000; for related postural changes, see Spencer
et al., 2000).

With this hurdle cleared, infants began to refine the
relationship between the spatio-temporal aspects of their
reaching movements and force control. That is, they
began to improve the stability and coupling between
timing and force production levels (Thelen et al., 1996).
During the weeks after the onset of reaching, infants
would occasionally produce straight, accurate reaches.
More typical, however, were torturous reaches contain-
ing several changes in direction and speed. Such reaches
were particularly likely when infants moved quickly,
indicating that timing processes could perturb the stable
production of forces at another level of control. Around
30–36 weeks of age after several months of experience
reaching for toys, infants solved this problem: they were

able to produce relatively smooth and straight reaches,
even when moving quickly.

More recent studies of infants’ reaching skill have
revealed that, although infants generally produce
smooth and straight reaches by 8 to 9 months, their abil-
ity to stabilize a plan for where to reach is still develop-
ing. For instance, infants will reliably make the classic
Piagetian ‘A-not-B’ error at this point in development:
after infants have repeatedly searched for a hidden toy at
an A location, they will search back at this location,
even after watching a toy being hidden at a nearby B
location (e.g. Piaget, 1954; Smith et al., 1999). Import-
antly, recent data demonstrate that the goal-directed
processes that underlie such errors can be influenced by
coupling to the timing and force levels. For instance,
when infants’ body posture is changed just before a toy
is hidden at the B location, 8- to 10-month-old infants
are less likely to erroneously reach to A (Smith et al.,
1999). Thus, the bias to reach toward A is not just about
where A is located in space, but also about how the arm
must be moved to arrive at this location (see Thelen
et al., 2001).

Beyond 12 months (the age at which infants typically
succeed in the Piagetian A-not-B task), infants begin to
show more behavioral flexibility. For instance, around 2
years of age, children’s decision to reach with one hand
or two becomes finely scaled to the size of the object
(e.g. Fagard & Jacquet, 1996). Moreover, 2-year-olds are
able to use external landmarks to remember the location
of a toy hidden in a large sandbox, even when their body
position is manipulated between hiding and search
(Newcombe, Huttenlocher, Drummey & Wiley, 1998).

Taken together, these data suggest that the develop-
ment of complex skills can be usefully studied within the
stability framework outlined above. That is, development
can be viewed as the emergence of stability at different
levels of control, progressively more refined coupling
among levels, and enhanced behavioral flexibility as
system-wide organization becomes tuned to the details
of the behavioral context.

Discussion: evaluation of the motor approach

Strengths

The dynamic approach to motor control and develop-
ment has clear strengths. Of particular note, its ability to
provide a detailed ‘collective’ picture of behavior at a
relevant level, the level at which behavioral patterns
arise, has made the approach attractive to experimental-
ists. Conceptual theory (such as notions of attractors
and their disappearance through instabilities, the ideas
of emergence and self-organization) as well as formal



Dynamic systems and representational states 397

© Blackwell Publishing Ltd. 2003

theory (based on the mathematics of stochastic differen-
tial equations) has had close ties to experimental work,
both qualitatively and quantitatively. Moreover, novel
predictions have been possible in some cases (e.g.
Schöner, 1989; Schöner & Kelso, 1988b), and several
formal models of phenomena have been proposed that
are consistent with all known facts (e.g. Schöner, Haken
& Kelso, 1986).

In development, the approach has often been cri-
ticized as being ‘metaphorical’. Indeed, most dynamic
systems research in development has stayed at the con-
ceptual and empirical levels. Nevertheless, the dynamic
approach has provided critical insights into the nature of
developmental change. Dynamic systems theory has
helped move the field away from notions of develop-
mental programs and controlling processes. Rather,
there is an emerging emphasis on the self-organizing
tendencies of a spontaneously active, complex organism
(see also, Fischer & Bidell, 1998; Lewis, 2000; Newell &
Molenaar, 1998). This view is consistent with ideas pro-
posed by other developmental theorists as well, includ-
ing Jean Piaget (1952), Eleanor Gibson (1991) and Kurt
Lewin (1936, 1946). Moreover, the nonlinear nature of
dynamic systems has demonstrated that both quantit-
ative and qualitative developmental change can be gen-
erated by the same system. Thus, it is not necessary to
posit new control processes to account for qualitative
shifts in behavior. Rather, such changes can occur via a
reorganization of the system during the transition (e.g.
Thelen & Smith, 1994; van der Maas & Hopkins, 1998;
van der Maas & Molenaar, 1992; van Geert, 1998).

In addition to these insights, the concepts of multi-
causality and soft-assembly have focused attention away
from the search for single, causal factors in development,
toward the confluence of factors that create more or less
stable behavioral patterns. For instance, rather than
searching for the trigger that ‘turns on’ walking during
infancy, Thelen and colleagues examined a host of com-
ponent systems that might contribute to the develop-
ment of this skill. This led to the striking discovery that
infants will show alternating stepping patterns on a
treadmill long before they begin walking independently
(see Thelen & Ulrich, 1991). Examples such as these
illustrate that development can be usefully studied by
examining how infants and children assemble behaviors
‘in the moment’ based on their own past behavioral his-
tories and the nature of the current behavioral context
(Thelen & Smith, 1994).

The multi-causal nature of how stability is realized
also helps explain the origin of the inherent variability
and context-dependency of development (Siegler, 1994;
Thelen, 1992; Thelen & Smith, 1994). Behavioral devel-
opment is variable in this view, because stability requires

coordination among a complex array of components. As
such, it is unlikely that stable behavioral patterns will be
realized in precisely the same way each time a child
engages in a behavior. Rather, the way in which stability
is achieved will depend on the details of the context and
each individual’s developmental history.

Behavior is context-dependent in this view, in part,
because stability often requires strong input from the
environment to suppress internal and external sources
of perturbation. Thus, if  contextual supports are not pre-
sent, the behavioral state cannot be stabilized. A multi-
leveled view of stability is also relevant here, because
couplings established in one context may not produce
behavioral stability in a different context. Such context-
dependency may be particularly prevalent in early devel-
opment when only a limited number of ways to stabilize
a particular behavior have been discovered. For instance,
Adolph (1997) reported that after several months of
crawling experience, infants developed a relatively pre-
cise perceptual threshold for slopes they could safely
descend. However, once these infants began walking, they
plunged over all slopes as if  they had never seen slopes
before! This dramatic example of context-dependency
may reflect context specific coupling between visual and
motor processes. That is, perceptual processes clearly
informative for stabilizing crawling movements were not
effectively coupled to the motor processes involved in
walking.

