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Abstract

In the present report, we describe a new dynamic field theory that captures the dynamics of visuo-
spatial cognition. This theory grew out of the dynamic systems approach to motor control and

development, and is grounded in neural principles. The initial application of dynamic field theory to
issues in visuo-spatial cognition extended concepts of the motor approach to decision making in a
sensori-motor context, and, more recently, to the dynamics of spatial cognition. Here we extend these
concepts still further to address topics in visual cognition, including visual working memory for non-

spatial object properties, the processes that underlie change detection, and the ‘binding problem’ in
vision. In each case, we demonstrate that the general principles of the dynamic field approach can
unify findings in the literature and generate novel predictions. We contend that the application of

these concepts to visual cognition avoids the pitfalls of reductionist approaches in cognitive science,
and points toward a formal integration of brains, bodies, and behavior.
r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

More than a decade ago, researchers and theorists from a range of disciplines called for
a re-thinking of cognition and adaptive behavior using the tools and concepts of dynamical
systems theory (Beer, 1995; Kelso, 1995; Thelen & Smith, 1994; van Gelder, 1995). In
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contrast to the information-processing approach in cognitive science, proponents of this
new direction proposed that cognition could be viewed as arising from the adaptive real-
time activity of a complex organism embedded in a physical environment. Since that time,
a number of dynamic systems approaches to cognition have emerged (e.g., Tabor, in press;
Townsend & Busemeyer, 1995; van Geert, 1998; van Gelder, 1998). The wealth of peer-
reviewed journal articles, books, chapters, and edited volumes that have appeared over the
last decade attests to the power of the central concepts and rich tools available. In our
view, the field en masse has shown that dynamical systems concepts can effectively be
applied to brain and behavior and, furthermore, that the dynamic systems approach
constitutes one of the most promising new directions in the study of behavior.
Although this new direction is promising, there is also a considerable amount of

diversity among dynamical systems approaches. In our view, such diversity is good, but it
also makes it challenging to compare and contrast different viewpoints. Because of this, we
have opted to focus on one thread in the larger body of ‘‘dynamic systems approaches’’—
the motor approach that emerged from the work of Kelso, Thelen, Schöner, and others
(Kelso, 1995; Kelso, Scholz, & Schöner, 1986; Schöner & Kelso, 1988a; Thelen & Smith,
1994). In particular, our goal for the present paper is to trace how we have begun to tackle
a central challenge to this approach put forth decades ago: this approach is great for motor
systems, but can it provide a useful framework for understanding cognition?

2. The dynamic systems approach to motor control and development

The approach to visual cognition described in the present article grew out of a program
of research and theory that has come to be known as the ‘motor approach’ (see Spencer
et al., 2006; Spencer & Schöner, 2003). This approach originated in the work of Scott
Kelso, Gregor Schöner, and colleagues looking at coordinated motor activity (Kelso, 1995;
Kelso et al., 1986; Schöner & Kelso, 1988a, 1988b), and the work of Esther Thelen and her
colleagues on infant sensori-motor development (Thelen & Smith, 1994; Thelen & Ulrich,
1991).
According to the motor approach, human behavior reflects a dynamic balance among

stability, instability, and flexibility. In dynamic systems terms, a system is said to be stable
when it settles into one of its preferred ‘attractor’ states, wherein behavioral or neural
states can persist in the face of systematic or random perturbations (Braun, 1994). The
ability to maintain such stable states (e.g., stably reaching for a cup of coffee despite a
bump on the arm) is a key component of ongoing adaptive behavior. However, of equal
importance is the ability to flexibly change behavior when the circumstances require it. To
achieve this, the current stable state must be destabilized so that a new stable state (i.e., a
new behavior or mental state) can arise. In dynamic systems terms, a change of a system
that leads a particular state to become unstable is referred to as an instability (see Braun,
1994, Chap. 4).
A second idea central to the motor approach is that behavior is softly assembled from

multiple component processes, rather than being ‘programmed’ and micro-managed by a
centralized controller (see discussion in, Clark, 1997; Thelen & Bates, 2003). That is,
organized behavior reflects a temporarily stable assembly of various factors that happen to
be available at a given point in time, and that can be created and dissolved as
circumstances change. In the case of reaching for an object, these factors include neural
plans to move the hand to a particular location in space, oscillatory processes that regulate
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the timing of the movement, forces generated by the contraction of muscles to move the
hand through space, as well as gravitational forces acting on the limbs. Third, such
processes are often non-linear in nature, where small changes in one component (movement
speed at the end of a reach) can lead to big changes in behavior (knocking the cup over).
Finally, the dynamics of action change over multiple time scales, from the millisecond-to-
millisecond unfolding of a reach, to a sequence of actions in context—to a coffee cup, then
the computer, and then a stack of papers—to the many reaches to coffee cups made over
weeks, months, and years.

Using these basic concepts, the motor approach has shown an impressive ability to
provide a detailed ‘collective’ picture of behavior. This feature has made the approach
attractive to experimentalists. As a result, conceptual theory (such as notions of attractors
and their disappearance through instabilities, the ideas of emergence and self-organization)
as well as formal theory (based on the mathematics of stochastic differential equations)
have had close ties to experimental work, both qualitatively and quantitatively. Moreover,
novel predictions have been possible in some cases (Schöner, 1989; Schöner & Kelso,
1988b), and several formal models of phenomena have been proposed that are consistent
with all known facts (Schöner, Haken, & Kelso, 1986).

Although the motor approach has been shown to be a suitable framework for thinking
about issues in motor control and development, in its original form it is not particularly
well suited for addressing aspects of higher-level cognition. In particular, the motor
approach fails to capture the nature of the representational states that underlie behavior
(for in-depth discussion of our use of the ‘R-word’, see, Spencer & Schöner, 2003). To
illustrate this limitation, consider three different situations where a person must search for
a book on a table. In one case, the book is clearly visible and has a unique jacket clearly
distinguishing it from the other books on the table; in another case, the book is clearly
visible, but is surrounded by similarly colored ‘distractor’ books; in a third case, vision of
the book is obstructed by a stack of other books. Further, let us assume that in each of
these situations, the person makes an identical movement—an accurate, efficient reach that
successfully makes contact with the desired book. Although the concepts of the motor
approach can be used to characterize the resultant stable reach, this approach fails to
capture differences in the representational states underlying these movements. In
particular, in the first case, there was a high degree of certainty regarding where to move,
whereas in the second case the decision to move was much less certain, and in the third case
the movement was based on a memory of the book’s location, rather than on-line visible
information. Characterizing such differences in the representational states underlying
behavior stands as a central challenge for any dynamic systems approach to higher-level
cognition.

