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Abstract

Looking is a fundamental exploratory behavior by which infants acquire knowledge about the

world. In theories of infant habituation, however, looking as an exploratory behavior has been deem-

phasized relative to the reliable nature with which looking indexes active cognitive processing. We

present a new theory that connects looking to the dynamics of memory formation and formally

implement this theory in a Dynamic Neural Field model that learns autonomously as it actively looks

and looks away from a stimulus. We situate this model in a habituation task and illustrate the mecha-

nisms by which looking, encoding, working memory formation, and long-term memory formation

give rise to habituation across multiple stimulus and task contexts. We also illustrate how the act of

looking and the temporal dynamics of learning affect each other. Finally, we test a new hypothesis

about the sources of developmental differences in looking.

Keywords: Dynamic field theory; Dynamic neural field models; Infant looking; Memory formation;

Memory development; Embodied cognition

1. Introduction

In seminal theories of cognitive development, early changes in perception, representation,

and behavior were grounded in sensorimotor exploration (e.g., rattles are for shaking; Gib-

son, 1988; Piaget, 1952, 1983; see also Flavell, 1963). The experimental investigation of

early cognitive development, however, has largely relied on visual habituation procedures.

These procedures are based on the observation that infants’ looking time decreases as they

are successively presented with a stimulus and recovers if presented with a discriminably

different novel stimulus. Indeed, this observation has led to a rich empirical database on the

development of basic attentional, perceptual, and memory processes (e.g., Cohen, Gelber, &
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Lazar, 1971; Rose, Feldman, & Jankowski, 2001; Ross-Sheehy, Oakes, & Luck, 2003).

Habituation tasks have also been adapted in creative ways to study developmental change in

cognitive processes such as statistical learning (e.g., Kirham, Slemmer, & Johnson, 2002;

Saffran, Aslin, & Newport, 1996), category formation (e.g., Oakes, Coppage, & Dingel,

1997; Quinn, Eimas, & Rosenkrantz, 1993; Younger & Fearing, 2000), and word learning

(e.g., Rost & McMurray, 2009; Werker, Cohen, Lloyd, Cassasola, & Stager, 1998).

Looking is clearly a powerful empirical tool. Nevertheless, many debates are centered on

how looking measures should be interpreted. Some researchers have used looking measures

to make strong claims about the innate origins of knowledge (Bhatt & Quinn, 2011; see

Spelke, 1998 for a discussion), while other researchers have argued that looking measures

changes in perceptually based representations over learning (Bogartz, Shinskey, & Speaker,

1997; Cashon & Cohen, 2000; Haith, 1998). Such contradictory interpretations have led

many researchers to argue that looking must be more strongly grounded in what is known

about basic cognitive processes (see Cohen, 2004; Kagan, 2008; Oakes, 2010; Schöner &

Thelen, 2006).

This has been the goal of neural network models. Several formal models have shed light

on the neural processes that underlie habituation and led to novel predictions that have been

confirmed empirically (French, Mareschal, Mermillod, & Quinn, 2004; Gilmore & Thomas,

2002; Schöner & Thelen, 2006; Sirois & Mareschal, 2004). Although these models consti-

tute a major advance in the field of infant cognition, they all share a common limitation:

Looking as an exploratory action has been lost. Instead, these models treat looking behavior

as an output of cognitive processing (see Fig. 1A).

Some models, however, have formally treated looking as a dynamic motor act (see

Fig. 1B). For example, Robertson, Guckenheimer, Masnick, and Bachner (2004) proposed a

stochastic dynamical model and used it to capture1 the second-to-second dynamics with

which 4-week-olds look and look away without any formal contribution of cognitive pro-

cessing. Looking, of course, is not only a dynamic motor act but also an exploratory behav-

ior by which infants construct knowledge. And several lines of evidence suggest that

looking and learning are fundamentally intertwined. For example, experimental manipula-

tions of how infants distribute their looks on the second-to-second time scale affect what

infants learn and remember (Jankowski, Rose, & Feldman, 2001). Moreover, how infants

distribute their looks when exploring objects is influenced by how other agents manipulate

the world. This, in turn, impacts how they explore the world and ultimately the development

of cognitive and social abilities (Landry & Chapieskie, 1988; Landry, Smith, Swank, &

Guttentag, 2008). To date, formal theories of infant visual habituation have not provided an

account of this link between looking and learning.

The goal of this article is to bring together the innovations from the study of infant look-

ing depicted in Fig. 1A and 1B. We propose a new Dynamic Field Theory (DFT) in which

looking is one component of a dynamic, exploratory system (see Fig. 1C). Our model

explores a virtual world by looking at it, capturing the stochastic nature of looking and look-

ing away. Consequently, what the model sees is driven by what it happens to look at. Look-

ing and learning in our model are interdependent: The length of each fixation depends on

the current state of the looking system and the current state of perceptual and memory
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processes. This brings the second-to-second dynamics of looking and the trial-to-trial

dynamics of learning together. We discuss how formally implementing the link between

looking and learning has consequences for understanding the emergence of cognitive pro-

cesses in development, and we discuss several novel insights that ground infant cognition in

the dynamics of an autonomous, visual exploratory system.

This article is structured around four broad sections. In the first section, we set the stage

for our theory and review conceptual and neural network theories of visual habituation. In

the second section, we construct our new model and formally establish a link between look-

ing and learning. In the third section, we present a series of simulations that reveal a rich

interplay between looking and learning. In the fourth section, we discuss the implications of

our theory for the study of infant cognitive development. We also discuss the strengths and

weaknesses of our theory that point toward future work.

2. Setting the stage for a new theory

2.1. Conceptual theories of infant habituation

The empirical database from habituation studies has grown immensely over the past sev-

eral decades, but contemporary thinking about the processes underlying infant habituation is

(A) (B) (C)

Fig. 1. Three implementations of looking behavior. (A) Looking as a behavioral output of cognitive processing

over time. Here, the world is a direct input into the cognitive system and looking a direct index of processing and

representation. This system captures the trial-to-trial dynamics of learning. (B) Looking as a stochastic dynamic

system that looks at the world. This system captures the second-to-second dynamics of looking and looking

away. (C) Puts the concepts in (A) and (B) together to create a dynamic, exploratory system that looks at the

world, learns about what is being looked at, which, in turn, contributes to the maintenance and release of fixation.

This system integrates the second-to-second dynamics of looking with the trial-to-trial dynamics of learning.
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still strongly influenced by Sokolov’s (1963) comparator model. Sokolov proposed that an

organism remains oriented toward a stimulus as it constructs an internal representation

that matches the stimulus, at which point the organism orients away and seeks novelty.

Sokolov’s comparator model has been the foundation for later models of habituation. One

influential model is Cohen’s (1972a,b) dual-process model. This model proposed an atten-
tion-getting process that controls orienting to a stimulus and an attention-holding process

that controls sustained looking at a stimulus. Stimulus properties such as brightness and size

attract infants’ gaze, but, once fixated, perceptual encoding and memory formation sustains

fixation. When the infant has formed a memory for a stimulus, the attention-getting process

leads the infant to fixate the stimulus, but fixation is not maintained. A central innovation of

the dual-process model is that it delineated multiple interactive processes that orient gaze,

sustain fixation, and release fixation from a stimulus.