Limitations

One criticism of the motor approach is that dynamic
systems concepts provide what is essentially a descrip-
tion of observed patterns, without helping us understand
mechanism, that is, how behavioral patterns are actually
generated by the nervous system. Are dynamic systems
approaches purely descriptive?

A first answer is, yes, dynamic concepts are descriptive
in that formal dynamic systems models require that the
scientist select which variables to use to represent a par-
ticular behavioral state and distance from a goal state.
Relative phase, in the rhythmic movement example,
expresses such a choice. The characterization of rhyth-
mic movements in terms of relative phase is descriptive
relative to more specific levels such as the signals coming
from particular sensors or going to particular effectors.
A coupled oscillator picture expresses a different choice.
Here the mechanical position of each limb is the level of
description, so that the relative phase level appears as a
more macroscopic, approximate description.

A closer look reveals, of course, that the description
in terms of mechanical positions of limbs is rather mac-
roscopic too, as there are many potential mechanisms
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that contribute to the mechanical position of a limb.
Those include efference copy of motor commands, pro-
prioceptive, spindle and other sensory information
about limb position, and many others. In fact, with this
critical eye we discover that we can move to finer and
finer measurement scales, yet each scale still requires
decisions by the scientist about which variables to use to
represent some behavioral state. Thus, as with relative
phase, the description of the motor system in terms of
firing rates of motor neurons or in terms of their mem-
brane potential is still a particular choice of level of
description, and even these hide other complex micro-
scopic dynamics. And so it continues down to the bio-
chemistry of neurotransmitters or membrane gates.

This leads to a second answer to the question about
description: no, formal dynamic concepts are not more
descriptive and less explanatory than any other set of
concepts currently in use, because all formal models re-
quire selection and specification of the variables deemed
‘relevant’ to the phenomenon in question. The question
is less whether there is an absolute mechanistic level of
description from which all behavior must be explained
than what is an appropriate choice (or choices) of
level of  description for each particular behavioral
phenomenon.

From a dynamic systems perspective, there are two
arguments that help answer this question. First, an
appropriate level of description must be closely linked to
the stability of  the behavioral pattern under study. This
follows from the goal of a dynamic systems model – to
capture how the stability of behavioral states changes
over time. Thus, if  we find, for instance, that membrane
mechanisms work the same way irrespective of whether
a particular behavioral pattern is currently stable or not,
then we are not looking at a level of description specific
to the phenomenon that we aim to understand.

The second argument that helps select an appropriate
level of  description is related to the issue of  multi-
causality. Recall from our discussion of the multi-leveled
view that behavioral states may arise under a wide set of
circumstances and may be influenced by processes at
multiple levels. For instance, a stable timing pattern
might be influenced by constraints in the environment
(e.g. the tick of a metronome), as well as by mechanical
constraints that arise from the weighting of a limb. To
effectively model the characteristics of timing patterns,
then, a level of description is required that captures
when timing is more or less stable, irrespective of which
particular mechanism/level was the primary cause for
the resultant timing pattern. This does not prevent us, of
course, from also addressing that latter question, for
which an adequate characterization of timing dynamics
is a prerequisite.

A second criticism of dynamic systems approaches to
development is that they have been largely driven by a
conceptual or metaphorical understanding of dynamic
systems theory without a strong connection to formal
modeling. Although this criticism is generally accurate
(with some notable exceptions), a conceptual approach
has been quite generative to date. Thus, while it should
certainly be a goal to move developmental research
toward more formal theory building, it is important not
to undersell the role played by the conceptual ideas that
underlie dynamic systems approaches (see Thelen &
Bates, this issue). Indeed, formal approaches are less use-
ful unless the conceptual groundwork has been laid
within a research domain.

A final limitation of the dynamic approach we have
sketched to this point is its relationship to perception,
cognition and, specifically, representation. The notion of
dynamic state variables that evolve continuously toward
stable states seems to require that at all times informa-
tion about such states is available, well specified and
changing gradually in time. This is not always the case
with representational states. Consider three situations
where a person decides to grab a coffee cup on a table.
In one case, the cup is clearly visible and far from other
objects; in another case, the cup is surrounded by iden-
tical ‘distracting’ cups; in a third case, vision of the cup
is obstructed by a stack of journal articles. Assume, fur-
ther, that the person makes an identical movement in
these cases – an accurate, stable, efficient reach that suc-
cessfully makes contact with the cup. Does the motor
approach capture everything about this situation? The
answer is ‘no’. This approach fails to capture differences
in the representational states underlying these move-
ments. In particular, in one case, there was a high degree
of certainty regarding where to move, in the second case,
the decision of where to move was much less certain, and
in the third case, the decision took on a new flavor –
rather than being generated based on visible informa-
tion, the decision was generated based on a longer-term
memory of the cup’s location. The dynamic approach must
somehow deal with these characteristics of representa-
tional states. This is the issue to which we turn in the
next section as we introduce the dynamic field approach.

The dynamic field approach and 
representational states

Stability is a necessary component of 
representational states

In the dynamic systems approach to motor control and
development, behavioral variables are used to capture
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the collective structure of, for instance, overt motor
behavior and which behaviors are more or less stable at
particular moments in time. Although this approach has
many strengths, the example above illustrates that some-
thing is missing. Can the dynamic approach capture the
properties of representational states that seem necessary
to deal with perception, cognition and the development
of these systems?

Before describing our approach to representational
states, it is important to clarify exactly what we think is
missing from the motor approach. First, the motor
approach fails to capture the graded certainty of  repres-
entational states that underlie behavior. In the example
above, the person set up a comparable dynamic system
for the arm movement, even though there were import-
ant differences in the underlying representational states.
What we need is a coupled dynamic system that captures
the certainty with which movements are planned, in-
formation is integrated and decisions are made and
captures the generation of movements as well.