In the present paper, we highlight several recent extensions of the motor approach that
address the challenge of developing a dynamic systems approach to cognition. We begin by
describing the Dynamic Field Theory (DFT), which combines the concepts of activation
and neural dynamics to implement basic cognitive processes, overcoming the limitations of
the motor approach. Next, we trace the historical development of this framework, from
decision making in a sensori-motor context to the dynamics of spatial cognition. Finally,
we discuss a series of recent projects that seek to move the DFT to higher ground,
addressing visual working memory (VWM) for non-spatial object properties (e.g., color or
orientation) and the process of change detection, as well as the binding of multiple non-
spatial features into object representations.
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3. Towards a dynamic systems approach to cognition

To extend the concepts of the motor approach into cognition, we have developed a new
theoretical framework—the DFT—which is in a class of bi-stable neural networks first
developed by Amari (1977; see also, Wilson & Cowan, 1972). This approach provides a
basis for characterizing the representational states underlying behavior through the
concept of activation, which is familiar from mathematical psychology, connectionism,
and theoretical neuroscience (Churchland & Sejnowski, 1992; Williams, 1986). In our
dynamic field approach, this concept takes the form of an activation field, defined over the
metric dimension represented. In the example of reaching for a book described above,
activation might be distributed across the dimension of reachable locations, a continuous
metric dimension stretching from a far left location to a far right location. A localized peak
of activation within this field indicates that a target object (a book) has been detected at a
particular location. Such a peak might be built up via perceptual input that specifies where
the cup is located within reachable space. Importantly, just as an unfolding action can be
described using the dynamic systems concept of stability, patterns of activation can live in
different attractor states: a resting state; an input-driven state where input can form
stabilized ‘‘peaks’’ of activation in the field, but peaks go away when input is removed; and
a self-sustaining state where activation peaks remain stable even in the absence of input—
a form of working memory central to our work.
These attractor states are made possible through strong interactions among neurons

within and between different fields. Specifically, stable patterns of activation are achieved
through a locally excitatory/laterally inhibitory form of interaction among neurons.
According to this type of interaction, neurons that respond selectively to similar values
along the relevant dimension (e.g., similar reachable locations) excite one another whereas
neurons that respond to very different values (e.g., different reachable locations) inhibit
one another. This form of interaction allows self-sustained peaks of activation to be
maintained in the absence of continuing input (i.e., when the target object is occluded or
moves out of view). Critically, movement in and out of these attractor states is softly
assembled in real-time depending on a variety of factors. For instance, activation patterns
in dynamic fields can ‘‘rise above’’ the current input pattern, achieving a self-sustaining
state where subsequent inputs are suppressed. That said, this state is still open to change: in
the presence of continued input, the network might ‘‘update’’ its decision to focus on one
item over another. This points toward flexibility—how activation patterns can smoothly
and autonomously go from one stable state to another.
In addition to retaining many of the central concepts of the motor approach, the dynamic

field approach has maintained a tight interface between theory and experiment. Although
the DFT was originally developed as an account of simple motor decisions in cued saccadic
eye-movement experiments, the approach has since been broadly applied to problems in
movement preparation (Erlhagen & Schöner, 2002; Schutte & Spencer, 2007), including how
pre-information is integrated with current input to produce reaching responses. Moreover,
the DFT has been used to re-think several important issues in the development of reaching
behavior (Thelen, Schöner, Scheier, & Smith, 2001) and visual perception (Schöner &
Thelen, 2006), as well as to spatial discrimination (Simmering, Spencer, & Schöner, 2006, in
press), and the perception of motion patterns (Hock, Schöner, & Giese, 2003).
Additionally, the dynamic field approach has extended the motor approach through the

inclusion of representational states that have close ties to neurophysiology. For example,
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recent approaches (Erlhagen, Bastian, Jancke, Riehle, & Schöner, 1999) have demon-
strated that the state of dynamic fields can be directly estimated from firing rates of
populations of cortical neurons using population coding ideas pioneered by Georgopolous
and colleagues (see review in Georgopoulos, 1995). These techniques have been used to
directly observe, for instance, the patterns of neural activation underlying movement
direction in motor and premotor cortex, providing evidence of preactivation when precues
are given (Bastian, Riehle, Erlhagen, & Schöner, 1998). Note also that the general
principles of dynamic fields can be usefully integrated with more biophysically realistic
approaches that attempt to incorporate the details of neruotransmitter action, timing
properties of neurons, and so forth (Compte, Brunel, Goldman-Rakic, & Wang, 2000).

Other applications have demonstrated that the DFT is committed to, and can answer
the challenges inherent in, the development of an embodied account of cognition. By this
view, cognition is always tightly linked to the sensory and motor surfaces and the
structured environments in which behaviors are immersed. Embodiment is often painfully
evident in infancy, but behavioral evidence from Barsalou (1999), Spivey (Spivey-
Knowlton, Tanenhaus, Eberhard, & Sedivy, 1998), and others demonstrates that even the
abstract concepts formed by adults for use in ‘‘off-line’’ reasoning are nonetheless
intimately linked to sensori-motor systems. Neural evidence from Damasio and Damasio
(1994) paints a similar picture, suggesting that the brain runs ‘simulations’ of past events,
effectively reactivating perceptual and motor systems during many cognitive tasks.

Schöner and colleagues (Iossifidis & Schöner, 2006; Steinhage & Schöner, 1998) have
demonstrated that the DF approach can realize an embodied view of cognition by using
dynamic fields to organize the behaviors of autonomous robots. Such robots are able to
autonomously orient towards and retrieve target objects in cluttered real-world
environments while avoiding obstacles that can appear and/or change position
unexpectedly. In addition, these robots are able to autonomously generate goal-directed
sequences of behaviors. This impressive behavioral flexibility is achieved using multiple
coupled dynamic fields together with dynamical systems typically used within the motor
approach (e.g., dynamical models that govern the control of the robot’s effectors). Such
examples provide a concrete demonstration that the DFT can be seamlessly integrated
with the motor approach to provide a unified view of cognition and action.

4. The DFT of spatial cognition

Although the DFT has been highly generative, most applications have addressed
decision making in a sensori-motor context. In this section, we describe more recent
developments that move beyond the sensori-motor case toward more typical memory
paradigms. This phase of development started within the domain of spatial cognition
(Schutte, Spencer, & Schöner, 2003; Spencer & Schöner, 2003; Spencer, Simmering,
Schutte, & Schöner, 2007). This was an ideal next step because spatial systems are still
clearly linked to sensori-motor systems, but their treatment required us to address several
new issues, including working memory for locations, long-term spatial memory, perceptual
reference frames including egocentric and allocentric encoding, and so forth.