Another influential model of infant habituation is the multifactor model (Hunter & Ames,

1988). A central innovation of this model is that it captures the familiarity-to-novelty shift

in infants’ visual preferences. The basis of the model is that early in learning, infants

actively encode a stimulus, which biases them to preferentially look at familiar over novel

stimuli. Late in learning, infants’ memory for a stimulus supports recognition and biases

them to look at novel over familiar stimuli. The multifactor model assumes that memory

formation is gradual and that the time course of this shift varies with the developmental state

of the infant and is influenced by contextual factors such as stimulus complexity and the

interstimulus interval.

Consistent with the multifactor model, a number of studies have shown that the familiar-

ity-to-novelty shift occurs later for young infants than older infants (e.g., Rose, Gottfried,

Melloy-Carminar, & Bridger, 1982). Critically, however, the multifactor model does not

specify the mechanisms that underlie this developmental change. This limitation has been

partially overcome by the processing speed hypothesis, which posits that infants process

visual information more quickly with age. Rose, Feldman, and Jankowski (2002) provided

support for this hypothesis. They developed a preferential looking task in which infants

were presented with pairs of different stimuli. On each trial, one stimulus remained

unchanged (familiar) and one stimulus changed (novel). Processing speed was indexed as

the number of trials required to exhibit a novelty preference on three consecutive trials. The

number of trials to criterion decreased with age, consistent with increasing processing speed.

Nevertheless, questions remain regarding the mechanisms that underlie changes in process-

ing speed. Neural network theories have provided answers to some of these questions. Thus,

we turn to these models next.

2.2. Neural network theories of infant habituation

Many classes of neural networks have been used to capture infants’ performance in look-

ing tasks (French et al., 2004; Gurekis & Love, 2004; Schöner & Thelen, 2006; Shultz &

Cohen, 2004; Sirois & Mareschal, 2004). We focus on three common classes: autoencoders,

autoassociators, and dynamic neural fields (DNFs). Autoencoders are versatile models that

gradually construct an internal representation of a stimulus. Initially, the representation does
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not match the stimulus, error is high, and levels of looking are said to be high. Later, the rep-

resentation can estimate the stimulus, error is low, and levels of looking are said to be low.

Autoencoders have made a particularly strong contribution to our understanding of categori-

zation. For example, French et al. (2004) showed that the scope of infants’ categories

depends on the statistical distribution of feature values to which they are exposed during

familiarization.

Like autoencoders, autoassociators learn to reproduce an input pattern over trials (see

Sirois, 2004 for a review). Sirois and Mareschal (2004) used an autoassociator to construct a

model of infant habituation called HAB (for Habituation, Autoassociation, and Brain). A

major accomplishment of HAB is that it describes how excitatory and inhibitory neural

interactions can impact changes in processing speed over developmental. Moreover, HAB

acquires an excitatory long-term memory that, in principle, could influence processing speed

upon subsequent encounters with remembered stimuli. Unlike autoencoders, however, HAB

has only qualitatively captured a single pattern of data—the familiarity-to-novelty shift.

Thus, it is unclear to what extent HAB can elucidate how the stimulus and task context

influence learning.

Schöner and Thelen (2006) proposed a DNF model that captured such contextual influ-

ences on learning. Their model consisted of coupled excitatory and inhibitory layers. Activ-

ity in the excitatory layer generated looking. This feature enabled Schöner and Thelen to

capture elevated levels of looking associated with stimulus complexity (e.g., Caron &

Caron, 1969) simply by strongly stimulating the excitatory layer. The excitatory layer also

generated inhibition, which led to a decline in looking via suppression of the excitatory

layer. Moreover, the inherently time-dependent nature of the excitatory and inhibitory

dynamics enabled Schöner and Thelen to capture the lack of habituation associated with

long interstimulus intervals (e.g., Lewis, 1969). Although compelling, the DNF model pro-

vides only limited insight into longer term learning because habituation is driven by an

inhibitory memory. Inhibition is certainly involved in habituation; however, looking is also

an exploratory behavior by which infants acquire knowledge stored through excitatory

memory processes (Sirois & Mareschal, 2004).

In summary, each neural network has made a unique contribution to our understanding

of infant cognition. Nevertheless, they all share three limitations that point toward the

need for a new theory. The first limitation is that existing theories have not provided an

account of the interdependency between looking and learning. Jankowski et al. (2001)

eloquently illustrated this linkage across two critical experiments. In the first experiment,

they showed that individual differences in looking generalized across stimulus contexts.

During a pretest phase, infants were presented with pairs of identical stimuli that

consisted of an arrangement of geometrical shapes. The arrangement of shapes naturally

segregated into top and bottom portions, which, across the two stimuli, created four

quadrants. After the pretest phase, infants were familiarized with a different pair of iden-

tical stimuli that also consisted of an arrangement of geometrical shapes segregated into

top and bottom portions. Infants who exhibited short looks and frequently switched gaze

between the two stimuli during the pretest phase also exhibited a similar style of looking

during familiarization. At test, short-looking infants exhibited a novelty preference and
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long-looking infants exhibited no preference. In the second experiment, Jankowski et al.

(2001) again measured looking during a pretest phase. Now, however, infants who exhib-

ited long looks during the pretest phase were induced to exhibit short looks during famil-

iarization. To induce short looks, a light was illuminated in a different quadrant once

every second during familiarization. This experimental manipulation of how infants

distribute their looks affected memory formation—long-looking infants now showed a

novelty preference at test. Thus, patterns of looking and learning are intertwined. In the

theory we present here, we formally implement looking as an active behavior and show

that looking matters for learning.

The second limitation shared by existing theories is that they have not captured develop-

mental change in processing speed and discrimination within the same architecture. During

the same period that processing speed is increasing, infants exhibit an increased ability to

discriminate between highly similar familiar and novel stimuli in visual (Brannon, Sumarga,

& Libertus, 2007) and auditory (Lipton & Spelke, 2003) domains. At present, it is unclear

whether developmental changes in processing speed and discrimination can arise from a

common mechanistic source. We explore this link and show that these changes can indeed

arise from the same developmental mechanism.

The last limitation shared by existing theories is that they have not provided an account

of the nonlinear tie between looking and memory formation. Conceptual and neural network

theories focus on the gradual process of habituation commonly reported in group-level data.

At the individual level, however, looking and memory formation have been reported to

undergo nonlinear transitions across learning. Roder, Bushnell, and Sasseville (2000; see

also Colombo, Mitchell, Coldren, & Atwater, 1990) found that infants transition from exhib-

iting a familiarity preference to exhibiting a novelty preference as quickly as from one trial

to the next. Infants rarely exhibited a null preference in between, a signature of linearly tran-

sitioning from encoding to memory. These data are also consistent with Fisher-Thompson

and Peterson (2004) who found that infants often transition between familiarity and novelty

biases while visually exploring pairs of items. We contend that these observations tell us

something new about the learning process in looking tasks, and we show that our theory

captures the nonlinear tie between looking and learning.

