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a b s t r a c t

Research based on the Category Adjustment model concluded that the spatial distribution
of target locations does not influence location estimation responses [Huttenlocher, J.,
Hedges, L., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of
location. Cognition, 93, 75–97]. This conflicts with earlier results showing that location
estimation is biased relative to the spatial distribution of targets [Spencer, J. P., & Hund,
A. M. (2002). Prototypes and particulars: Geometric and experience-dependent spatial
categories. Journal of Experimental Psychology: General, 131, 16–37]. Here, we resolve this
controversy by using a task based on Huttenlocher et al. (Experiment 4) with minor
modifications to enhance our ability to detect experience-dependent effects. Results after
the first block of trials replicate the pattern reported in Huttenlocher et al. After additional
experience, however, participants showed biases that significantly shifted according to the
target distributions. These results are consistent with the Dynamic Field Theory, an
alternative theory of spatial cognition that integrates long-term memory traces across
trials relative to the perceived structure of the task space.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Categories help people carve up experience into mean-
ingful units. Consequently, category formation processes
have been a central focus of cognitive science (e.g. Casaso-
la, 2008; Murphy, 2002; Rogers & McClelland, 2004).
Categories are often formed via inductive processes where
classification responses reflect the distribution of exem-
plars within a set of items. This is adaptive in that people
will classify objects most accurately if they base their
decisions primarily on high- vs. low-density regions of
the sampled stimulus space. Several recent Bayesian
categorization models formalize this view (e.g. Ashby &
Alfonso-Reese, 1995; Griffiths, Sanborn, Canini, & Navarro,

2008; Huttenlocher, Hedges, & Vevea, 2000). Although
reliance on high-density regions can optimize accuracy, it
can also distort responses toward such regions. Thus, peo-
ple often optimize overall accuracy but exhibit systematic
biases.

The present study focuses on a particular type of cate-
gorization—spatial categorization. Just as people carve up
sets of objects into meaningful units, they also carve up
space into categories. Moreover, spatial categories create
systematic response biases. For instance, in one common
task, people reproduce the location of a dot in a circle
following a short memory delay. Data suggest that people
divide the circle into quadrants, forming four spatial cate-
gories. Location estimates within the circle are biased
away from horizontal and vertical axes toward the centers
of the four categories. Such ‘geometric’ biases have been
reported in a host of studies (e.g. Crawford, Regier, &
Huttenlocher, 2000; Huttenlocher, Hedges, & Duncan,
1991; Spencer & Hund, 2002, 2003; Spencer, Simmering,

0010-0277/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cognition.2009.12.008

* Corresponding author. Institut für Neuroinformatik, Ruhr-Universität
Bochum, Universitätsstr. 150, Gebäude ND, Raum NDEF 04/589b, 44780
Bochum, Germany. Tel.: +49 234 32 24201; fax: +49 234 32 14209.

E-mail address: 2johnlipinski@gmail.com (J. Lipinski).

Cognition 115 (2010) 147–153

Contents lists available at ScienceDirect

Cognition

journal homepage: www.elsevier .com/locate /COGNIT



Author's personal copy

& Schutte, 2006) and have been formally modeled using
two different models of spatial memory—the Category
Adjustment Model (CAM; Huttenlocher et al., 1991) and
the Dynamic Field Theory (DFT; Schutte & Spencer, in
press; Simmering, Schutte, & Spencer, 2008; Spencer, Sim-
mering, Schutte, & Schöner, 2007).