Fig. 1 shows a simulation that implements our DFT of spatial cognition (Spencer et al.,
2007). The full model of spatial cognition consists of seven layers, two of which are
concerned with the transformation of visual inputs from retinal to object-centered
coordinates, an issue that we ignore here for the sake of brevity. Therefore, the simulations
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we focus on consist of five-layers: A perceptual field (PF, Fig. 1A), a long-term memory
field associated with the perceptual field (LTMPF, Fig. 1B), a layer of inhibitory
interneurons (Inhib, Fig. 1C), a spatial working memory field (SWM, Fig. 1D), and a long-
term memory field associated with the working memory field (LTMSWM, Fig. 1E). In each
case, the direction of the targets in the task space is shown along x, y shows the activation
of each site in the field, and z captures the elapsed time from the start of the trial.
In this section, we discuss two central issues that lay the groundwork for the sections

that follow. These concrete examples illustrate how the dynamical concepts discussed
above (i.e., stability, instability, flexibility, etc.) are realized in our approach to cognitive
processes. First, we discuss the integration of perception and working memory, focusing
on the three layers that form the centrepiece of the model shown in Fig. 1 (PF, Inhib, and
SWM). These three layers contribute to an important class of effects seen in the spatial
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Fig. 1. A simulation of the dynamic field theory performing one spatial recall trial. In each panel, location is

across the x-axis, activation on the y-axis, and time on the z-axis. The model consists of five layers: (A) a

perceptual field; (B) a long-term memory field associated with this perceptual field; (C) a shared layer of

(inhibitory) interneurons; (D) a spatial working memory field; and (E) a long-term memory field associated with

the spatial working memory field. Solid arrows show excitatory connections between layers, and dashed arrows

show inhibitory connections between layers. Brackets describe the behavioral functions of subsets of the layers.

See text for additional details.
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cognition literature—geometric biases in working memory for location. Second, we discuss
the integration of shorter and longer time scales, focusing on the integration of working
and long-term memory and an associated class of effects—experience-dependent biases in
location memory.

5. Integration of perception and working memory: geometric biases in spatial recall

One of the most common tasks used in the spatial cognition literature is spatial recall. In
this task, participants are briefly shown a single target item, the location of which must be
remembered. This is followed by a delay interval of variable length (0–20 s), after which the
participant indicates the remembered location of the target (e.g., by moving a computer
mouse or a joystick). A number of studies of this type have demonstrated that metric
memory for location shows delay-dependent biases away from perceived reference axes,
such as the midline symmetry axis of a task space (Schutte & Spencer, 2003; Spencer &
Hund, 2002).

The simulation shown in Fig. 1 illustrates how ‘‘drift’’ away from perceived reference
axes is accounted for within the DFT. At the start of the trial, PF builds a small peak of
activation at 1801, reflecting perception of a salient reference frame in the environment
(e.g., two dots along the midline of the task space). Next, a target appears at 2201. This
creates a peak of activation centered at that location. When the target disappears, a peak
re-forms in PF at 1801 as the system re-locks onto the reference cues in the task space. This
is important because it allows the system to continually calibrate egocentric and object- or
table-centered frames of reference during the delay (Spencer et al., 2007).

Panel D shows the effect of coupling PF to SWM. At the start of the trial, SWM receives
relatively weak reference input from PF because the reference cue in the task space (i.e., the
reference input to PF) is not very salient. Next, the target is turned on, passing strong
target-related input into the working memory field. This event moves the working memory
field into a strongly self-sustaining state where peaks of activation can be maintained in the
absence of input. This maintenance arises due to the reciprocal coupling between the SWM
and Inhib fields, which implements the locally excitatory and laterally inhibitory form of
interaction described previously. Importantly, this occurs during the memory delay even
though PF has re-acquired the reference frame. This sets the stage for memories to drift
away from the reference frame because the system is effectively holding onto two stable
states at once: it is locking onto the reference frame to stay calibrated with the world and it
is actively maintaining a memory of the target location. The response drift evident in
spatial recall experiments arises from the place where these two stable states meet—the
shared inhibitory layer. In particular, reference-related input to the inhibitory layer near
midline causes the peak of activation in SWM to ‘‘drift’’ away from the midline of the task
space because there is stronger inhibition on the midline-side of the SWM peak than the
‘‘outer’’ side. In effect, the reference frame ‘‘pushes’’ the peak outward, exaggerating the
‘‘leftness’’ of the target location.

Importantly, the strength of the push depends on the proximity between the target
location and the reference frame and the duration of the memory delay. For example,
Spencer and Hund (Hund & Spencer, 2003; Spencer & Hund, 2002, 2003) have shown that
the magnitude of the bias depends on the metric separation between the remembered
location and the reference axis. Specifically, memory for targets presented at midline was
found to be highly accurate, whereas memory for items presented to the left and right of
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midline was biased away from this axis, with the greatest bias seen for targets 20–301 from
midline and smaller bias as the items were moved further and further away from the axis of
symmetry. Additionally, we have shown that the magnitude of reference-related bias grows
larger as the delay interval between presentation of the target and test is increased (Spencer
& Hund, 2002).

6. Integration of short and long time scales: experience-dependent biases in spatial recall

The simulation shown in Fig. 1 also illustrates how shorter and longer-term time scales
are integrated in the model. Panels B and E show LTM fields that are associated with the
PF and SWM fields, respectively. Whenever there is above-threshold activation in PF or
SWM, traces are left in their associated LTM fields. Reversely, activation traces in LTM
feed back as excitatory input into each of these fields. Importantly, each of the LTM fields
has a longer time scale. Thus, activation grows slowly in these fields and decays slowly in
the presence of competing input. As can be seen in Fig. 1B, the dynamic interaction
between PF and LTMPF results in a robust trace of the midline reference frame at 1801.
Importantly, there is virtually no trace of the target location. This reflects the fact that the
target input was transient whereas the reference input was visible in the task space for most
of the trial. Thus, LTMPF retains a memory of the perceptual reference frame, which can
be used to realign reference frames across trials (Spencer et al., 2007).
In the LTMSWM field shown in Fig. 1E, however, the traces that are laid down reflect the

distribution of targets seen during the session, rather than the perceptual reference frame.
When the distribution of activation in LTMSWM is centered around the target location,
excitatory feedback to the SWM field can help to stabilize WM peaks against drift.
However, when the model is presented with several close locations in a row and is then
shown a target at a different (but not too distant) location, the WM of the new location is
biased towards the previously responded-to targets. Attraction of working memory peaks
toward the LTM traces of other targets arises as the LTMSWM field accumulates traces of
activation reflecting the distribution and frequency of targets responded to over the course
of an experimental session. These traces then serve as an extra source of excitatory input
back into SWM fields, producing attraction of working memory peaks towards the
location of frequently responded to targets.
Results from several studies confirm the presence of systematic experience-dependent

distortions in memory for spatial locations. For example, 6-year-olds, 11-year-olds, and
adults make response errors in the direction of previously responded-to locations when
recalling locations in the absence of salient location cues (Spencer & Hund, 2002, 2003).
This effect varies as a function of target frequency, with more frequently responded-to
locations exerting more of an attractive effect. Thus, the reciprocal interplay between
SWM and LTMSWM leads to the emergent formation of experience-dependent spatial
categories that can influence subsequent performance in the task.