3. A DFT of infant looking and memory formation

The DFT is a theory of embodied cognitive dynamics (for a review, see Spencer, Perone,

& Johnson, 2009). This theory falls within the theoretical umbrella of dynamic systems

theory (for a discussion, see Spencer & Schöner, 2003). Dynamic systems theory construes

behavior as an emergent product of self-organizing, multicomponent systems interacting

over multiple time scales (Simmering & Perone, unpublished data; Spencer, Perone, &

Buss, 2011; Thelen & Smith, 1994). One challenge for systems theories in psychological

sciences has been to concretely apply these concepts to explain how neurocognitive and

action systems work together to create the specific behaviors observed and studied in the

laboratory. The DFT has emerged as one solution to this challenge. In particular, this
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framework uses dynamical neural networks called DNFs to explain how behavioral patterns

arise from neural population dynamics coupled to sensorimotor systems.

The theory and DNF model we propose is connected to a larger set of concepts examining

the real-time integration of brain and behavior over learning and development (for reviews,

see Schöner, 2009; Spencer et al., 2009; Spencer, Simmering, Schutte, & Schöner, 2007).

DNFs have provided an account of the mapping between real-time neural dynamics and

behavior (Kopecz & Schöner, 1995; Wilimzig, Schneider, & Schöner, 2006), the planning

of reaching movements (Bastian, Schöner, & Riehle, 2003), working memory for visual fea-

tures (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009), and

spatial working memory (see Spencer et al., 2007 for a review). DNFs have also been used

to explain the codevelopment of neural and behavioral processes in the Piagetian A-not-B

task (Thelen, Schöner, Scheier, & Smith, 2001) and spatial working memory tasks (Schutte

& Spencer, 2009; Schutte, Spencer, & Schoner, 2003; Simmering, Schutte, & Spencer,

2007).

The starting point for our theory is a DFT of visual working memory and change detec-

tion in adults proposed by Johnson et al. (2009). We chose this starting point because it

enables us to probe whether there is developmental continuity in basic visual cognitive pro-

cesses. Johnson et al. proposed that visual recognition and change detection arise from the

real-time interaction between perceptual and working memory processes. In their DNF

model, multiple items (e.g., colored squares) are encoded in parallel. Encoding generates a

working memory representation that can be actively maintained in the absence of input. The

maintenance of items in working memory, in turn, inhibits encoding of remembered stimu-

lus values. Consequently, when old items are re-presented in the task space, they are inhib-

ited from building a new perceptual representation—the system recognizes them as

‘‘known.’’ In contrast, new items have stimulus values that fall outside the range of inhibi-

tion. This causes a new perceptual representation to form and the system detects the novelty.

Here, we generalize this model to infant habituation by adding a form of Hebbian learning

(see Lipinski, Simmering, Johnson, & Spencer, 2010; Lipinski & Spencer, 2010; Spencer,

Dineva, & Schöner, 2009). This enables the system to respond more robustly to previously

encoded items and facilitates working memory formation across trials.

We also added a stochastic fixation system which determines when stimulus values enter

the perceptual and working memory system as the fixation system looks and looks away

from stimuli. Our implementation is based on work by Robertson et al. (2004) who pro-

posed a simple dynamical systems model to capture the exploratory dynamics of looking in

infancy. The model consisted of a single bistable unit that, when above threshold (zero),

was said to be ‘‘looking’’ and, when below threshold, was said to be ‘‘looking away.’’

Noise and a small bias to enter the looking state produced a stochastic, oscillatory pattern of

looking and looking away. This simple model captured the looking dynamics of 4-week-

olds situated in front of an array of toys, including the transition rate between looking and

looking away, look duration, and look away duration. The stochastic oscillatory dynamics

of looking and looking away may be a general property of exploratory behavior that impact

learning. For instance, Mobus and Fisher (1999) proposed that an animal situated in an

unfamiliar environment needs an efficient, timely exploratory strategy to discover relevant
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features of the environment. They found that a robot that oscillated stochastically between

left and right movement directions more efficiently discovered and learned about spatial

locations at which reinforcement was given than a robot that explored the space randomly.

In the sections that follow, we construct our model in four parts. First, we describe the

general concepts that underlie DNFs. Second, we describe our adaptation of the Johnson

et al. (2009) model. Third, we describe our adaptation of the Robertson et al. (2004) fixation

system. Finally, we couple these systems together and illustrate how the integrated system

looks and learns in a habituation task.

3.1. Central concepts of DNFs

A DNF consist of layers of neurons organized by functional topography along continu-

ous, metric dimensions (e.g., color). In DNFs, neighboring ⁄ similarly tuned neurons mutu-

ally excite each other and inhibit dissimilarly tuned neurons (see Bastian et al., 2003;

Georgopoulos & Massey, 1988; Spencer et al., 2009). This type of neural interaction cre-

ates a local excitatory ⁄ lateral inhibitory activation profile, a ubiquitous form of neural

interaction in the nervous system that stabilizes motor behavior and neural representations

within the cognitive system (Fuster, 2003). Neuronal activation in DNFs evolves continu-

ously in time, and the state of a DNF at any point in time depends on its own intrinsic

dynamics, the inputs impinging on them, and previous states the DNF has entered. Neuro-

nal layers in DNFs are a lower level representation of a high dimensional space and

emphasize the neural attractor states that these layers enter. Amari (1977) originally ana-

lyzed five qualitatively different attractor states that DNFs can enter. Below, we describe

three of those states and their cognitive function in the context of infant habituation (see

Spencer et al., 2009 for a review).

The first attractor state is the resting state in which neuronal activation rests at a baseline

level of activity. Our account of infant habituation is largely centered on transitions into and

out of the resting state and two additional attractor states, the self-stabilized and self-sustain-
ing states. When a stimulus is present, DNFs can enter a self-stabilized state in which neu-

rons create a localized peak of activity, a real-time neural representation of the stimulus at

the level of the neural population. This peak must be stabilized by the continued presence of

input; once the input is no longer available, the peak subsides and the system moves back

into the resting state. In previous work, we have used the self-stabilized state to capture the

dynamics of perceptual encoding where perceptual representations are distributed along

continuous spatial and featural dimensions (e.g., Johnson et al., 2009).

DNFs can also enter a self-sustaining state in which recurrent local excitatory connec-

tions are sufficiently strong to maintain peaks in the absence of stimulation. We have

used this attractor state to capture the active maintenance of items in working memory

(Johnson et al., 2009; Schutte & Spencer, 2009; Simmering, 2008; for related models, see

Compte, Brunel, Goldman-Rakic, & Wang, 2000; Edin, Macoveanu, Olesen, Tegner, &

Klingberg, 2007). The neural dynamics of the self-sustaining state are consistent with find-

ings showing that neurons exhibit sustained and elevated levels of discharge during delays

(Funahashi, Bruce, & Goldman-Rakic, 1989).