Although geometric category biases are prevalent across
tasks, recent research suggests that spatial memory is
impervious to induced (i.e. experience-based) category
biases. In particular, Huttenlocher, Hedges, Corrigan, and
Crawford (2004) tested whether spatial memory biases
changed relative to the distribution of targets probed in
the circle-dot task. Across conditions targets were clus-
tered around the horizontal and vertical axes (HV condi-
tion) or the diagonal axes (X condition). According to
Huttenlocher et al., if spatial memory is subject to induced
category biases, then spatial memories for locations in the
HV condition should exhibit biases towards the cluster of
target instances presented along the horizontal and verti-
cal axes. In four experiments, Huttenlocher et al. showed
that geometric category biases persisted regardless of the
target distribution. Thus, they concluded that spatial cate-
gory formation is not influenced by inductive processes.
This is consistent with the CAM which has no mechanism
for accumulating memories over experience and, hence,
no mechanism for induced category effects.

Nevertheless, these data contradict an earlier study by
Spencer and Hund (2002) showing that target distributions
influence spatial memory biases. Specifically, location esti-
mates of a target 40� from a vertical axis shifted systemat-
ically relative to the distribution of other targets probed.
When the 40� target was paired with targets farther from
the axis, bias away from vertical increased. When the 40�
target was paired with targets closer to the axis, bias de-
creased. Thus, location memory biases shifted towards
the center of the target distribution. Subsequent studies
showed that spatial memory estimates are also influenced
by location frequency (Hund & Spencer, 2003; Spencer &
Hund, 2003). The DFT has captured these effects by posit-
ing that people actively maintain location information in
working memory and this leaves a trace in long-term
memory (LTM). Such traces accumulate with experience
and create biases in working memory, such as attraction
toward an average remembered location (Simmering
et al., 2008; Spencer et al., 2007). Thus, the DFT provides
an explicit mechanism by which memories can accumulate
and systemically influence spatial memory. This contrasts
with the CAM which provides no such mechanism for
accumulating memories across different experiences.

How do we reconcile these conflicting results and
theories? We see three possibilities. First, induced category
effects may only occur in spatial tasks with sparse distribu-
tions. The distribution in Spencer and Hund (2002) in-
cluded three targets separated by 20�. By contrast,
Huttenlocher, Hedges, Corrigan, and Crawford, 2004 used
more densely packed distributions with 120 or 144 targets,
separated by as little as 2�. Second, the experience-depen-
dent manipulation in Huttenlocher et al. may not have
been strong enough to yield measurable effects because
each target was only presented once. Spencer and Hund
presented each target 16 times, which may have created

stronger LTM of the distribution. Third, the conflict across
studies could reflect differences in the range of possible re-
sponses. In Spencer and Hund, people estimated three
locations within a large (.91 m by 1.22 m) homogeneous
space after delays up to 20 s. By contrast, Huttenlocher
et al. used a circle with a 7.5 or 8.5 cm radius and a 4 s
memory delay. Response variations within the circle after
this short delay may have been too small to detect subtle
induced category effects.

The present experiment tested these possibilities using
the Huttenlocher et al. task1 (2004; Experiment 4), but with
a 12.75 cm circle radius and a 10 s memory delay. Addition-
ally, we presented each target four times instead of once.
Based on the DFT, we expected to find evidence of induced
category effects in spatial recall, with participants’ category
biases shifting over trials according to the target distribution.
Note that the DFT does not predict a complete reversal of
geometric bias. Rather, two effects should be superim-
posed—bias away from the vertical and horizontal axes
and bias based on the LTM of the target distribution. If
location memory biases are not sensitive to the target distri-
bution, as the CAM predicts, however, our modifications
should not affect response patterns differentially across
conditions.

2. Methods

2.1. Participants

Forty undergraduates (23 males) participated in ex-
change for course credit or payment. All were right-handed
and reported normal or corrected-to-normal vision.

2.2. Materials

Participants sat in front of a 19-in. monitor with a large
white circle (12.75 cm radius, 1 mm border) centered on it.
Stimuli consisted of white dots (�1 mm in diameter) pre-
sented 6.38 cm from the center of the circle. At the time
of location estimation, a yellow dot (�1 mm in diameter)
appeared at the center of the monitor. Participants re-
sponded by moving the yellow dot to the remembered
location.