7. A dynamic field approach to non-spatial feature working memory

The DFT of spatial cognition provides a neurally plausible account of characteristic
biases seen in spatial recall tasks. Although significant progress has been made with this
model of spatial cognition, the type of cognition addressed is still strongly tied to action in
space. Thus, an important goal is to extend this framework to address working memory for
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non-spatial metric feature dimensions such as color and orientation. To capture this, we
have introduced the concept of a feature WM field (FWM), which has all of the
characteristics of the SWM field described above, but the metric dimension along which
activation is defined is featural rather than spatial in nature (e.g., hue, orientation, line
length). Note that the FWM field captures more than just a re-labeling of an axis in our
model. The claim here is that WM for metric features shares all of the properties captured
by dynamic neural fields—WM as stabilized peaks of activation, coupling among
perception, WM, and LTM, metric interactions leading to ‘‘drift’’, and so on. Do we see
the same signatures of dynamic fields observed in spatial cognition when examining non-
spatial feature working memory?

To investigate this possibility, we have conducted a recent experiment examining
experience-dependent drift in working memory for color using the color estimation task
depicted in Fig. 2A. For each trial, participants viewed a 2-s memory display containing a
single colored triangle presented at a fixed location at the center of the screen. This was
followed by a variable delay interval (0, 5, 10, or 15 s), and the appearance of a 1101
colored arc containing the target color. To prevent spatial coding of the color, target colors
were randomly positioned at one of eight possible angular positions within the arc.

ARTICLE IN PRESS

Memory display Delay Ready, Set, Go!

Until Response0-15 s2 s

Continuous Color Space

‘B’

‘A’close/ccw

‘A’far/cw

‘A’close/cw

‘A’far/ccw

Fig. 2. (A) Color estimation task used to probe WM for color. For each trial, participants viewed a memory

display containing a single colored target, followed by a variable delay interval (0, 5, 10, or 15 s), and the

appearance of a colored arc containing the target color. Participants responded by moving a mouse cursor to the

position on the arc that matched the color they were holding in memory. (B) Continuous color space used to

generate each of the colors used in the experiment. Throughout the experiment, different groups of participants

saw an identical ‘B’ target paired with an ‘A’ target that was either close or far in color space, and either clockwise

(CW) or counterclockwise (CCW) from the ‘B’ target. See text for additional details.
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Participants responded by moving a mouse cursor to the position on the colored arc that
matched the color they were holding in memory.
To look for delay- and experience-dependent biases in WM for color, separate groups of

participants were required to estimate either Close colors (301 separation in color space) or
Far colors (801 separation). Participants only saw two different colors throughout the
experiment: a ‘B’ color that remained the same across the Close and Far conditions, and an
‘A’ color that was either clockwise (CW) or counterclockwise (CCW) in color space from
the ‘B’ target (see Fig. 2B). If WM for non-spatial features uses the same dynamic neural
principles captured in our model of SWM, then participants in each condition should form
LTM traces of the target colors across trials, but the nature of the LTM traces should
differ across conditions. In the context of our model, the activation traces in LTM should
then serve as a source of feedback excitation to WM, producing systematic distortions in
WM for color. For example, in the Close condition, LTMs of the target colors should
blend together, leading to strong activation around an average remembered color (i.e.,
somewhere midway between the ‘A’ and ‘B’ colors seen throughout the session).
Consequently, WM for the ‘B’ target in the Close conditions should be attracted toward
the ‘A’ target across delays, and thus, in opposite directions depending on the direction of
‘A’ (CW or CCW). By contrast, LTMs in the Far condition should be distinct, and there
should be no systematic trends as a function of the direction of the ‘A’ target (CW, CCW)
across conditions. Note that these predictions hold even though the B color is identical
across Close and Far conditions.
Results have confirmed the central predictions of the DFT: estimates of the ‘B’ color

drifted toward the ‘A’ colors over delays in the Close conditions (Johnson, Spencer, &
Schöner, 2007). This was not the case in the Far conditions. These data suggest that
properties central to the dynamic field approach to spatial cognition generalize to non-
spatial working memory systems.

8. A DFT approach to multi-item VWM and change detection

The findings discussed above suggest that working memory for color does indeed share
many of the same properties as SWM, including the delay- and experience-dependent drift
of WM peaks towards LTM traces. However, the color memory task only required
participants to remember a single item across the delay interval, and to estimate that color
at test. This task is quite different from the standard task used to probe VWM: change
detection. A typical change detection task is depicted in Fig. 3. In such tasks, observers are
shown a sample array, which contains one or more items (e.g., colored squares) that the
observer must try to remember. After a brief delay interval (e.g., 1 s), a test array is
presented, and observers compare the test array with the sample array. In most
experiments, the test array is identical to the sample array on 50% of trials and differs
in the value of a single item (e.g., one square changes color) on the remaining trials.
Research using this paradigm has revealed a number of important properties of VWM

(for in-depth discussion of the use of change detection tasks in the study of VWM, see
Luck, in press; Rensink, 2002). First, information is encoded very rapidly in VWM, with
estimated encoding rates of approximately 20–50ms/item (Gegenfurtner & Sperling, 1993;
Shibuya & Bundeson, 1988; Vogel, Woodman, & Luck, in press). Second, VWM has a
very limited storage capacity of approximately three to four items (Cowan, 2001; Luck &
Vogel, 1997; Phillips, 1974), and, in many cases, appears to store items in the form of
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integrated object representations rather than as individual features (Luck & Vogel, 1997;
although see Olson & Jiang, 2002; Vogel, Woodman, & Luck, 2001; Wheeler & Treisman,
2002; Xu, 2002, 2004 for important qualifications of these results). Additionally,
electrophysiological and functional Magnetic Resonance Imaging (fMRI) studies of
change detection have begun to isolate the neural substrates that underlie these
characteristics of VWM (e.g., Pessoa & Ungerleider, 2004; Todd & Marois, 2004; Vogel
& Machizawa, 2005; Xu & Chun, 2006).