The second limitation of the motor approach is more
subtle, but equally important. With more classical
dynamic systems, the state of the system is always clearly
specified. This is appropriate because the hand (or any
other effector) is always somewhere! By contrast, infor-
mation about, for instance, the location of a target can
sometimes be insufficient. In these cases, a well-defined
movement plan may not be formed. At other times, in
spite of remaining uncertainty about exactly which tar-
get to move to, a decision might be made to select a
particular target and a clearly defined movement plan is
formed. Thus, the dynamic approach must allow for
both the presence and the absence of a clearly defined
representational state in a manner that extends beyond
simply mirroring the graded certainty of available infor-
mation. To foreshadow our approach to this issue, we
need a dynamic system that is bi-stable – it can stably
express whether a clearly defined representational state
has been established or not.

The third key feature of representational states is that
they can be discontinuous in content. There are times
(particularly with adults) when the content of a response
doesn’t appear to be systematically related to the content
of previous responses. For instance, in a target detection
task, the representational state that underlies the verbal
response ‘the far left target’ does not obligatorily evolve
through intervening locations en route to the response
‘the far right target’. This is not to say that the processes
underlying these two representational states were not
continuous, nor does it imply that continuous change of
representational state never occurs (e.g. continuous state
change does occur in many mental rotation tasks). The
central point is that the content of representational

states does not necessarily take on this continuous char-
acter. This stands in contrast to the motor system which
must always evolve continuously in ‘content’. Thus, a
pointing response to the ‘left’ must necessarily evolve
through intervening locations en route to the ‘right’.

To account for these three missing characteristics of
representational states, we adopt the concept of activation
as it has been used in the past in mathematical psychology,
connectionism and theoretical neuroscience (Churchland
& Sejnowski, 1992; Williams, 1986). In our dynamic field
approach, this concept takes the form of an activation
field, defined over the metric dimension represented. In
the coffee cup example above, activation might be dis-
tributed across the dimension of reachable locations, a
continuous metric dimension stretching from a far left
location to a far right location. A localized peak of acti-
vation within this field indicates that a target object (a
cup) has been detected at a particular location. Such a
peak might be built up via perceptual input that specifies
where the cup is located within reachable space.

How does ‘activation’ allow for the characteristics of
representational states mentioned above? Graded cer-
tainty can be accommodated by allowing activation to
take on a complex distributional form. In the presence
of multiple inputs (i.e. multiple cups), for example, some
locations might be more strongly ‘represented’ than
others, leading to a multi-modal distribution of activation
across reachable space. Alternatively, in the presence of
no inputs, a homogeneous, low-level amount of activa-
tion might be distributed across all locations. In this
case, the activation field (in conjunction with stability
characteristics described below) captures the absence of
a clearly defined representational state. Finally, if  we
consider the evolution of activation over time, discontinu-
ous change in content can be effectively described. For
instance, if  a left target suddenly disappears and a right
target appears, there can be a discontinuous shift in what
is represented by activation that reflects this change. In
particular, activation associated with the left target can
decay while activation associated with the right target is
built up. Importantly, this can occur even though activa-
tion never builds up at intermediate reachable locations.

Although the introduction of ‘activation’ moves
toward a dynamic approach to representational states, a
key characteristic of dynamic systems has been left out
– stability! To illustrate the role of stability in our
dynamic field approach, we turn to a new, but related
example: the detection of reachable targets in the classic
Piagetian A-not-B situation. Infants in this situation are
typically shown a box with two hiding wells (e.g. Smith
et al., 1999). Placed on top of these wells are lids that are
often the same color as the box. Infants are shown an
attractive toy, the toy is hidden in one of the wells and
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covered up, there is a short memory delay, and infants
are allowed to reach. What do infants represent about
the state of the world that would usefully guide action in
this task? For instance, are desired targets present or
absent? Is the location of the target specified by per-
ceptual cues (lids)? How salient are these cues?

We can think about the characteristics of infants’ rep-
resentational states in this situation in terms of the same
activation field described above: an activation field defined
over the behavioral dimension of reachable locations. A
localized peak of activation within this field indicates
that a target object has been detected at a particular
location. For instance, localized sensory input driven by
the hiding event at a particular location can build a
localized peak of activation at sites in the activation field
associated with this location in reachable space.

Does such an activation field achieve stable repres-
entational states? Or have we simply described a way to
transform sensory input into neural output? If  we want
the child to behave stably and robustly, our activation
field must do more than simply reflect localized sensory
input. This becomes clear when one considers what
infants do in the A-not-B situation. After a target has
been hidden, infants are still wiggling around, making
noise, looking from side to side. All of these things may
disrupt the continued detection of the toy’s location. If
our activation field merely transformed sensory input
into neural output, infants would be stopping and start-
ing all the time – starting to reach for a detected target,
aborting this action in the face of new sensory input, re-
detecting the target location, starting again, aborting the
action, and so on.

What we need is an activation field that goes through
an instability when a target is detected and forms a
stable attractor state, in this case, a stable, localized peak
of location-specific activation. A dynamic system of the
activation field – what we refer to as a dynamic field –
generates such an instability and stable attractor state
through a well-known brain-like interactive mechanism:
local excitation and lateral inhibition. This leads to an
emergent property critical to performance in the A-not-
B situation: when an object is hidden, dynamic fields can
enter a state in which a localized peak of activation built
up by sensory input (the hiding event) remains stable
even when this input is removed. Thus, dynamic fields
can actively and stably retain a memory of the hiding
event, a form of ‘working’ memory.

The A-not-B error: capturing early changes in the 
stability of representational states

To explore how dynamic fields stably represent informa-
tion, we turn to the dynamic field model proposed by

Thelen and colleagues (2001) to capture infants’ per-
formance in the A-not-B situation. Figure 3 shows how
this model behaves on the first B trial in the A-not-B
task (i.e. the first trial after pre-training to the A location
and two A trials). The top panel shows a simulation of
an 8- to 10-month-old infant’s performance, the age
range in which infants typically make the A-not-B error
(e.g. Diamond, Cruttenden & Neiderman, 1994; Dia-
mond & Doar, 1989; Smith et al., 1999). The bottom
panel shows a simulation of a 12-month-old infant’s per-
formance, the age at which infants typically search cor-
rectly in this task.