8 S. Perone, J. P. Spencer ⁄ Cognitive Science 37 (2013)



Fig. 2 illustrates these two neural attractor states and how Hebbian learning can modulate

these states. Across panels A–E, a stimulus (see top row) is presented to an excitatory layer

of neurons which we will refer to as a perceptual field (PF). When neurons in this excitatory

layer are stimulated by input (B), they stimulate neighboring neurons (blue arrow). Above-

threshold (>0) neurons also stimulate neurons in an inhibitory layer (Inhib; not shown for

simplicity). When these inhibitory neurons become active, they project inhibition back to

the excitatory layer (red arrow). Recurrent interactions between PF and Inhib create a local-

ized peak of activation (B). Notice that once the input is removed, the field returns to its

resting level (C). Above-threshold peaks leave an activation trace in a Hebbian layer (HPF),

which feeds back into PF. Functionally, this strengthens the connections among previously

excited neural sites in PF. The contribution of HPF to PF is shown by the light gray bump of

activation at the bottom of Fig. 2B (right y-axis). As can be seen in Fig. 2D, this contribu-

tion strengthens the neural response upon subsequent presentations of the stimulus.

When the excitatory and inhibitory layers interact more strongly (i.e., stronger local exci-

tation ⁄ lateral inhibition) and there is support from the Hebbian layer, DNFs can enter a self-

sustaining state. This is illustrated in the bottom row of Fig. 2. Across panels F–J, the stimu-

lus shown in the top row is presented to an excitatory layer of neurons as before. Now,

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

Fig. 2. Middle row illustrates the self-stabilized state in PF and its mapping to perceptual encoding. Initially, no

stimulus is present (see top row) and PF is in the resting state (A). There is no contribution of HPF to PF (gray

line, right y-axis). The presence of Hebbian learning within a layer is denoted by H. When a stimulus is present,

interactions between PF and Inhib (red and blue loop) create a self-stabilized peak and activation in HPF accumu-

lates (B). When the stimulus is removed, PF returns to the resting state (C). The contribution of HPF to PF

strengthens activation in PF (D). Functionally, HPF primes PF to encode recently encoded stimuli. When the

stimulus is removed once again, activation in PF returns to the resting state (E). Bottom row illustrates the self-

sustaining state in WM and its mapping to working memory. Initially, no stimulus is present and WM is in the

resting state (F) and there is no contribution of HWM. When a stimulus is present, interactions between WM and

Inhib (red and blue loop) create a self-stabilized peak and activation in HWM accumulates (G). When the stimu-

lus is removed, WM returns to the resting state (H). When the stimulus is re-presented (I), the contribution of

HWM to WM strengthens activation in WM and enables it to maintain a self-sustaining peak in the absence of

input (J).
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however, we have labeled the field ‘‘working memory’’ (WM) to reflect the stronger neural

interactions. Initially, no stimulus is present and WM is in the resting state (F). When a stim-

ulus is presented, WM enters the self-stabilized state (G), and, as before, activation returns

to its resting level when the stimulus is removed (H). When the stimulus is re-presented,

however, WM enters the self-sustaining state: A peak of activation is built that is dynami-

cally stable in (J) even though the stimulus is no longer present—the stronger interactions in

WM enable this field to actively maintain the item in memory.

3.2. Adaptation of the Johnson et al. (2009) architecture: The three-layer+ model2

Johnson and colleagues (2009) proposed a three-layer DNF model that was able to recog-

nize and detect novelty by comparing items in memory with incoming perceptual informa-

tion. Our central thesis is that the same neural mechanisms underlying visual recognition

and change detection in adults underlie visual recognition and habituation in infancy, with

one central difference: Visual recognition in infancy unfolds more gradually through time,

and learning processes play a stronger role in the formation of visual preferences in infancy.

The basic concepts behind our thesis are shown in Fig. 3. This figure shows a simulation of

the three-layer architecture from Johnson et al. (2009) with Hebbian layers (HPF and HWM)

added to both excitatory fields. The second row shows a PF (A–E) with relatively weak neu-

ral interactions, and the bottom row shows a working memory field (WM; F–J) with stronger

neural interactions. As in Johnson et al. (2009), input (see top row) is passed strongly into

PF and weakly into WM. Above-threshold activation in PF stimulates similarly tuned excit-

atory neurons in WM (blue arrow from PF to WM). Both PF and WM are coupled to a

shared layer of inhibitory interneurons (Inhib), which is not shown for simplicity. The inhib-

itory projections to PF and WM are shown by the red bidirectional arrow. (Note that because

PF projects strong excitation to WM, there is little net inhibitory influence of PF on WM in

the simulations reported here. For an alternative example, see Schutte & Spencer, 2009.)

Finally, the contribution of HPF and HWM to activation within the excitatory layers is shown

in light gray (see right y-axis).

When a stimulus is presented to the three-layer+ model, a self-stabilized peak arises in

PF and excitation is propagated into WM (Fig. 3A). When the stimulus is removed, a WM

peak maintains a representation of the stimulus in its absence (B). Note that the maintenance

of a WM peak inhibits associated neurons in PF via the shared layer of inhibitory interneu-

rons (see red-dashed arrow). When an identical stimulus to the item held in WM is pre-

sented, activation in PF is relatively weak (compare A with C). This suppression of

encoding is the neural basis of visual recognition in our model. In contrast, when a novel

stimulus is presented (see the shift in input along the feature dimension in D), it excites

uninhibited neurons in PF and a robust peak emerges (D). This strong neural signal is the

basis of novelty detection in our model. Note that these mechanisms of recognition and nov-

elty detection resemble data showing that neural responses decline with stimulus repetition

(Desimone & Duncan, 1995; Snyder, 2007).

Below, we provide a more detailed overview of the three-layer+ model. Where necessary,

we provide details on model parameters. Additional model parameters are reported in Table 2.
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3.2.1. Perceptual field
The PF consists of reciprocally coupled excitatory, PF(u), and inhibitory, Inhib(v), layers.

The excitatory layer of PF is given by the following equation:

sexcite _uðx; tÞ ¼ � uðx; tÞ þ hu þ Sðx; tÞ

þ
Z

cuuðx� x0ÞKuuðuðx0; tÞÞdx0

�
Z

cuvðx� x0ÞKuvðvðx0; tÞÞdx0

þ
Z

cuhlðx; x0Þhluðx; tÞdx0

þNðx; tÞ

ð1Þ

where _uðx; tÞ is the rate of change of activation across the continuous behavioral dimension

(e.g., color), x, as a function of time, t. sexcite is the time constant along which excitatory

(A) (B) (C) (D)

Fig. 3. (A) Connectivity of three-layer+ architecture. The stimulus (top row) is input strongly into PF (solid blue

arrow) and weakly into WM (dashed blue arrow). Local excitatory ⁄ lateral inhibitory interactions between PF

and Inhib and WM and Inhib are shown by blue and red loops within each layer. PF passes strong excitation to

WM (solid blue arrow), and, via Inhib, PF passes inhibition to WM and WM passes inhibition to PF (red bidirec-

tional arrow). For simplicity, remaining panels and figures do not show input connection. Remaining panels also

do not show bidirectional inhibition between PF and WM. Instead, we show a dashed inhibitory arrow from

WM to PF to highlight the strong tuning from WM to PF that, functionally, inhibits activity in PF. (A–D) How

perceptual encoding in PF and working memory formation coexist in the three-layer+ model. When a stimulus is

presented, activation in PF encodes the stimulus and feeds into WM (A). When the stimulus is removed, WM is

tuned such that it is able to sustain a peak in the absence of stimulus or PF input (B). Note that inhibition in PF is

strong, which arises from the contribution of WM to PF via Inhib (red dotted arrow). This suppresses further

encoding upon subsequent encounters with an identical stimulus (C), the mechanism of recognition in the model.