Although studies of change detection have begun to make significant contributions to
our understanding of VWM at both the behavioral and neural levels, few theoretical
models have been formulated within a neurally plausible framework that could effectively
address both lines of research. In particular, no current theory addresses both the
maintenance of information in VWM and the process by which the test array is compared
with the contents of WM, generating the same and different responses required by the task.
In this section, we describe a new dynamic field model of multi-item working memory and
change detection that provides a neurally plausible framework for addressing both of these
issues. In generalizing the DFT to handle these issues, we needed to address two concrete
challenges: First, we needed to scale up from single-item memory to allow the simultaneous
maintenance of multiple items in WM; second, we needed to develop a process-based
account of comparison/change detection. These are treated in turn in the following
sections.

9. Multi-item VWM and capacity limits

As discussed above, VWM has been found to have a limited capacity of around three to
four items. How many items can be maintained concurrently in the DFT? Recall that the
DFT is in a class of models that use a locally excitatory/laterally inhibitory form of
interaction to sustain activation in WM. When lateral inhibition is broad (i.e., global) and
relatively strong, such models implement a winner-take-all process, whereby only a single
localized peak of activation can be sustained at a given time. That is, they have a capacity
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Same

or

Different?

Sample Array Delay Interval Test Array

Fig. 3. Change-detection paradigm used to investigate working memory for spatial and non-spatial object

properties. Participants are shown a sample array containing a variable number of colored squares, which they

must hold in memory across a brief delay interval (different textures on each of the squares represent different

colors). This is followed by the appearance of a test array that is either identical to the sample array or differs from

it in the color of a single item. When the test array appears, participants make an unspeeded two-alternative-

forced-choice response, indicating whether the colors in the test array are the same as or different than the colors

that were present in the sample array. Adapted from Luck and Vogel (1997).
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of a single item. Thus, as Trappenberg (2003) has pointed out, such networks often show
too severe a limit in VWM capacity. From this view, the question that must be answered is
not ‘‘why is the capacity of WM so small?’’, but how can capacity be increased to match
the behavioral findings?
In the dynamic field model described here, we achieve multi-item memory by using a

‘‘Mexican Hat’’ form of interaction among neurons, where inhibition is much stronger
near the focus of excitation than at more peripheral sites. This form of interaction allows
the locally excitatory interactions associated with each peak to be isolated by lateral
inhibition, while keeping the total amount of inhibition in the field low enough that
multiple items can be maintained simultaneously. However, as more items are added to
working memory (i.e., more peaks are added to the field), the overall amount of inhibition
is also increased, which, together with metric interactions among peaks, provides a natural
basis for capacity limits.
This functionality is depicted in the simulations shown in Fig. 4A–C. The simulation in

Fig. 4A shows the formation of three stable peaks of activation in FWM in response to the
appearance of a visual display containing multiple colored objects. These peaks are
retained in FWM throughout a subsequent delay interval even though the display has been
removed. In Fig. 4B, a fourth item is added to the display and, once again, all items in
FWM are stably maintained throughout the delay in the absence of input. However, when
a fifth item is added to the display (Fig. 4C), inhibition in FWM begins to outweigh
excitation, and two of the peaks are suppressed, leaving only three peaks that survive the
delay interval. Together, these simulations demonstrate multi-item working memory in the
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Fig. 4. Multi-item working memory and capacity limits in the DFT using a ‘‘Mexican Hat’’ form of interaction,

where inhibition is much stronger near the focus of excitation than at more peripheral sites: (A) stable

maintenance of three items (e.g., three colors) in WM in the absence of input. WM remains stable when a fourth

item is added (B), but the addition of a fifth item (C) raises the amount of inhibition in the field beyond a critical

point, which suppresses all but three of the peaks in WM, producing the capacity limits found in behavioral

studies.
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DFT, and provide a natural, neurally plausible explanation for the existence of capacity
limits found in behavioral tasks.

10. The comparison process in change detection

The next issue we need to address is the process by which the contents of WM are
compared to available perceptual information (i.e., the test array). The starting point for
our investigations of this issue is the observation that comparing an item in working
memory to another item present in the environment involves the integration of perception
and WM. Recall that the PF, Inhib, and SWM fields at the heart of the dynamic field
model of spatial cognition described previously serve exactly this role, allowing the
contents of WM to be encoded within a perceptually available reference frame. In the
present context, this raises an interesting question: Could the same architecture that deals
with the integration of perception and WM in space generalize to handle the integration of
perception and WM during comparison in change detection tasks?

To explore this possibility, we have extended a recent dynamic field model of position
discrimination (Simmering et al., 2006). This model has the same structure as the DFT of
spatial cognition described above, with the exception that the metric dimension along
which activation is distributed is a non-spatial feature such as color. The model consists of
a feature-selective perceptual field that provides afferent input to a layer of inhibitory
neurons and to an excitatory FWM. Excitatory and inhibitory interactions among these
three fields allow the network as a whole to function as a ‘‘difference’’ detector.
Specifically, peaks in WM activate similarly tuned neurons in the Inhib field via excitatory
feedback, and these neurons in turn send inhibitory feedback to PF. This inhibitory input
to PF suppresses the firing of neurons in PF that are tuned to the values currently activated
in FWM. Because of this, PF is only able to build a new peak of activation when a change
occurs at test, that is, when a new item appears in the task space. This leads to a natural
basis for ‘‘same’’ and ‘‘different’’ responses: when a peak is present in PF at test, the model
responds ‘‘different’’, and, conversely, when no peaks are present in PF but peaks remain
in FWM, the model responds ‘‘same’’.

These ideas are illustrated in the simulations shown in Fig. 5A and B. Both simulations
show three peaks of activation that are built following the presentation of a sample
array (e.g., three colored squares). Note that these peaks are only transiently sustained
in PF (see A1 and B1 in Fig. 5A and B, respectively), but are maintained throughout
the delay interval in the FWM field (see A2 and B2). Each of the peaks in WM activates
similarly tuned neurons in the Inhib field (see A3 and B3), which then projects loca-
lized inhibition back to PF, inhibiting similarly tuned neurons in that field (see A4 and B4).
At the end of the delay, a test array is presented to probe WM for color. In panel A,
the test items are the same as the items being held in working memory. As a result,
each of the peaks in PF remain below threshold at test due to strong localized inhibition
from the Inhib field at those locations (A5). Thus, the three peaks remain stable in WM
at test and a ‘‘same’’ response is produced (A6). In panel B, however, the test display
contains a new color that was not present in the memory array; thus, this novel input
comes in at a relatively uninhibited region of PF. In this case, a self-stabilized peak
builds in PF (B5), which suppresses the peak associated with the changed item in WM
(B6). The presence of a peak in PF at the end of the response interval (B5) leads to a
‘‘different’’ response.
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11. Novel predictions in change detection