The figures in the left column of each panel show
three inputs to the model that capture events in the task,
while the figures to the right in each panel (Figures 3d,
3h) show dynamic fields. In each field, the range of pos-
sible reaching locations is captured along the x-axis, time
from the start of a trial (0 s) to the end of a trial (10 s)
is on the y-axis, and activation is on the z-axis. Note that
we refer to the figures in 3d and 3h as ‘working memory
fields’ rather than ‘motor planning fields’ (see Thelen
et al., 2001) to link up with recent extensions of the
dynamic field model to studies of spatial working mem-
ory beyond infancy (see below). Nevertheless, our notion
of working memory remains closely tied to sensorimotor
phenomena, a point we return to later.

The inputs depicted in the left column of the upper
panel capture the different events that occur in the A-
not-B task. Figure 3a shows the first input, the task
input. In the canonical A-not-B task, there are two hid-
ing locations covered by identical lids. This is captured
in the figure by the two peaks of input activation cen-
tered over the A and B locations. The specific input is
shown in Figure 3b. This input captures the hiding
event. At the start of the trial when the toy is not visible,
the specific input is zero. Next, the experimenter waves
the toy near the B location and hides it under the B lid.
This event is captured by the strong input activation at
the B location between 2 and 4 s. After the hiding event
is over (after 4 s), the specific input is once again zero
(i.e. the toy is not visible). The final input, the memory
input, captures the infant’s longer-term memory of previous
trials (see Figure 3c). The memory input has activation
centered at the A location. Recall that Figure 3 shows
how the model behaves on the first B trial. Thus, the
stronger activation at A in the memory input reflects the
infant’s longer-term memory of the previous trials to A.

These inputs are integrated within the spatial working
memory field shown in Figure 3d. At the start of the
trial, there is stronger activation in the field at A than at
B. This is due to the stronger memory input at A. From
2 to 4 s, the experimenter waves the toy at the B location.
The strong specific input that captures this event builds
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Figure 3 Dynamic field theory of the A-not-B error. Top panel shows time-dependent changes in a spatial working memory field 
(d) in the context of three inputs (a, b, c) during the first B trial for an 8–10-month-old infant. Bottom panel shows changes in 
spatial working memory (h) in the context of the three inputs (e, f, g) during the first B trial for older infants. See text for further details.
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a peak of activation in the field at the B location (see
Figure 3d). At 4 s, the toy is hidden. In the absence of
strong specific input, the activation peak at B in the field
decays. Consequently, by the time the infant is allowed
to reach (at 10 s), activation at A – driven by the mem-
ory input – dominates and the infant reaches to A. That
is, the infant makes the A-not-B error.

The bottom panel of Figure 3 shows a simulation of
the model that captures the performance of older infants
(e.g. 12 months). Notice, first, that the inputs in the left
column (Figures 3e, 3f, 3g) are identical to the inputs
shown in the top panel. However, the working memory
field behaves quite differently (see Figure 3h). When the
toy is held up and hidden at the B location, the strong
specific input at the B location is amplified in the field.
Critically, the resultant activation peak in the field is
maintained during the delay, even after the toy is hidden
and the specific input goes to zero (see Figure 3f). Thus,
even in the absence of strong input, the field retains a
memory of the hiding event at B. Consequently, after the
delay (at 10 s), the older infant reaches correctly to the
B location.

What accounts for the qualitatively different patterns
of activation in the two working memory fields shown in
Figure 3? This shift in behavior reflects a difference in
the attractor states in which the two models operate
caused by differences in how activation spreads among
sites in the field. Underlying the performance of each
field is a local excitation/lateral inhibition function.
According to this function, an activated site in the field
will increase the activation of neighboring sites (local
excitation) and suppress the activity at far away sites
(lateral inhibition). The field in Figure 3d is only weakly
interactive: sites do not have a strong effect on one
another. Instead, patterns of activation through time are
largely determined by input. By contrast, the field in
Figure 3h is strongly interactive. That is, sites in the field
interact so strongly that patterns of activation can take
on a life of their own – even after input has disappeared,
sites can continue to stably excite one another within the
local region initially stimulated by input. Thus, underly-
ing the shift in infants’ performance captured by these
simulations is a change in how stably information is
represented.

It is important to note two characteristics of the devel-
opmental switch from weak to strong interaction shown
in Figure 3. First, it only takes a small, quantitative
change in the interaction function to switch dynamic
fields from operating in the weakly interactive mode
(Figure 3d) to the strongly interactive mode (Figure 3h).
Thus, as is the case with many dynamic systems
accounts of developmental phenomena, a small change
in the parameters of the model can lead to qualitatively

different behaviors over development (e.g. van der Maas
& Molenaar, 1992; van Geert, 1998). Second, although
changes in interaction can be realized with a small para-
meter change, there are also other ways to create self-
sustaining local excitation. For instance, self-sustaining
activation can be created by very strong input. Thus, the
developmental change depicted here should not be con-
sidered an all-or-none developmental switch. Rather, this
type of developmental change is likely context- and
experience-dependent (Smith et al., 1999; Thelen et al.,
2001; Thelen & Smith, 1994).

Beyond infancy: a dynamic field theory of the 
development of spatial working memory

An important aspect of Thelen et al.’s account of
infants’ behavior in the A-not-B situation is that such
behavior reflects the operation of general processes that
make goal-directed actions to remembered locations. As
such, the principles captured by the dynamic field model
should not be specific to a particular task or to a parti-
cular period in development. Recent work by Spencer
and colleagues (e.g. Schutte & Spencer, 2002; Spencer,
Smith & Thelen, 2001) demonstrates that this is indeed
the case. Moreover, this body of evidence suggests that
the same developmental insights that capture changes in
infants’ performance in the A-not-B task can account
for both qualitative and quantitative changes in the
stability of spatial working memory processes later in
development.

As a first step toward moving beyond infancy, Spen-
cer, Smith and Thelen (2001) examined 2-year-olds’
responses in an A-not-B version of a sandbox task. In
this task, children watch as a toy is buried somewhere in
a long, rectangular sandbox (see also, Huttenlocher,
Newcombe & Sandberg, 1994). The toy is covered up,
there is a short delay, and the child is allowed to search
for the toy. Spencer et al. hid toys repeatedly at an A
location. These trials were followed by several trials to a
nearby B location. Results showed that 2-year-olds – an
age at which children no longer reliably show the A-not-
B error – were biased to point in the direction of the A
location on the B trials. Moreover, as is the case with 8-
to 10-month-old infants (Smith et al., 1999), the magni-
tude of this bias depended on the number of trials to the
A location, that is, on the strength of the longer-term
memory of A. More recent work has demonstrated that
these A-not-B-type biases occur with children as old as
6 years of age (Schutte, Spencer & Schöner, in press).