When a novel stimulus is presented, it excites uninhibited neurons in PF; activation is strong and begins to

update WM (D). This is the mechanism of novelty detection in the model.
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activation evolves, which was fixed at 80 for all simulations. Activation at each site within

the excitatory layer is influenced by several factors including its current state, -u(x,t), its

negative neuronal resting level, hu, and input, S(x,t), such as the presentation of a stimulus at

a central location. Input takes the form of a Gaussian distributed over the behavioral dimen-

sion, x:

Sðx; tÞ ¼ cexp �ðx� xcenterÞ2

2r2

" #
xðtÞ ð2Þ

with its position centered at xcenter, width r, and strength c. For all simulations, r was fixed

at 3 and, except where noted, c was fixed at 17. The gating function, V(t), denotes that the

stimulus input is weighted with a 1 during time intervals when the stimulus is present and 0

otherwise. These timing parameters are dictated by the details of the experimental para-

digms we simulated, where 1 time step in the model = 10 ms.

The neural dynamics within PF are also influenced by excitatory within-layer neural

interactions, � cuu(x - x¢)Auu(u(x¢, t))dx¢. These interactions are specified by the convolution

of a Gaussian local excitation profile, cuu(x - x’)[equation 2 without the gating function,

V(t)], which determines the neighborhood across which excitatory interactions propagate,

and a nonlinear sigmoidal threshold function,Kuuðuðx0; tÞÞ, which dictates that only neurons

with above-threshold activation (>0) participate in the locally excitatory interactions. The

sigmoidal function is specified by:

KðuÞ ¼ 1

1þ exp½�bu� ; ð3Þ

where b is the slope of the sigmoid. b was set to .05 for all simulations.

In addition to local excitatory interactions, the neural dynamics in PF are influenced by

inhibition, ) � cuv(x ) x¢)Auv(v(x¢, t))dx¢. This inhibition is generated by the activity of neu-

rons in an inhibitory layer (v) [see equation 5 below]. As with excitatory interactions, inhibi-

tory interactions in PF are projected across a neural neighborhood specified by a Gaussian,

cuv(x-x¢), and only neurons with above-threshold activity in the inhibitory layer, Auv(v(x¢, t)),
contribute to interactions.

Next, neurons in PF are influenced by input from a Hebbian layer (HPF; see equation 7

below), � cuhl(x, x¢)hlu(v(x¢, t))dx¢. This input is determined by the convolution of a Gaussian

projection, cuhl(x, x¢), which specifies the neural neighborhood across which Hebbian learn-

ing has an influence. In all simulations, the spread of the projection from HPF to PF, ruhl,

was fixed at 3, and the strength, c, was fixed at .7.

The final contribution to activation dynamics within PF is the addition of spatially corre-

lated noise:

þNðx; tÞ ¼ q

Z
gnðx� x0Þnðx0; tÞdx0 ð4Þ
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Noise is presented to the excitatory layer by convolving a field of white noise, n(x¢, t),
with a Gaussian kernel, gn(x-x¢). For all simulations, the spread of the noise kernel, rnoise,

was fixed at 1 and, except where noted, the strength of noise, q, was fixed at .12.

3.2.2. Inhibitory field (Inhib)
The excitatory layer of PF is reciprocally coupled to an inhibitory layer, Inhib (v). The

equation for the inhibitory layer is

sinhib _vðx; tÞ ¼ �vðx; tÞ þ hv

þ
Z

cvuðx� x0ÞKvuðuðx0; tÞÞdx0

þ
Z

cvwðx� x0ÞKvwðwðx0; tÞÞdx0

þNðx; tÞ

ð5Þ

where _vðx; tÞ specifies the rate of change of activation for each inhibitory neuron, x, as a

function of time, t, which is influenced by its current state, - v(x, t), and its resting level, hv.

The time constant, sinhib, of the inhibitory layer was fixed at 10 for all simulations. The

inhibitory layer receives excitatory inputs from both PF, �cvu(x - x¢)Kvu(u(x¢, t))dx¢, and WM,

�cvw(x - x¢)Kvw(w(x¢, t))dx¢. These inputs are projected across a neural neighborhood specified

by each Gaussian projection, c(x - x¢), and only above-threshold neurons in PF and WM con-

tribute to these cross-layer interactions as determined by the sigmoidal threshold function,

K. Finally, an independent source of spatially correlated noise is added to the inhibitory

layer (see equation 4).

3.2.3. Working memory field (WM)
The excitatory layer of the WM(w) field is specified by the following equation:

sexcite _wðx; tÞ ¼ �wðx; tÞ þ hw þ cSðx; tÞ

þ
Z

cwwðx� x0ÞKwwðwðx0; tÞÞdx0

�
Z

cwvðx� x0ÞKwvðvðx0; tÞÞdx0

þ
Z

cwhlðx; x0Þhlwðvðx; tÞÞdx0

þ
Z

cwuðx� x0ÞKwuðuðx0; tÞÞdx0

þNðx; tÞ

ð6Þ

This equation is identical to the equation for PF (see equation 1) with the following

exceptions. First, the input, S(x,t), is weighted by a strength parameter, c, which was set to

0.05 for all simulations. Second, WM receives an excitatory projection from
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PF(u),
R
cwuðx� x0ÞKwuðuðx0; tÞÞdx0, given by the convolution of a Gaussian projection and

the sigmoidal threshold function. For all simulations, the spread of the projection from HWM

to WM, rwhl, was fixed at 3, and the strength, c, was fixed at .31.

3.2.4. Hebbian layers (H)
Activation within PF and WM is influenced by traces in associated Hebbian layers. The

equation for the Hebbian layer associated with PF is

h _luðx; tÞ ¼
1

sbuild
½�hluðx; tÞ þ Kuðuðx; tÞÞ� if uðx; tÞ � 0

1
sdecay
½�hluðx; tÞ� otherwise

(
ð7Þ

where h _lu(x,t) is the rate of change of activation for each site in the Hebbian layer, x, as a

function of time, t. The constants sbuild and sdecay set the time scale during which activation

traces accrue and decay, respectively. Activation in HPF accrues at specific sites, x, when

the activation of a given neuron in PF is above threshold, u(x, t) ‡ 0. sbuild was set to

10,000, and sdecay was set to 50,000. The input to HPF at each site is simply the thresholded

activation of each above-threshold neuron in PF, Ku(u(x, t)).