The proposed model represents the first neurally plausible theory of VWM that
addresses both the maintenance of information in VWM and the process of change
detection. When we combine these new ideas with our understanding of the metric- and
delay-dependent interactions underlying VWM for colors (see above), we can go a step
further, generating novel and counterintuitive predictions in the context of change
detection. Recall that the local excitation/lateral inhibition function underlying sustained
activation in the DFT can lead to interactions between peaks when more than one item is
being held in WM. The specific form of the interaction depends critically on how similar
the items are along a given dimension (e.g., color). One consequence of such interaction is
depicted in Fig. 6. Panels A and C show a time slice through the FWM field during
the delay interval of a change detection task and the associated perceptual fields (panels B
and D). As can be seen in panel A, when targets are far apart in color, the peaks of
activation associated with each color in FWM do not interact. Consequently, the resulting
peaks are fairly wide and relatively high energy (strong excitation and strong inhibition).
This produces a region of inhibition in the perceptual field that is also fairly broad and
deep. In contrast, when the peaks in FWM are very near to each other (i.e., very similar
colors), as they are in panel B, the inhibition associated with one peak extends to the ‘‘far
side’’ of the other peak, making each peak sharper, and producing a much narrower region
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Fig. 5. The generation of ‘‘same’’ (A) and ‘‘different’’ (B) responses in a dynamic field model of VWM and change

detection. The presentation of a stimulus array (e.g. three colored squares) leads to the formation of multiple

peaks of activation in each layer. However, the peaks in PF decay once the stimulus is removed, whereas they are

maintained throughout the delay interval in FWM. Each of the peaks in WM activate similarly tuned neurons in

Inhib, which sends inhibitory feedback to PF, suppressing the firing of similarly tuned neurons in that field. As a

result, PF is only able to build a peak when a change occurs at test (B5), which serves as the basis for a ‘‘different’’

response. See text for additional details.
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of inhibition in the perceptual field. Because inhibition is narrower and weaker in PF when
the items in WM are close in feature space, it is easier for a ‘‘different’’ peak to be built
when a change occurs at test. Thus, our model makes the counterintuitive prediction that
change detection will be enhanced when items are highly similar!

We have confirmed this counterintuitive prediction in a recent study comparing color
change detection accuracy for close vs. far colors (see also, Luck, Lin, & Hollingworth,
2005). In this study, participants viewed three target items (colored squares), two that were
close in color space and one that was far away. Individual target items were presented at
different spatial locations one at a time for 200ms each, and were separated by a 500ms
inter-stimulus interval (ISI). We used a sequential-presentation paradigm to ensure that
any differences in change-detection performance were due to interactions between items in
WM, rather than arising as a result of color-contrast effects that can occur when multiple
uniquely colored items are presented simultaneously. The presentation of the third target
item was followed by a 1000-ms delay interval and the appearance of a single test item at
one of the locations previously occupied by a target item. The test item was either identical
to the item that was at that position originally (50% of trials), or was changed to a new
color that was 301 away in color space.

Using this paradigm, we found that change detection performance was significantly
better for close versus far colors at each probe position. More recently, we have shown that
this effect generalizes to the feature dimension of orientation, and we are currently
exploring whether these results also generalize to WM for spatial locations. These findings
provide strong evidence for a general prediction made by our model: items in WM interact,
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Fig. 6. Metric interactions in WM leading to enhanced change-detection for close features: (A) time-slice through

the FWM field during the delay interval of a change detection task showing WM peaks representing two far color

targets separated by 160 units. Relatively broad and high-energy peaks in WM produce correspondingly broad

and deep inhibition in PF (B) via inhibitory feedback. (C) With close colors, peaks are narrower and somewhat

lower energy, which produces narrower and shallower inhibition in PF (D), making it easier for peaks to build in

PF when a new item is presented at test. See text for details.
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giving rise to time- and metric-dependent distortions of WM representations. Note that
these predictions run counter to several recent proposals regarding the nature and
neural mechanisms that underlie VWM representations (Raffone & Wolters, 2001; Vogel
et al., 2001).

12. A DFT approach to the ‘‘Binding’’ problem

The extension of the DFT of spatial cognition to address non-spatial object properties
and the processes underlying change detection represents an important step towards the
development of a comprehensive theory of the dynamics of visual cognition. In the present
section, we describe our initial efforts as we take yet another step towards higher level
cognition. The general goal of this work is to move toward the integration of ‘‘where’’ and
‘‘what’’ visual systems (Ungerleider & Mishkin, 1982), building on our theory of spatial
cognition and our initial forays into FWM. We contend that such an integrated framework
can offer novel insights into visual cognition by linking this area more strongly to the rich,
embodied, spatial system we have already developed to handle reference frames, SWM,
LTM, and so forth. Here, we focus on one piece of that effort: the question of how the
visual system links, or ‘‘binds’’, individual features of objects to spatial locations, enabling
goal-directed action towards objects in space. Moreover, we sketch our ideas regarding
how multiple features are bound to each other, providing a basis for the creation of multi-
feature object representations.
As one progresses through the ventral object recognition pathway of the primate visual

system, from primary visual area V1, through extrastriate areas V2–V4, and on to areas
TEO and TE of the inferior temporal lobe, several obvious changes in neural response
properties can be observed (see discussion in Luck, Girelli, McDermott, & Ford, 1997).
First, there is an increase in the complexity of the features coded by individual neurons.
For example, whereas neurons in V1 respond preferentially to rather simple stimuli such as
oriented line segments, cells in TE may respond to complex stimuli such as faces
(Desimone & Gross, 1979; Desimone, Albright, Gross, & Bruce, 1984; Tanaka, 1996).
Second, there is a dramatic increase in receptive field sizes and an accompanying decrease
in the spatial resolution of receptive fields for individual neurons (Desimone & Gross,
1979; Gross, Rocha-Miranda, & Bender, 1972). Additionally, although feature selectivity
becomes more complex at higher levels of the visual system, the individual features of
complex objects (e.g., color, form, size, and direction of motion) are coded in a distributed
manner through the parallel activation of large numbers of neurons (Fujita, Tanaka, Ito,
& Cheng, 1992; Komatsu & Ideura, 1993; Llinás & Paré, 1996). Although this type of
encoding can be quite efficient, it can also lead to substantial problems when multiple
objects are presented simultaneously, as in visual search experiments and most real-world
visual tasks. For example, when two or more objects are presented simultaneously, the
individual features making up the objects are coded in partially independent neural
populations with overlapping spatial receptive fields. As a result, it can be difficult to
determine which features belong together as attributes of a single object, an example of the
binding problem in vision (Damasio, 1989; von der Malsburg, 1981, 1995).
One of the strongest sources of evidence suggesting that this is a real problem for the

visual system is the finding that, under certain circumstances, the features of objects can be
miscombined in normal perception. For example, in a series of experiments reported by
Treisman and Schmidt (1982), participants were briefly shown multi-element displays of
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colored letters. In some cases, the colors and letters were perceived correctly but in the
wrong combination. For example, a participant could be presented with a display
containing a red horizontal line and a green vertical line, and incorrectly report seeing a red
vertical and a green horizontal line (see also, Ashby, Prinzmetal, Ivry, & Maddox, 1996;
Cohen & Ivry, 1989; Prinzmetal, 1981).