How might the dynamic field model account for these
biases? More specifically, why do 2-year-olds show A-
not-B-type errors in the sandbox task, but not in the
canonical Piagetian task? Shouldn’t 2-year-olds, like
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12-month-olds in Thelen et al.’s account, be able to sus-
tain target-specific activation in working memory in the
sandbox task? The solution to these puzzles lies in an
emergent feature of dynamic fields that operate in the
self-sustaining state: self-sustaining activation peaks can
show systematic spatial drift during memory delays
(Schutte & Spencer, 2002; Spencer & Schöner, 2000).

Figure 4 shows a simulation of the dynamic field
model with the same parameter setting used in the lower
panel of the previous simulations (see Figure 3h). The
only difference here is that we have modified the task
input: we have set this input to zero since there are no
salient location cues in the sandbox (see Figure 4a). Fig-
ure 4d shows how this change in the task input modifies
the behavior of the working memory field on the first B
trial (following several trials to the A location). At the
start of the trial, the toy is hidden at the B location. The
strong target input generates a self-sustaining peak of
activation in working memory centered at the target
location. During the memory delay, however, the self-
sustaining peak begins to drift toward the A location.
This occurs because the self-sustaining peak ‘feels’
stronger excitation on its A-ward side due to the longer-
term memory input at A. This extra bit of excitatory
input recruits new sites into the self-sustaining interac-
tion and the peak drifts toward the A location. This type
of drift did not occur in Figure 3h because the location

of the self-sustaining peak was stabilized by the task
input at the B location. This explains why 2-year-olds do
not make the A-not-B error in the canonical Piagetian
task with marked hiding locations but do show biases
toward A in the sandbox task. And, importantly, these
task-specific differences in performance emerge out of
the same general processes.

The delay-dependent nature of the spatial drift in Fig-
ure 4 suggests that biases toward previously responded-
to locations should increase systematically as the memory
delay is varied. This is indeed the case with 3-year-olds
(Schutte & Spencer, 2002), 6- and 11-year-olds (Hund
& Spencer, 2003; Spencer & Hund, in press), and adults
(Spencer & Hund, 2002). Importantly, however, the
magnitude of delay-dependent drift becomes quantitat-
ively smaller over development. For instance, in a task
similar to the sandbox task with adjacent targets separ-
ated by 20°, 3-year-olds erred roughly 10° toward A on
the B trials following a 10 s delay (Schutte & Spencer,
2002). Six- and 11-year-old children showed compar-
able effects in the same task; however, their biases
were typically 2°–4° (Spencer & Hund, in press). Finally,
adults’ errors were quite small – biases toward previ-
ously responded-to targets tended to be roughly 1°–2°
(Spencer & Hund, 2002).

These quantitative changes raise the question of what
is changing over development to create a more accurate

Figure 4 Dynamic field theory with homogeneous task input. Figure details are identical to Figure 3 with one exception – the 
task input (a) was set to zero. See text for further details.
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memory of locations. Spencer, Schutte and Schöner
(Schutte, Spencer & Schöner, in press; Spencer &
Schöner, 2000; Spencer & Schöner, 2003) proposed that
such effects could be accounted for by narrowing the local
excitation/lateral inhibition function that underlies site-
to-site interactions in the field. A reduction in A-not-B-
type biases then occurs for two reasons. First, with
narrower interaction, it is less likely that self-sustaining
peaks will overlap with activation associated with the
longer-term memory input. Consequently, activation
peaks in working memory will not feel the effects of such
input. Second, dynamic fields with narrower local excita-
tion and, conversely, more extensive lateral inhibition
have more stable self-sustaining peaks (for related effects,
see Compte, Brunel, Goldman-Rakic & Wang, 2000).
More stable peaks are more resistant to delay-dependent
drift. Consistent with this second point, there is a sys-
tematic reduction in the variability of children’s and
adults’ responses from 6 years into adulthood (Hund &
Spencer, 2003; Spencer & Hund, in press, 2002).

A final body of work has demonstrated that the nar-
rower interaction view of development can also account
for a qualitative shift in spatial categorization perform-
ance between 3 and 6 years. Several studies have shown
that young children’s (e.g. 3-year-olds’) responses in spa-
tial recall tasks are biased toward the midline of the task
space (e.g. toward the midline symmetry axis of the
sandbox) (Huttenlocher et al., 1994; Schutte & Spencer,
2002; Spencer et al., 2001). Older children (e.g. 6-year-
olds), by contrast, are biased away from the midline of
the task space (Hund & Spencer, 2003; Huttenlocher
et al., 1994; Sandberg, Huttenlocher & Newcombe, 1996;
Spencer & Hund, in press). These children show a type of
categorization behavior, where they appear to group loca-
tions into left and right regions. A recently-developed
version of the dynamic field theory can account for this
qualitative shift in performance (Spencer et al., 2002).
Although the details of this new model are beyond the
scope of  the current paper, it is relevant here because
the qualitative change in categorization behavior by the
model occurs over development as site-to-site interac-
tions are narrowed. Thus, the same mechanism in the
model that produces quantitative changes in A-not-B-type
effects and variable errors over development can also
account for qualitative changes in spatial categorization.

Discussion: evaluation of the dynamic field approach

Connections to the motor approach

The dynamic field approach is a departure from dynamic
models of motor control and motor development in that
dynamic fields represent information as attractor pat-

terns of activation. This overcomes a major limitation of
the motor approach. Nevertheless, the concepts of the
motor approach remain at the core of the dynamic field
perspective. Dynamic fields are, after all, dynamic systems.

Central to the dynamic field approach is the concept
of stability. Dynamic fields provide a theoretical lan-
guage that captures how a network of neurons can solve
the stability problem, that is, how a network of neurons
can stably maintain a pattern of activation in the face of
perturbations. Formally, this occurs when activation in
the field goes from a stable resting state through an
instability (bifurcation) into a new attractor state – the
self-sustaining state. Dynamic fields also embody the con-
cepts of multi-causality and self-organization. Attractor
states in dynamic fields emerge from the confluence of
inputs and the intrinsic excitatory/inhibitory properties
of intra-field interactions. Thus, as noted above, a
dynamic field can enter the self-sustaining state in many
ways. This can occur because a strong input is presented
(e.g. a toy), or because multiple weak cues combine (e.g.
weak perceptual cues plus a weak longer-term memory).