Stimuli differed in two ways from Huttenlocher et al.’s
(2004) Experiment 4. First, the circle radius was larger
(12.75 cm vs. 8.5 cm) to allow estimation responses to vary
across a greater spatial range. Second, we decreased the
target size from 2 mm to 1 mm to provide for more precise
localization.

2.3. Procedure

Each trial consisted of the 2 s presentation of a white
target dot at one of the target locations, followed by a
10 s delay, then the appearance of the yellow response
dot at the center of the screen. To prevent fixation at the

1 Huttenlocher et al. also included an explicit categorization task, which
we eliminated to avoid potential cross-talk between explicit and implicit
category processes.
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target location, participants were instructed to look at the
monitor edges throughout the delay, reorienting to the
screen when the computer said ‘‘Ready, Set, Go!”. Partici-
pants then moved the response dot to the remembered
location and clicked the mouse button. The inter-trial
interval varied randomly between 1.5 and 3.5 s.

Participants were randomly assigned to either horizon-
tal–vertical (HV) or diagonal (X) distribution conditions.
Target locations were clustered along the horizontal and
vertical axes in the HV condition, and the diagonal axes
in the X condition (Fig. 1). We presented four trial blocks,
with each target presented once per block in random order.
Note that Huttenlocher et al. (2004) presented targets at
one-half (4.25 cm) and three-fourths (6.38 cm) of the circle
radius whereas we presented targets only at one-half the
circle radius (6.38 cm). This allowed us to present each tar-
get four times while still retaining a manageable total
experiment time.

2.4. Data analysis

As in Huttenlocher et al. (2004), we analyzed responses
only for the 16 target locations that were shared across the
distributions and more than 7.5� from the horizontal and
vertical axes. Note that location estimation responses tend
to be more strongly biased away from the vertical axes
than from the horizontal axes (see Huttenlocher et al.,
2004; Spencer & Hund, 2002). Thus, to facilitate compari-
sons across quadrants, locations were labeled by their
deviation from the vertical axis (Fig. 1). Errors were com-
puted such that positive errors indicate biases away from
the vertical axis. We analyzed performance for the first
presentation of each target (Block 1) for comparison with
Huttenlocher et al., and the fourth presentation (Block 4)
to examine the effect of target repetition.

Directional errors exceeding the mean response ±2 SDs
for a specific target across participants in each condition
were removed as outliers. The minimum SD allowed was
5� to prevent removal of accurate responses due to low
variability; the maximum SD allowed was 15� to prevent
extreme errors from inappropriately influencing the distri-
bution. In Block 1, 25 outlier responses were removed (3.9%;
11 for the HV condition, 14 for the X condition); in Block 4,
24 responses were removed (3.8%; 12 for HV, 12 for X).

3. Results

Fig. 2 shows the Block 1 response pattern for the 4 com-
mon targets in each quadrant. Consistent with Huttenl-
ocher et al. (2004), responses were biased away from the
vertical axis (positive errors) when the targets were near
this axis (±22� from vertical), and toward the vertical axis
(negative errors) when the targets were near the horizon-
tal axis (±67� from vertical).

We fit regression lines to the data within each quadrant
for each distribution. Table 1 reports these slopes, along
with those from Huttenlocher et al. (2004). As in Huttenl-
ocher et al., there were no significant slope differences
across conditions, and the regressions provided a robust
fit to the data. Thus, Block 1 replicates the pattern from
Huttenlocher et al., suggesting that our modifications did
not meaningfully alter performance. Given the similar per-
formance profiles across quadrants in Block 1 (see Table 1),
we collapsed the data in each block across targets equidis-
tant from the vertical axis (i.e., ±22�, ±37�, ±52�, ±67�).