To address this issue in a working memory context, we have developed the dynamic field
model of multi-feature binding depicted in Fig. 7. The core of the new model consists of
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Fig. 7. A dynamic field model of feature-binding. The model consists of multiple feature-space working memory

fields (FSWM; Panels A and B) coupled to a single SWM field (C). The FSWM fields receive broad spatial and

narrow featural inputs from the sensory surface, in keeping with cortical physiology. The presence of overlapping

spatial receptive fields can make it difficult to correctly assign individual features to the correct objects when two

or more objects are present simultaneously. We solve this problem through coupling with SWM, which maintains

precise information about spatial location. See text for additional details.
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multiple feature-space working memory fields (FSWM), which, when taken individually,
capture WM for specific what–where conjunctions (e.g., a target color or orientation at a
certain location), coupled to a single SWM field. Activation in feature-space fields evolves
over time according to the same principles as in the fields described previously. For
instance, neurons interact according to a local excitation/lateral inhibition function such
that strong input (e.g., the presentation of a target color at a specific location) can create a
self-sustaining WM peak. Such a peak of activation in a single FSWM field represents WM
for a particular target feature at a given location, whereas the presence of peaks at the same
spatial location across different fields implements a distributed representation of a simple
multi-feature object. Additionally, to capture some of the constraints evident in higher-
level visual areas like IT, we tuned the feed-forward projections into these fields such that
they are precise along the feature dimension but broad along the spatial dimension. As
discussed previously, distributed encoding of object properties together with broad,
overlapping spatial receptive fields can make it difficult to correctly assign individual
features to the correct objects when two or more objects are present simultaneously. We
propose to solve this problem by coupling each of the FSWM fields to a single SWM field
that maintains precise information about spatial location. The presence of additional
spatial input should ‘‘pull’’ activation into the right position along the spatial dimension,
keeping peaks aligned in each of the FSWM fields and clarifying which features belong to
which objects.
These ideas are illustrated in the simulations shown in Fig. 7A–F. For these simulations,

the model was presented with three colored, oriented objects at three different locations
(see visual display panel) for 200 time steps followed by 700 time steps with no additional
inputs. To explore the impact of coupling to SWM on the positioning of peaks in the
FSWM fields, we ran one simulation where the color-space field was uncoupled to SWM
and the orientation-space field was strongly coupled, and a second simulation where both
fields were strongly coupled to SWM.
The first simulation is depicted in Fig. 7A–C, which shows activation in two FSWM

fields (a color-space field and an orientation-space field) and a SWM field in response to
the visual display shown in the center of the figure. At this point, activation is relatively
precise and well positioned along the feature dimensions, correctly indicating the presence
of the colors red, orange, and green, and the orientations vertical, diagonal, and
horizontal. However, in the FSWM fields, activation along the spatial dimension is
relatively spread out and substantially overlapping, particularly in the color-space field,
which is decoupled from the SWM field. The simulations in Fig. 7D–G show the formation
of WM peaks in each of the three fields over the course of the next 700 time steps. As can
be seen, peaks in the SWM field (panel D) and in the orientation-space field (panel E) are
aligned in space, and each orientation is at the correct location. In contrast, the color-space
field (panel F), which is uncoupled to space, has peaks positioned at the correct feature
values, but the red peak is located near 51, whereas the green peak is closer to 01—the
opposite of their positioning in the visual display. Additionally, the color-space field has
incorrectly estimated the number of colors present in the display, forming a peak of
activation at approximately 101 in space. However, when the color-space field is also
coupled to SWM (panel G), peaks in all three fields are in alignment, correctly reflecting
the three items present in the original visual display.
The dynamic field approach to multi-feature binding proposed here represents an

explicit move to pursue a spatial solution to the binding problem, and is consistent in many
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respects with the approach adopted by Treisman and colleagues (Treisman, 1996;
Treisman & Gelade, 1980). However, unlike in Feature Integration Theory, visual features
are not free-floating in our model, but are tied, albeit coarsely, to particular spatial
locations during the initial presentation of a stimulus. In this respect, our approach is more
similar to the location uncertainty theory of feature binding proposed by Ashby and
colleagues (Ashby et al., 1996). According to this theory, incorrect combinations of
features occur as a result of uncertainty about the precise spatial location of individual
object features, rather than through random binding of features in the absence of
attention, as proposed by Treisman. In the context of our model, inputs from SWM
effectively provide converging evidence that helps to resolve the ambiguous spatial coding
in the FSWM fields, similar to the role of spatial attention in other models (Desimone &
Duncan, 1995; Luck et al., 1997). However, our model moves these ideas to a neurally
plausible, process-based, and formal level.

The DFT is not the only neurally plausible approach that has addressed the integration
of spatial and non-spatial information in some way. For example, Deco and Lee (2004)
have recently proposed a neuro-dynamical model in which recurrent connections between
higher-order visual areas in the dorsal (‘‘where’’) and ventral (‘‘what’’) visual streams and
V1 serve to integrate location and identity information (see also, de Kamps & van der
Velde, 2001; Deco, Rolls, & Horwitz, 2004). In most cases, such models are quite
sophisticated on the ‘what’ side, providing detailed accounts of ventral stream processes
that, for instance, are involved in the integration of multiple features into object
representations (Deco & Rolls, 2004; Olshausen, Anderson, & Van Essen, 1993). However,
these models often provide a limited view of dorsal stream processes. For example, several
neurally based models (Itti & Koch, 2001; Mozer & Sitton, 1998) have employed the
concept of a ‘‘salience map’’ that tags specific locations as important for attention or WM
(see also, Treisman & Gelade, 1980; Wolfe, 1994). Critically, the proposed salience map is
not linked to a particular frame of reference, it is not calibrated and adjusted relative to
movement in the surrounds, it does not form spatial categories, and so on. In short, these
models do not address many of the challenges we have overcome with the DFT (Spencer
et al., 2007). Additionally, many of these approaches are targeted at a biophysical level of
explanation, which involves the creation of neurally realistic models of neurons and neural
networks that capture key elements of neuronal firing rates, neurotransmitter action, and
so on. As a result, such models often do a good job of accounting for the behavior of
neurons, but have relatively limited ties to the real-time behavior of subjects performing
complex tasks. In contrast, the dynamic field approach to visual cognition introduced here
has established a tight interface between neurally plausible modeling on one hand, and
empirical investigations with behaving subjects on the other.