Importantly, input-related effects always depend on
the current state of activation in the field and the nature
of intra-field interactions. For instance, when informa-
tion about a B location is being actively maintained,
weak perceptual inputs at A may be suppressed via lat-
eral inhibition – a form of decision-making (choosing B
over A). This may not be the case earlier in the trial,
however, when a weak cue at A might ‘win’ over a weak
cue at B. Such multi-causal, self-organizing properties of
dynamic fields create the potential for an impressive
amount of behavioral flexibility, flexibility realized in
our extensions of the dynamic field approach beyond
infancy.

Additional possibilities for behavioral flexibility em-
erge within the context of the multi-level view of stability
considered previously. Now, rather than thinking about
multiple levels of control solely in the context of motor
control and motor development, one can consider
multiple levels of representation by coupling multiple
dynamic fields together. Steinhage and Schöner (1998),
for instance, have used dynamic fields to organize the
behaviors of autonomous robots. Such robots are able to
acquire targets in the world while avoiding obstacles,
make decisions about which targets to acquire, and plan
paths to acquire multiple targets. This impressive beha-
vioral flexibility originates from a multi-leveled dynamic
system containing multiple dynamic fields as well as
more classic dynamic systems involved in, for instance,
the control of the robot’s effectors.

These ideas about the nature of cognitive processes
and the relationship between cognition and action have
fundamental implications for cognitive development.
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First, they provide a framework for thinking about a
classic Piagetian issue: how cognition can emerge from
sensorimotor origins over development (see Thelen et al.,
2001). Because representational states in the dynamic
field approach are closely tied to sensory input and
motor output, it is possible for sensorimotor phenomena
to help create such states. This is the case, for example,
when strong perceptual cues move a dynamic field from
the input-driven mode to the self-sustaining mode in the
context of the A-not-B situation. Second, the dynamic
field view of cognition moves the focus away from what
children ‘know’ at different points in development
toward an understanding of which cognitive states chil-
dren reliably enter and how those states come about via
the integration of information in the world, the child’s
past history in the task, and so on.

Beyond the motor approach

Dynamic fields extend the motor approach through the
inclusion of representational states that have close ties to
neurophysiology. Representation within dynamic fields
emerges from the self-organizing properties of a popula-
tion of neurons whose activation is time- and context-
dependent. Importantly, this population activity does
not merely form an imprint of sensory events or trans-
form sensory input into motor output. Rather, repres-
entational states can take on their own intrinsic flavor. In
this sense, representation in the dynamic field approach
is consistent with other dynamic approaches to repres-
entational states in cortex (e.g. Skarda & Freeman, 1987).

Recent approaches have demonstrated, moreover, that
the state of dynamic fields can be directly estimated from
firing rates of populations of cortical neurons using popu-
lation coding ideas (Erlhagen, Bastian, Jancke, Riehle &
Schöner, 1999). For example, the activation of neurons in
motor cortex (e.g. Georgopoulos, Kettner & Schwartz,
1988; Georgopoulos, Taira & Lukashin, 1993), premotor
cortex (e.g. di Pellegrino & Wise, 1993), and prefrontal
cortex (e.g. di Pellegrino & Wise, 1993; Graziano, Hu
& Gross, 1997; Wilson, Scalaidhe & Goldman-Rakic,
1993) is broadly tuned such that neurons respond max-
imally to stimulation at a ‘preferred’ location, and less
vigorously as stimulation is moved away from the pre-
ferred location. A population representation can be con-
structed by lining these neurons up, not according to
their cortical locations, but according to their preferred
spatial locations. Then, the activation of the newly
aligned neurons in some task can be plotted through
time and the resulting distributions of activation can be
compared to activation profiles predicted by dynamic
fields. These techniques have been used to directly
observe, for instance, the representation of movement

direction in motor and premotor cortex, providing evid-
ence for the presence of preactivation when precues are
given (Bastian, Riehle, Erlhagen & Schöner, 1998). In
addition to this population coding approach, the general
principles of dynamic fields can be usefully integrated
with a more biophysical approach that attempts to
incorporate the details of neurotransmitter action, timing
properties of neurons, etc. (Compte et al., 2000).

Although these connections to neural processes are
exciting, it is important to note that dynamic field mod-
els are descriptive in the same sense we described previ-
ously. That is, these models still embody decisions by the
experimenter about which behavioral dimensions are rel-
evant to the behavior in question. Thus, while dynamic
fields certainly interface more clearly with neurophysi-
ology, this does not obviate the need for tough theoretical
decisions about the appropriate level of description for a
given behavioral system.

A third limitation of the motor approach discussed
previously was that dynamic systems ideas are typically
applied to development in a purely conceptual or meta-
phorical way. The dynamic field approach clearly moves
toward a formal theory of infant perseverative reaching
and spatial working memory. Nevertheless, it is import-
ant not to undersell the role conceptual thinking played
in the development of this formal theory. This point is
dramatically demonstrated by the evolution of the A-
not-B model. Smith, Thelen and colleagues (Smith et al.,
1999; Thelen & Smith, 1994) published a re-thinking of
the A-not-B error based solely on the conceptual applica-
tion of  dynamic systems concepts to this error. This
conceptual analysis was then formalized by Thelen et al.
(2001) using dynamic field concepts. And both the con-
ceptual and formal theories have generated a variety of
novel experiments (e.g. Diedrich, Highlands, Thelen &
Smith, 2001; Diedrich et al., 2000; Smith et al., 1999).
Thus, the evolution of the A-not-B story can be usefully
compared to the now classic story that emerged from the
study of finger twiddling and relative coordination. In
both cases, there was a tight interplay among empirical
work, conceptual theory and formal theory.

Connections to connectionism

Shared concerns between connectionism and the 
redefined dynamic systems approach

The dynamic systems approach to development pion-
eered by Thelen, Smith and colleagues developed out of
the area of motor control. Consequently, this view began
with a strong anti-representational stance largely directed
against unreasonable symbolic motor programming
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accounts of movement preparation. Moreover, this early
approach was abstract, attempting to capture global
patterns in behavior, rather than how such patterns were
realized by different physiological systems. The newer
dynamic field approach embraces the notion of repres-
entational states and the dynamics of cognition in a way
that interfaces with neurophysiology. In this regard,
comparisons with connectionism are facilitated.