The critical question is whether repetitions to each tar-
get altered performance across conditions and blocks.
Fig. 3 shows mean location memory performance for the
four targets (collapsed across quadrants) in Block 1 and
Block 4 for the HV (Fig. 3a) and X (Fig. 3b) conditions. Over-
all, both distributions show the same characteristic bias
profile across blocks, namely bias away from the vertical
axis for targets near this axis (i.e., ±22�) and bias toward
the vertical axis for targets far from this axis (i.e., ±67�).
Moreover, Table 2 shows that the regression slopes and
correlation values across conditions in each block are com-
parable. Using this statistical criterion—as used by Huttenl-
ocher et al. (2004)—we would conclude that the target
distributions did not significantly impact performance.
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Fig. 1. Target locations presented in the (a) HV and (b) X distribution
conditions. Labeled target locations indicate the four common targets
analyzed in each quadrant (±22�, ±37�, ±52�, ±67�). Positive memory
biases (solid line arrows) indicate errors in the direction away from the
vertical axis. Negative memory biases (dotted line arrows) indicate errors
in the direction toward the vertical axis.
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Nevertheless, Fig. 3 shows that the regression lines shift
systematically over blocks in opposite directions across
conditions: downward for targets in the HV condition and
upward for targets in the X condition. To quantify this dif-
ference, we computed a difference score (Block 4–Block 1)
within each condition (see Fig. 3c). Regression analyses on

these difference scores revealed a significant intercept
difference across conditions (b = �3.17, t = 4.43, p = .007),
confirming the significant impact of target distribution
on performance across blocks. We also conducted a
mixed-model ANOVA with Block (1, 4) and Target as with-
in-subjects factors and distribution as a between-subjects
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Fig. 2. Mean location memory responses in Block 1 across target locations and conditions, shown separately for each quadrant. Positive values indicate
errors away from the vertical axis; negative values indicate errors toward the vertical axis (away from the horizontal axis). To facilitate comparisons
between quadrants and preserve the relevant relations from the directional coding scheme used by Huttenlocher et al. (2004), target locations are plotted
according to their angular deviation from the vertical axis.

Table 1
Regressions of Block 1 location memory biases, separated by distribution condition and quadrant for target locations appearing in both the HV and X
distributions.

HV distribution X distribution Difference in slope

Experimenta Huttenlocher et al.b Experimenta Huttenlocher et al.b Experiment Huttenlocher et al.b

t p t pc

Quadrant I
Slope �0.127 �0.193 �0.218 �0.102 1.43 0.23 �4.10 NS
r �0.942 �0.992 �0.943 �0.982

Quadrant II
Slope �0.201 �0.188 �0.165 �0.051 0.5 0.64 �3.16 NS
r �0.978 �0.993 �0.87 �0.671

Quadrant III
Slope �0.201 �0.195 �0.133 �0.108 �1.16 0.31 �1.35 NS
r �0.94 �0.984 �0.955 �0.785

Quadrant IV
Slope �0.208 �0.124 �0.175 �0.149 0.55 0.61 0.41 NS
r �0.948 �0.881 �0.966 �0.959

a Errors were computed such that positive errors indicate memory biases away from the vertical axis, negative errors biases toward the vertical axis
(away from the horizontal axis). To facilitate comparisons between quadrants and preserve the relevant relations from the directional coding scheme used
by Huttenlocher et al. (2004), correlations and slopes were calculated relative to the targets’ absolute deviation from the vertical axis.

b Results from Huttenlocher et al. (2004), Experiment 4.
c Precise p values were not reported; all p values >.05.
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factor. Results yielded a main effect of Target, F(3, 114) =
43.6, p < .001, indicating a significant bias away from the
horizontal and vertical axes across targets in both condi-
tions (see Fig. 3). Critically, there was also a significant
Distribution� Block interaction, F(1, 38) = 10.6, p = .002
(all other ps > .15). Simple effects tests showed a signifi-
cant Block effect in the HV condition, F(1, 19) = 5.4, p =
.031, confirming a downward shift in memory bias
between Block 1 (M = 0.90, SE = 0.60) and Block 4 (M =
�0.97, SE = 0.57). By contrast, there was an upward shift
in memory bias in the X condition, F(1, 19) = 5.5, p = .03,
between Block 1 (M = �0.03, SE = 0.47) and Block 4
(M = 1.28, SE = 0.34). These results verify that the target
distributions significantly influenced spatial recall over
blocks.