13. Conclusions

In the present paper, we traced a research trajectory demonstrating that the motor
approach to dynamic systems theory can be effectively scaled up from sensori-motor
systems into cognition. In particular, we traced movement from the motor approach into
cognition via the DFT and then through three phases of exploration of cognitive
phenomena. The first phase retained a strong sensori-motor flavor, focusing on motor
control and sensori-motor development. From there we moved into spatial cognition,
focusing on how interactions among perception, working memory, and long-term memory
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can be used to explain delay-, metric- and experience-dependent drift of WM peaks away
from perceived axes of reference and towards LTM traces of targets seeing during an
experimental session. Finally, we used the DFT as a basis for addressing important issues
in visual cognition, including WM for metric feature dimensions and the process of change
detection, as well as the binding of spatial and non-spatial information into simple object
representations.
Critically, as we traced each step of this research trajectory, we found that general

principles of the DFT apply across the board. For example, the concepts of stability,
instability, and flexibility were found to apply equally to both spatial and non-spatial
working memory. In both cases, stability is realized through intrafield interactions among
neurons, allowing the maintenance of self-sustained peaks of activation in the absence of
input. The concept of instability can be used both to understand transitions from one
stable state of the system to another, and metric-instabilities reflected in, for instance, the
delay- and experience-dependent drift of WM peaks. As an example of the former, the
formation of peaks in WM involves a transition from a stable resting state through an
instability (bifurcation) into a new attractor state—the self-sustaining state. Finally, the
flexibility of this approach is exemplified by the fact that the same three-layer model is
capable of integrating perceived reference frames and WM in one case and comparing the
contents of WM with perception in another. Additionally, we have shown that the same
model using identical parameters is sufficient to capture behavioral data across four
separate tasks in addition to developmental data using the spatial recall paradigm with
children (Simmering, Schutte, & Spencer, 2007).
Dynamic fields also embody the concepts of soft-assembly and self-organization. For

example, color memory was found to reflect the interplay between LTM traces built up
over the course of an experiment and basic maintenance processes underlying the
formation of self-sustained peaks. Additionally, our new framework continues to provide
for tight theory-experiment links, leading to novel predictions in both color estimation and
change detection experiments. Moreover, the theoretical approach remains committed
both to neural principles, as exemplified in our work on neurophysiology and the binding
problem, and the concept of embodiment, exemplified by our ongoing work using dynamic
fields to control autonomous robots.
The ideas presented here constitute a demonstration proof showing that the motor

approach can scale up to cognition. At this point, one might be tempted to ask: So what?
The field of visual cognition is already crowded with theoretical concepts ranging from
verbal information processing concepts to biophysical models of cortical function. Why do
we need dynamical systems concepts in this domain?
In our view, there are at least two central contributions that dynamic systems concepts

can make to the study of visual cognition. First, a general trend in visual cognition, as in
other areas of cognitive science, is to pursue greater and greater fractionation. The
challenges of cognition are broken down into component problems that are addressed
separately. Thus, researchers investigate working memory, long-term memory, attention,
various perceptual processes, and so forth, in isolation, but rarely do people address the
issue of ‘‘what then’’. That is, once a multitude of ‘‘parts’’ have been identified, what do we
do? In general, it is assumed that when the critical subcomponents have been understood,
we will be able to fit the parts together to make a coherent whole. Although this seems like
a reasonable strategy, we suspect that the integration of parts will prove to be much
trickier than anticipated.
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A good litmus test for whether the separate components postulated to underlie behavior
can be integrated to form a single behaving organism comes from the field of autonomous
robotics. As Brooks (1991) points out, the separable components approach has not faired
particularly well in this area. In most cases, the components remain separate and are used
to solve specialized problems in carefully circumscribed areas, for instance, in medical
diagnosis. However, in the few cases where integration has been attempted, performance
has been found to be much too slow to deal in a reasonable way with dynamic real-world
environments. Indeed, such systems have only been found to work in highly simplified
environments, such as more-or-less empty rooms with uniformly colored walls and dark
baseboards, and uniquely colored target objects. Moreover, solutions that are found to
apply in one environment have not easily transferred to performance in other environ-
ments. As a result, specific solutions are often tailor-made to fit each new situation,
limiting behavioral flexibility.

The DFT addresses these challenges by thinking about cognition and action from a
dynamic systems perspective, with an emphasis on the integrated, collective behavior of the
organism (Schöner & Kelso, 1988a, 1988b). For example, although our model does
acknowledge distinctions between, for instance, perception, working memory, and long-term
memory, these processes are neither conceived of nor implemented as separate encapsulated
subsystems in our model. Rather, the dynamic field model within which these processes are
realized is a fully integrated dynamical system with specific classes of attractor states. Thus,
we do not make assumptions about separability and, consequently, integration is not a
problem. The challenge posed by an integrated systems perspective, however, is the challenge
of analysis: If behavior results from one large integrated system, how can we make sense of
the processes that underlie behavior? Our approach to this issue is to build cognitive/neural
systems that are reentrant, reciprocally coupled, fully integrated dynamical systems, but that
have sub-systems whose dynamic properties leave behavioral ‘‘signatures’’ that can be
observed in particular situations (e.g. delay-dependent drift in location and color memory).
In this way, we can engage in rigorous hypothesis testing—a core strength of the separable
systems view—while staying committed to integrated systems.

A second, closely related contribution of dynamic systems concepts is that they can help
us understand the integration of brains, bodies, and behavior. Specifically, in developing
this approach, we have taken inspiration from the densely interconnected nervous system
to re-think cognition. As stated in the last section, a centerpiece of this approach is to
embrace the use of complex, dynamic neural networks to capture brain–behavior relations.
Although neural networks have architectures that can be depicted as separate systems, they
are—at their core—complex, reentrant, densely interconnected, complex systems that
violate the assumptions of encapsulation and separability. Critically, dynamic systems
concepts of attractors, bifurcations, instabilities, and so on, give us the conceptual tools to
understand the behavior of complex neural networks and to harness their real-time
potential in the service of goal-directed action. The examples discussed herein provide
illustrations of this marriage between the mathematics of complex systems and the
emerging science of brain–body–behavior relations.
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