The major shared concern of both approaches is the
drive to rethink the basis of cognition, taking into
account from the start the constraints of the nervous
system, the effector and sensor structure that this nerv-
ous system is connected to, and the structure of the spe-
cific environment in which this nervous system acts,
learns and develops. The dynamic field concepts add a
neurophysiologically plausible, sub-symbolic form of
representation to the dynamic approach that is tightly
linked to the sensory and motor ‘surfaces’. The dynamic
field representation is sub-symbolic because it does not
solve ‘matching’ problems of mapping current sensory
input onto a particular representation. Instead, that
matching is achieved as an emergent property: when
input is sufficiently close to current activational states in
the field, matching or blending of activations occurs. In
this, there are close ties to connectionism whose ‘distrib-
uted representations’ are likewise sub-symbolic, graded
and relatively close to sensory and motor processes. The
field approach makes explicit the metric properties of the
underlying behavioral dimensions, which is not always
the case in connectionist models. However, this is cer-
tainly not excluded within the connectionist approach
(see, e.g. Bullock & Grossberg, 1988; Bullock, Grossberg
& Guenther, 1993).

Furthermore, we argue that in both approaches there
is a notion of ‘emergence’ of higher cognitive function-
ing. In the dynamic systems framework, new modes of
behavior and representation emerge multi-causally
through instabilities. In connectionist models, learning
may lead to the extraction of invariances that are con-
tained in the environment or the system–environment
interaction. Emergence is also used in connectionist
thinking in a slightly different sense, such as when
epochs of different effective rates of learning emerge
from a time-invariant learning rule. Because learning has
not played a comparable role in the dynamic systems
approach to motor control and development, emergent
properties of learning dynamics have not been invest-
igated, although instabilities probably form a common
mathematical basis (see, e.g. Amari, 1989).

With regard to development, there is dramatic con-
ceptual overlap (see Bates & Thelen, this issue). Both
approaches view development as a step-by-step emergent
process. There is also a strong emphasis on understand-

ing the details of children’s performance in a variety of
situations, rather than stressing the competencies of chil-
dren at different ages. In this way, these developmental
approaches have tried to simplify the representational
demands necessary for complex behavior, because not all
knowledge must be stored in the brain. Finally, both
approaches stress the importance of nonlinear processes
in development. Nonlinear systems provide fundamental
insights into how development can be both gradual and
sudden at the same time.

Differences between the dynamic systems and 
connectionist approaches

The dynamic field approach carried over from the earlier
motor approach the idea that instabilities mark qualit-
ative changes then of behavior, now of representational
states. Instabilities disrupt the one-to-one, input-output
mapping and make dynamic fields non-standard neural
networks. Dynamic fields are, however, a special case of
competitive dynamic neural networks (e.g. Amari, 1977;
Amari & Arbib, 1977; Hopfield, 1982) with a special
emphasis on instabilities and metrics. Within this con-
text, therefore, the evolution of activation in connection-
ist networks is described in essentially the same way as
in the dynamic field approach, although missing a good
understanding of instabilities.

The lack of emphasis on stability in connectionism
has often led to oversimplified views of sensorimotor
activity (overly simple forms of ‘input’), and an impover-
ished treatment of  the real-time coupling among per-
ception, action and cognition (a simplification of real time
via ‘steps’ in connectionist nets with no well-specified
time scale). The challenge to scale up connectionist models
from simple ‘toy’ simulations to simulations that would
work with real-world sensors and actuators is probably
surmountable, but not trivial (see Bullock & Grossberg,
1988; Bullock et al., 1993 for examples that move in this
direction). The dynamic field approach has already sur-
mounted that challenge (e.g. Bicho, Mallet & Schöner,
2000). In this sense, the field approach is closer to address-
ing how cognition emerges from sensorimotor origins
over development (see Thelen et al., 2001).

The differences in emphasis between the two
approaches have, in part, led researchers to gravitate
toward different problems. We have focused on ‘lower’
levels of cognition with an eye toward the idea that
higher forms of cognition might emerge from lower
forms over development. By contrast, connectionist
modelers have, in some cases, tried to deal with ‘higher’
level forms of cognition. In this case, extraction of relev-
ant information about the world is already assumed.
Indeed, some connectionist approaches to higher level
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cognition have built amodal, arbitrary symbols into the
network architecture (for examples, see Rumelhart,
McClelland & the PDP Research Group, 1986; see
Barsalou, 1999, for a critique of such approaches). Such
networks, though certainly not representative of con-
nectionism en masse, clearly differ from the approach
discussed here which is grounded in sensorimotor phe-
nomena. This grounding is important, not only to cir-
cumvent the symbol grounding problem (see Barsalou,
1999), but also to account for the many reports where
cognition takes on a sensorimotor character (e.g. Freyd,
1983).

In the context of symbolic representation and symbol
grounding, it is also important to acknowledge that the
dynamic systems and connectionist approaches to devel-
opment share different histories. Although there are
many important historical similarities described in the
Thelen and Bates article (this issue), generally speaking,
the dynamic approach described here is closely allied
with Gibsonian approaches, while connectionism has
historically been connected with Information Process-
ing. To the extent that dynamic systems and connection-
ist researchers still strongly share such allegiances,
important differences will remain. We, for instance, dis-
agree with several core assumptions of the Information
Processing approach, including the emphasis on ‘com-
putation’ and recursive decomposition (see Palmer &
Kimchi, 1986). Nevertheless, we have moved away from
Gibsonian approaches here by acknowledging the im-
portance of representational states. In this sense, we are
explicitly trying to tackle some of  the ground typic-
ally occupied by the Information Processing approach.
In general, we don’t see these historical roots as preclud-
ing unification of dynamic systems and connectionist
approaches. Rather, we see the historical context as a
point of caution: as the two camps move forward, we
should not always assume that we are using concepts in
the same way.