3.3. Adaptation of the Robertson et al. (2004) fixation system

The three-layer+ model specifies the perceptual, working memory, and learning processes

hypothesized to underlie visual habituation and discrimination in infancy. The next step is

to specify the process that underlies fixation dynamics in infancy. For this, we adapted the

model from Robertson et al. (2004). The fixation system consists of a single dynamical node

that looks at and looks away from a center location in the task space at which a stimulus can

appear (see Fig. 4). The behavior of the fixation system over time is determined by its own

intrinsic dynamics and noisy inputs impinging on it. The fixation system is given by the

following equation:

sexcite _fðtÞ ¼ �fþ hf þ cffKfðfÞ þ cboost þ cstatic ð8Þ

where the time scale of the activation variable, f, is set by the constant, sexcite. The rate at

which activation in the fixation system changes is influenced by its current state, )f, and its

negative neuronal resting level, hf [see equation 9 below]. The fixation system has a self-

excitatory component that creates bistable switching between an ‘‘off’’ state and an ‘‘on’’

state over time. This nonlinear behavior is mediated by a sigmoidal threshold function,

Kf(f), which is weighted by a self-excitatory gain parameter, cff. In addition, the fixation sys-

tem receives two inputs: cboost, a strong, transient input or ‘‘attention getter’’ that when pres-

ent quickly moves the fixation system from a negative ‘‘off’’ state to a positive ‘‘on’’ state,

and cstatic, a low-level input that signals the presence of a stimulus at a center location. At

every time step, white noise was added to cstatic(see Fig. 4B).
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The final contribution to the fixation system comes from a dynamic resting level which

facilitates transitions between ‘‘on’’ and ‘‘off’’ states. The resting level of the fixation sys-

tem, hf, is governed by the following equation:

sexcite _hðtÞ ¼ �hf þ hrest þ hdownKfðfÞ ð9Þ

The resting level of the fixation system decreases toward a low attractor, hdown, when the

current activation of the fixation system is above threshold, and it moves toward the baseline

level, hrest, when activation in the fixation system is below threshold. Thus, the fixation

(A)

(B)

(C)

(D)

(E)

Fig. 4. The architecture and behavior of the fixation system across a 20-s period. The fixation system looks and

looks away from a single location in space at which a stimulus sampled from a single feature dimension is pres-

ent (A). When a stimulus is present at a center location, it presents noisy input to the fixation system (B). The

combination of a self-excitatory connection within the fixation system and presence of noisy input (C) can bias

the fixation system to enter and sustain above-threshold (i.e., above 0) activation. These inputs, together with the

resting-level dynamics (see text), create a stochastic oscillation between the looking and looking away state (D)

and variable look durations across time (E).
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system is biased toward the ‘‘off’’ state when in the ‘‘on’’ state, and it is biased toward the

‘‘on’’ state when in the ‘‘off’’ state. This implements a type of bias similar to that used by

Robertson et al. (2004), helping to create a stochastic, oscillatory pattern of looking (‘‘on’’)

and looking away (‘‘off’’) through time. The fixation system parameters used in the simula-

tions are presented in Table 2.

Fig. 4 shows the behavior of the fixation system over a 20-s period. Fig. 4A shows the

presence of a stimulus at a center location in the task space and the noisy input (B) it pre-

sents to the fixation system (C). Initially, there is no input and the fixation system is at its

resting level (D) and looking away (E). In habituation experiments, there is commonly an

attention getter (e.g., periodic blinking light) at the location a stimulus will appear. We

approximate an attention-getting stimulus with a strong, transient input (cboost) to the fixa-

tion system (see initial spike in B). This drives activation in the fixation system to an above-

threshold looking state quickly. Note, however, that the attention getter is not required for

the system to acquire the looking state. When a stimulus is present on the display (e.g.,

within a trial), a noisy low-level input is also presented to the fixation system signaling the

presence of a stimulus at a center location. The combination of the continuous presence of a

low-level input and the self-excitatory dynamics of the fixation system bias the system to

remain in the looking state. However, noise and resting-level modulation (see equation 9)

can spontaneously drive the fixation system to a looking away state or, if in the looking

away state, to a looking state. To calculate discrete looks, we required the fixation system to

sustain suprathreshold activation for more than 25 time steps, eliminating brief threshold

crossings as potential looks that sometimes occurred when the fixation system was transi-

tioning from one state to the other (e.g., see Fig. 4D at approximately 5 s).

As can be seen in Fig. 4, these dynamics enable the fixation system to stochastically

oscillate between looking and looking away (D), producing fixations of variable duration

(E). These dynamics resemble the behavior of the system used by Robertson et al. (2004)

and the exploratory dynamics of some robotic systems (Mobus & Fisher, 1999). Note that

there are some differences between our fixation system and the one used by Robertson et al.

First, noise within our system is introduced via noisy input, whereas noise in their system

was intrinsic. These types of noise differ only during the interstimulus interval when no

task-relevant input is present in the task space. We used the current noise model based on

previous work using noisy inputs to capture infants’ spontaneous reaching behavior in the

Piagetian A-not-B task which depends on available input sources (Dineva, Schöner, &

Thelen, 2010). Second, hysteresis within our system is created by self-excitatory dynamics,

when entering the looking state, and resting-level dynamics, when entering the looking

away state. In Robertson et al’s model, hysteresis was introduced with a small bias to

remain in the recently entered state.

3.4. Autonomous looking and learning: The integrated architecture

In our theory, looking behavior, perceptual processes, and working memory processes are

inseparable components of an integrated autonomous, exploratory system that learns as it

looks. We constructed this system by coupling the fixation system to the three-layer+ model.
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First, we specified the coupling from the fixation system to the three-layer+ model. We

wanted fixation to act as a perceptual gate, allowing input to the three-layer+ model only

when the system was in the looking state. To achieve this, we modified the inputs to PF (see

S(x,t) in equation 1) and WM (equation 6) by gating these inputs by the thresholded activa-

tion of the fixation system, that is, S(x,t) was replaced by S(x,t)K(f).
Next, we specified the coupling from the three-layer+ model into the fixation system.

Conceptually, we wanted the formation of a perceptual representation in PF (i.e., a peak) to

feedback onto the fixation system and support continued looking. To implement this integra-

tion, we modified equation 8 as follows:

sexcite _fðtÞ ¼ �fþ :::KfðfÞ
Z

cfuKuðuðx0; tÞÞdx0 ð10Þ

where �cfuKu(u(x¢, t))dx¢ is the weighted sum of above-threshold activation in PF across all

sites, x, at time, t. This term is weighted by the thresholded activation of the fixation system,

Kf(f), which ensures neural activity in PF only contributes to the fixation system when in the

looking state.

Fig. 5 illustrates how the DNF model learns autonomously as it explores a stimulus over

time. At the top is a single stimulus in the task space (A). The next panel shows the behavior

of the fixation system (B) over the course of a 200-s simulation. Initially, the model exhibits

several long bouts of looking as the fixation system maintains above-threshold activation

(C). Over time, look durations become increasingly shorter as the fixation system pierces

threshold, enters the looking state, but quickly looks away.