4. Discussion

Research from Huttenlocher et al. (2004) motivated by
the CAM suggested that location memory is not affected

by inductive category processes. These findings contrast
with earlier work from Spencer and Hund (2002) moti-
vated by the DFT. One possible explanation for this dis-
crepancy is that target distribution effects are limited to
sparsely populated distributions (as in Spencer and Hund).
Another possibility suggested by the DFT is that induced
category effects emerge over repeated trials.

We tested these alternatives here in a task based on
Experiment 4 in Huttenlocher et al. (2004) but increased
the number of presentations per target, the memory delay,
and the circle size. Our results revealed opposite shifts in
location memory bias over experience across the HV and
X conditions. These distribution-based changes indicate
the presence of an inductive process in spatial cognition
that operates over both sparsely and densely populated
distributions.

What are the implications for existing theories of spatial
memory? The CAM is not consistent with our results be-
cause this model has no mechanism by which experience
can modulate performance. However, recent extensions of
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Fig. 3. Comparison of performance between Block 1 and Block 4 for (a) HV and (b) X distributions, collapsed across targets equidistant from the vertical axis
in each quadrant (see text and Table 2 for details). (c) Change in location memory biases from Block 1 to Block 4 across conditions.

Table 2
Regressions of location memory biases for target locations appearing in both the HV and X distributions, collapsed across quadrants and separated by
distribution condition and trial block.

HV distribution X distribution Difference in slope

t p
Block 1
Slope �0.186 �0.174 0.24 0.83
r �0.955 �0.974

Block 4
Slope �0.117 �0.146 0.99 0.38
r �0.972 �0.980
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this approach can capture inductive biases found in object
estimation tasks (e.g., Crawford, Huttenlocher, & Hedges,
2006; Huttenlocher et al., 2000). Thus, in principle, the
more general Bayesian framework to which the CAM be-
longs might be able to capture our reported effects. Future
elaborations of the CAM model will be required to evaluate
this possibility. Note, however, that the CAM model has a
number of other short-comings that we have discussed
elsewhere. For instance, this model does not capture the
pattern of response variability near category boundaries
(see Schutte & Spencer, in press), it is not a process model
and therefore has no mechanism to explain why spatial
memory biases increase systematically over delays (see
Spencer & Hund, 2002), and it does not capture changes
in geometric biases over development (see Schutte & Spen-
cer, in press). Thus, there is a growing suite of phenomena
not adequately addressed by this model.

The DFT presents a compelling alternative. The DFT cap-
tures working memory for a target location through a peak
of neural activation that is actively maintained via recur-
rent interactions during delays. Importantly, such patterns
of neural activation must be coupled to activation patterns
associated with perceptual cues in the local workspace
(e.g., reference frames). This keeps working memories in
register with the local surrounds as a person moves, as ob-
jects move, and so on. Geometric biases arise in the DFT as
a consequence of these two demands—actively maintain-

ing the target location, on one hand, and actively staying
in register with perceived reference frames on the other.
In particular, perceptual peaks repel working memory
peaks when the to-be-remembered location is relatively
close to the reference frame. This occurs as a natural con-
sequence of the surround inhibition associated with each
activation peak and the fact that perceptual peaks are an-
chored to perceived cues. This repulsion of memory peaks
away from perceived reference frames accounts for geo-
metric biases, including the pattern of lower response var-
iability near reference frames and the increase in bias over
delays (see Schutte & Spencer, in press).

In addition to capturing the details of working memory
processes, a peak in the DFT also leaves a trace in LTM
which is reciprocally coupled to working memory. This re-
ciprocal interaction implements a form of Hebbian learn-
ing (Spencer, Dineva, & Schöner, 2009), and can create
biases toward an average remembered location (Spencer
& Hund, 2002) or toward more frequent locations (Hund
& Spencer, 2003).