A more practical issue resulting from the differential
emphasis on stability/instability in the two approaches is
how measures of variability are used to constrain formal
models. Within the dynamic systems approach, variabil-
ity provides an important index of behavioral stability.
For instance, variable errors played a central role in deci-
sions about how to modify our dynamic field model of
spatial working memory over development. The fact that
both constant and variable errors decreased suggested
that development might best be captured by changing
the stability properties of working memory, rather than
other characteristics (e.g. coupling between working
memory and longer-term memory). Our perception is
that variable errors have been less informative for con-
nectionist approaches.

A related weakness of some forms of connectionist
modeling is the lack of analytical understanding of con-
nectionist networks, which has sometimes obscured
where constraints come from and what aspects of mod-
els are insightful (but see, Smolensky, Mozer & Rumel-
hart, 1996, for a mathematical treatment of neural
networks). For instance, the worst abuse of connectionist
networks is when they are essentially universal approx-
imators, so that they may learn any input–output rela-
tionship. The fact that they may learn the one learned by
nervous systems then means rigorously nothing (as they
could have learned any other one too, including those
relationships nervous systems cannot learn).

The primary weakness of the dynamic systems frame-
work discussed here is the limited amount of serious
work on the processes of learning and of development.
Although it has been stated that there are dynamics at
many time scales, there is no coherent framework at the
moment for how the slower scales of development can
be characterized and identified in experiment. We believe
this can be addressed (and have presented some first
examples), but connectionism appears to be more devel-
oped here. Moreover, there has been little serious work
within the dynamic approach on the processes of adapta-
tion and selection. In their book, Thelen and Smith
(1994) provide a useful dynamic framework that incor-
porates these processes, drawing heavily from Edelman’s
ideas about neuronal selection (e.g. Edelman, 1987). Never-
theless, such ideas have not, as of yet, been formally
handled within the dynamic approach sketched here.

Dynamic systems and connectionism beyond the 
redefined dynamic approach

It is on the front of learning and development that we
also see the largest point of departure between the
dynamic approach described here and other approaches
to dynamic systems theory and development. Several
researchers have applied dynamic concepts to under-
standing the macrostructure of development, including
developmental transitions/stages (see, e.g. Fischer &
Bidell, 1998; van Geert, 1998). For instance, van der
Maas and Molenaar (1992) have used catastrophe the-
ory to examine the characteristics of developmental
stages. These researchers have proposed a set of ‘flags’
that should be empirically present if  a particular devel-
opmental transition is due to a qualitative shift in the
attractor structure underlying behavior. Similarly, van
Geert (1998) has used logistic growth equations to
model qualitative transitions in development.

We share with these approaches the idea that develop-
mental transitions can be thought of as global changes
in the attractor structure of a system. Our work on
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working memory fits with this view in that qualitative
changes in the stability of representational states in
working memory differentiate some transitions in devel-
opment (for related ideas, see Case, 1998). However, we
have focused more on the real-time, microstructure of
behavior than on this macrostructure of development. In
this sense, these other dynamic systems approaches share
a common interest with connectionism. As such, these
approaches might provide useful insights as dynamic
systems theorists and connectionist researchers seek to
integrate micro and macro views of development.

With an eye toward this goal, we see two important
limitations of other dynamic systems approaches that
must be considered thoughtfully as we look to the
future. First, these other approaches have sometimes
taken on an analogical flavor, without strong ties to
empirical work. Van Geert (1998), for example, has dem-
onstrated that at a macro level, developmental stages
look like transitions in logistic growth curves. Although
this analogy has been useful in highlighting how qualit-
ative and quantitative changes over development relate,
this approach has been only loosely tied to empirical
data. The ‘flags’ approach described above has fared bet-
ter on this front. This approach has been used to search
for empirical markers of particular classes of develop-
mental transitions, and, in some cases, empirical data
have been linked up with formal models of transitions
(see Hartelman et al., 1998; van der Maas & Hopkins,
1998). However, it is not always clear what the empirical
agenda is after one has identified a particular type of
transition. Some recent work has tried to manipulate po-
tential ‘control’ parameters that move children through
particular transitions (see Hartelman et al., 1998). Al-
though this work is promising, our sense is that, because
the flags approach is grounded in the macro structure of
development, it can be difficult to move easily from
models to new experiments. Again, we emphasize that
these approaches have contributed to an understanding
of the macro structure of development. We raise these
limitations simply to highlight the challenges ahead as
we seek to link micro and macro levels.

Another important issue as we look to the future is
the manner in which representations have been used in
other approaches to dynamic systems and development.
Several dynamic systems researchers have adopted the
Piagetian idea that cognition can be conceptualized in
terms of formal representational structures (e.g. Fischer
& Bidell, 1998; van Geert, 1998). Such structural repre-
sentations often take on a disembodied, non-metric flavor
that appears to differ from the sense of representation
described here. This is not always the case, however. For
instance, Fischer and colleagues (1993) have embedded
structural representations into a connectionist architec-

ture that relies on graded representational states. Thus,
we see the issue of representation more as a future chal-
lenge than as something that precludes bringing micro
and macro approaches together.

Conclusion

The central goal of this manuscript was to use the
dynamic field theory to build a representational bridge
from the dynamic systems approach to motor control
and development to our redefined dynamic approach. In
the context of the special issue, this served to facilitate
comparisons between our dynamic systems approach
and connectionism, comparisons which have been diffi-
cult to make in the past because the approaches typically
examine very different aspects of development. By trac-
ing the shared emphases of the motor and dynamic field
approaches, we highlighted how stability plays a cent-
ral role in the dynamic approach. Connectionism has
emphasized this concept less strongly. Moreover, we high-
lighted how the redefined dynamic approach integrates
perception, action and cognition. By staying close to the
sensorimotor world, the dynamic approach offers insights
into how cognition might emerge from perception-action
over development. Again, connectionism has emphasized
this issue less strongly. Finally, we pointed toward a
fundamental limitation of our dynamic approach at this
time: we have not proposed a coherent account of the
dynamics of learning and development. Connectionism
and other dynamic systems approaches appear to be
more advanced on this front.

We conclude by emphasizing, again, the deep concep-
tual overlap between dynamic systems and connectionist
approaches. This overlap provides the foundation for
future convergence, as researchers working within the
different camps learn from the strengths and limitations
of each approach. Our dynamic approach must address
more profoundly learning and development. Connec-
tionism must address the metrics of representations, as
well as the central importance of stability and instability
(and here embrace dynamic systems models). In 20
years, we don’t think these will be two distinguishable
approaches.
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