The neural dynamics within PF and WM at different points during familiarization (30 s,

40 s, 88 s, 96 s, and 160 s) are shown in Fig. 5D–5H. Fig. 5D shows the state of PF and WM as

well as the Hebbian layer contributions (gray lines, right y-axis) as the model looks at the stimu-

lus early in learning. Activation in PF is strong, activation has started to form a weak peak in

WM, and the H contributions are just beginning to emerge. The peak in PF helps support the

long look by the fixation system around 30 s (C). Fig. 5E shows the state of PF and WM while

the model is looking away early in learning (at 40 s). Activation in PF and WM has returned to

subthreshold levels after the fixation system spontaneously looked away. Note that there are

modest contributions from the Hebbian layers at neural sites associated with the stimulus.

As the model continues to explore the stimulus, the contribution of HWM to WM

increases (F) and a stable WM peak emerges. Consequently, when the model looks away

from the stimulus at 96 s (G), the peak is maintained, inhibiting associated sites in PF (see

circled inhibitory trough in PF in panel G). This inhibition suppresses the formation of a

peak in PF when the model looks at the stimulus again late in learning at 160 s (H). This

suppression of encoding quickly releases fixation, look durations become short, and the

model accumulates more time looking away. Thus, the model habituates to the stimulus.

3.5. Overview of model simulations

In the following sections, we situated our autonomous DNF model in a habituation task.

We focused on the single presentation variant because it highlights the complex interplay
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between looking and learning even in the simplest of paradigms. We will present 24 sets of

simulation results. Results from each simulation set were based on 200 simulations of the

same model for a total of 4,800 simulations. Simulation of the model with a given parameter

setting produces variable behavioral patterns (see Fig. 9). Calculating the mean and standard

deviation across small batches of simulations yields estimates of the model’s performance

that can fluctuate, much like fluctuations in infants’ data with small sample sizes. To ensure

that the results reported here were robust across batches of simulations, we conducted preli-

minary simulation work. These efforts demonstrated that 200 simulations per set produced

replicable, stable results (e.g., means were quantitatively close across repeated batches of

200 simulations from the same experimental condition). Except where noted, trial durations

were 20 s and interstimulus intervals were 5 s.

(A)

(B)

(C)

(D) (E) (F) (G) (H)

Fig. 5. Processes by which a dynamic exploratory system autonomously learns by looking. (A) Single stimulus

in the task space. (B) Duration of looking and looking away from the stimulus across 200 s of exploration. (C)

Fixation dynamics that are directly translated into looking and looking away. Early in learning, the model exhib-

its few looks that are of long duration. Late in learning, the model exhibits many looks that are of short duration.

This pattern of looking arises from the model encoding the stimulus early (D and E), which supports looking,

and the emergence of a stable working memory late (F–H), which suppresses encoding and leads to the rapid

release of fixation.
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In the simulations below, there were three stimulus inputs. One input was the habituation

stimulus, centered at site 150 in a field consisting of 360 neurons. The other two stimuli

were test stimuli: a close test that differed from the habituation stimulus by 20 neurons (site

170) and a far test that differed from the habituation stimulus by 40 neurons (site 190). The

close and far tests allow us to test whether developmental change in processing speed and

discrimination can arise from the same mechanism.

Unless noted, simulations were conducted with a single set of parameters to illustrate the

basic concepts of our theory. We refer to these parameters as our standard or young infant

model. Parameters for the young infant model were fit by hand to qualitatively match the

slow habituation, long looks, and generalization of habituated levels of looking to novel

stimuli highly similar to the habituation stimulus. We tested the set of parameters across all

conditions in which the young infant model was situated in, modifying parameters to quali-

tatively capture all behavioral patterns. Next, we tested whether developmental change in

looking and discrimination could be captured by manipulating only the excitatory ⁄ inhibitory

connection strength within PF and WM. These parameter manipulations were chosen based

on previous work using a similar model architecture to capture developmental change in

children’s performance in a spatial working memory task (Schutte & Spencer, 2009).

We present simulation results across six sections. Table 1 provides an overview of these

simulations, highlighting the model process emphasized by each simulation and the con-

cepts illustrated. In Mechanisms of infant habituation, we show how perceptual, working

memory, and long-term memory processes are integrated over learning. We illustrate how

the unfolding of these processes leads to habituation of looking to a single stimulus as well

as novelty detection and dishabituation. In Mechanisms of developmental change, we focus

on the global excitatory and inhibitory neural interactions in the model and test whether the

Spatial Precision Hypothesis (SPH)—which specifies global changes in the strength of these

neural interactions over development—can capture developmental differences in habitua-

tion and dishabituation. In Autonomy and emergent individual differences, we emphasize

the coupling between looking and learning and illustrate how that coupling enables a single

system to produce variability in performance through time that can lead to faster or slower

learning. In Comparison of DNF model with Schöner and Thelen (2006), we show how our

neural model responds to the stimulus strength and timing manipulations explored in Schö-

ner and Thelen’s model and compare these two dynamical models of infant habituation. We

also test whether the SPH can capture a familiarity-to-novelty shift that occurs over just a

few weeks very early in development. This set of simulations illustrates that our model can

quantitatively capture infant behavior. Finally, we illustrate how excitatory long-term mem-

ory processes capture differences in looking to stimuli with varying levels of familiarity. In

Are learning and development the same thing?, we contrast global differences in the

strength of excitatory ⁄ inhibitory dynamics with locally specific long-term memory. In Look-
ing matters for learning, we illustrate how direct experimental manipulations of looking in

the model impact learning. See Appendix for additional simulations of the infant-control

paradigm.

The simulations below largely focus on qualitative comparisons between the model’s

behavior and patterns of infant looking over development. We focused on qualitative patterns
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for two reasons. First, the central goal of this article is to present a general theoretical account

of visual habituation; thus, we emphasize the pattern of results across a host of studies, rather

than any one result in isolation. If the same model with the same parameters can produce the

right qualitative pattern across simulation sets, that is a robust way to assess the generality of

the model. Second, infant habituation studies on a given topic vary widely in methodological

detail. Nevertheless, there are often robust commonalties in infants’ performance across stud-

ies. Consider three studies on stimulus complexity. To manipulate complexity, each investi-

gation manipulated the number of checks within a checkerboard. Caron and Caron (1969)

presented infants with a single checkerboard across five 20-s trials sandwiched between four

trials on which a different stimulus was presented; Greenberg, O’Donnel, and Crawford

(1973) successively presented infants with three different checkerboards across twelve 30-s

trials; Cohen, Deloache, and Rissman (1975) presented infants with a single checkerboard

across 16 infant-controlled trials sandwiched between two trials on which a different stimulus

was presented. Despite these methodological variations, infants across studies exhibited more

looking time to more complex checkerboards than less complex checkerboards.

Importantly, methodological variation can also meaningfully impact looking behavior.

For this reason, a theory must be able to capture quantitative patterns of behavior. This can

elucidate how a cognitive and behavioral system organizes itself within a specific task con-

text. Thus, we also present a set of quantitative simulations showing our theory is up to this

challenge.