To demonstrate this, we simulated the present results
using the model of Schutte and Spencer (in press), with the
addition of a LTM mechanism that captures changes in spa-
tial recall over learning in a supervised learning task (Lipin-
ski, Spencer, & Samuelson, in preparation). We used the
parameters from Schutte and Spencer and two modified
LTM parameters from Lipinski et al. to reflect the unsuper-

Fig. 4. (a) Simulation results for HV and X distributions in Block 1. (b) Differences in mean bias between Block 1 and Block 4 for HV and X distributions,
where * indicates p < .05. Accumulation of traces in LTM across blocks for HV (c) and X (d) conditions.
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vised nature of the present task: we slowed the time-scale of
accumulation in LTM (from 3000 to 70000 time steps) and
reduced the strength of the LTM contribution to working
memory (from .2 to .1). We also modified the vertical input
from Lipinski et al. to increase repulsion for common targets
near the vertical axis, and added a horizontal input to weak-
en repulsion for targets near the horizontal boundary. Final-
ly, to make the simulation task more tractable, we used
simpler target distributions (HV: 3�, 7�, 15�, 30�, 60�, 75�,
83�, 87�; X: 15�, 30�, 38�, 42�, 48�, 52�, 60�, 75�). The simu-
lated target distributions had eight targets in the quadrant
we simulated—four common targets (15�, 30�, 60�, 75�)
and four shifting targets. We maintained the central charac-
teristics of the original target set used by Huttenlocher et al.
(2004) by averaging the locations of adjacent targets used
here. We ran 100 simulations in each condition across four
blocks of trials with a 10 s delay on each trial. The simulations
were identical across conditions with the exception of the target
distribution (HV vs. X).

Fig. 4a shows simulation results for Block 1 for the four
common targets. The negative regression slope replicates
the pattern from Huttenlocher et al. (2004). There were
no significant slope differences across conditions (t = .35;
p = .74) and the regressions provided a robust fit to the
data (r = .9; cf. Table 1). Critically, changes in recall errors
between Block 1 and Block 4 differed significantly across
conditions (Fig. 4b): mean errors for the common targets
in the HV condition significantly decreased over experience
(M = �0.27; p = .049), while errors to these targets in the X
condition significantly increased over experience (M = 0.45;
p = .02). Thus, the DFT produces the same direction of dis-
tribution-dependent change over blocks as seen in our
data.

Fig. 4c and d shows the LTM traces across conditions at
the end of Blocks 1 and 4. The LTM distributions clearly
differed, even at the end of Block 1, but this did not signif-
icantly affect performance because LTM was still relatively
weak. However, larger differences in LTM, capable of influ-
encing performance, emerged by Block 4. What explains
the differential direction of bias across blocks? In the HV
condition (Fig. 4c), errors to the 15� and 30� targets were
both biased inward, whereas responses to 60� and 75�
changed little because 60� was located on a flat part in
LTM and 75� was close to the average remembered loca-
tion for the outer targets (the weak bias away from hori-
zontal pushed this average closer to 75�). Thus, there was
an overall inward bias in the HV condition, largely driven
by the common targets closer to the vertical axis. In the
X condition (Fig. 4d), errors to the 15� and 30� targets were
biased outward by Block 4, whereas responses to the 75�
target were, once again, near a bump in LTM and showed
little change over blocks. The 60� target also showed little
change—it was balanced between attraction inward and a
pull toward the bump at 75�. Thus, there was an overall
increase in outward bias in the X condition.2

In summary, the present results provide clear evidence
that inductive processes operate within the spatial

memory system, as reported by Spencer and Hund
(2002). Critically, these findings are not consistent with
the CAM but—as our simulation results demonstrate—they
are consistent with the DFT. The present work, therefore,
provides a critical test of these two spatial memory
theories.
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