4. Mechanisms of infant habituation

In this section, we describe the mechanisms of habituation and dishabituation when our

standard young infant model is situated in a habituation task. We illustrate how looking is

linked to the processes of encoding and memory formation over the course of habituation.

We then illustrate the mechanisms underlying generalization of looking and dishabituation

to novel stimuli.

4.1. Habituation

Fig. 6 illustrates how looking is linked to encoding and working memory formation over

the course of habituation. When the model looks on trial 1, PF activity is strong and the

model begins to form a WM peak (A). Strong PF activity supports looking, leading to few

looks, long look durations, and high levels of total looking time. Encoding and working

memory formation during trial 1 also accumulates activation in HPF and HWM, respectively

(gray line, right y-axis). During the ISI following trial 1 (B), HPF is stronger than HWM,

which facilitates further encoding of the stimulus on trial 2.

As the model explores the stimulus across trials, WM activity is strengthened via the con-

tinued accumulation of activation in HWM (C–D). This leads to stronger suppression of asso-

ciated sites in PF, which is evident by trial 7 (see circled inhibitory trough around stimulus

site 150 in panel F). Consequently, PF provides weaker support for fixation over trials, and
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PF encodes the stimulus for increasingly shorter durations. This causes look durations and

looking time to decrease over trials. At the same time, Hebbian traces facilitate stable WM

peak formation, enabling the system to maintain a representation of the stimulus in the

absence of input. For instance, there is a WM peak in the bottom panel of Fig. 6F, even

though no stimulus is present during the ISI.

Fig. 6G shows the mean state of PF and WM across the entire simulation set (i.e., 200

simulations) at the onset of each habituation trial (i.e., the end of each interstimulus inter-

val). When the model begins each trial early in learning, the contribution of HPF to PF facili-

tates encoding (see positive activation in PF early in learning in the top panel of G). Late in

learning, HWM accumulates and a stable WM peak emerges and produces strong inhibition

in PF. Consequently, when the model begins successive trials late in learning, the stimulus

excites strongly inhibited neurons in PF and activity is weak. Habituation, then, arises from

a transition in the model from encoding early in learning to the active maintenance and

recognition of the habituation stimulus late in learning. This transition can be seen in the

(A) (B) (C) (D)

(E) (F) (G)

Fig. 6. The state of PF and WM in the standard (young infant) model across the habituation phase. Early in

learning, the model encodes and begins to form a working memory, and accumulates a long-term memory (gray

line, right y-axis) for the stimulus as it looks and looks away (A–D). Late in learning, the model establishes a sta-

ble WM peak for the stimulus, which suppresses encoding and leads to looking away (E and F). (G) Activation

profile of the young infant model at the onset of each habituation trial. The activation profile is the state of PF

and WM averaged across simulations.
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Table 1

Simulation overview

Section Simulation Model Process Illustration

1 Mechanisms of habituation

Habituation Integration of fixation dynamics with

perceptual, working memory, and

long-term memory processes over

learning

Habituation of looking

Dishabituation Fast release from fixation when item

matches working memory; renewed

support for fixation from perceptual

processing otherwise

Novelty detection,

generalization, and

discrimination

2 Mechanisms of

developmental change

Developmental

differences

Global modulation of excitatory ⁄
inhibitory neural interaction strengths

over development

Test Spatial Precision

Hypothesis of developmental

change in looking, memory,

and discrimination

Autonomy and individual

differences

Autonomy and

emergent individual

differences

Coupled looking and learning means

that random fluctuations early in

learning can lead to different learning

profiles

Differences in learning rates

across simulations with the

same parameters due to

autonomous looking

3 Comparison of DNF model to

Schöner and Thelen (2006)

Stimulus strength Vary input strength Captures insights from Schoner

and Thelen regarding how

inputs affect habituation

Interstimulus interval Vary timing of events Captures insights from Schoner

and Thelen about how timing

influences habituation

Capturing familiarity

and novelty over

development

Global changes in excitatory ⁄ inhibitory

dynamics captures familiarity and

novelty effects

Familiarity-to-novelty shift

over development and

quantitative simulations of

early development

Integration of learning

with real-time process

Integration of working and long-term

memory over delays

Delayed recognition

4 Are learning and development

the same thing?

Are learning and

development the same

thing?

Modulate long-term memory strengths

relative to global excitatory ⁄
inhibitory strengths

Distinguishing long-term

memory from Spatial

Precision Hypothesis

5 Looking matters for learning

Looking matters for

learning

Coupled looking and learning Direct experimental

manipulation of looking
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(A)

(B)

(C)

(D) (E)

(F) (G)

Fig. 7. The looking behavior of the young infant model (black lines and circles) and old infant model (gray lines

and squares) during the habituation and test phases averaged across simulations. Error bars are 1 SD. The young

infant model is slower to exhibit a decline in looking (A), exhibits fewer looks (B), and exhibits longer look dura-

tions (C) across trials than the old infant model. The young infant model exhibits an increase in looking time to

the far test, but not the close test, relative to the last habituation trial. The old infant model exhibits an increase in

looking time to both the close and far tests. Mechanisms of generalization of looking (D) and dishabituation (E)

in the young infant model. When the model looks at the close test, the stimulus excites strongly inhibited neurons

in PF that is arising from the stable WM peak. Activation in PF is weak and provides little support for the fixation

system. The model generalizes habituation levels of looking. When the model looks at the far test, the stimulus

excites uninhibited neurons in PF. Activation is strong and able to sustain above-threshold levels, supporting

looking, and giving rise to dishabituation. (F and G) Mechanisms underlying discrimination between the habitua-

tion and close test in the old infant model. When the model looks at the close test, the strong excitatory connec-

tions in PF and lateral inhibition in WM enables activation in PF produced by the close test to be sustained and

support looking (F). The mechanism of dishabituation to the far test is comparable to the young infant model (G).
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activation profile between trials 6 (dashed purple line) and 7 (solid green line) when, on

average, the model acquires a stable WM peak and inhibition in PF becomes relatively

strong.

The looking behavior of the young infant model across simulations is shown in Fig. 7

(black lines). Across simulations, the model exhibited relatively high levels of total looking

time early in habituation and slowly transitioned to low levels of looking time late (A).

Decreases in looking time across trials happen as the model more frequently looks and looks

away (B) and look durations become shorter (C). This arises from the accumulation of

activation in WM and HWM and, ultimately, the emergence of a stable WM peak that sup-

presses encoding and releases fixation. Although few studies report looking dynamics across

trials, these looking dynamics are consistent with empirical findings showing that infants

exhibit more, shorter looks over learning (Clearfield & Fisher Thompson, 2009; Pancratz &

Cohen, 1970; Ruff, 1975). In the DNF model, such dynamics are meaningfully linked to

memory formation. We elaborate on this below (see ‘‘Autonomy and Emergent Individual

Differences’’).

4.2. Dishabituation

Looking time to novel stimuli following the habituation phase is most often the behav-

ioral measure of interest in habituation studies. In the DNF model, dishabituation happens

when a novel stimulus excites neurons in PF to above-threshold levels and this activation is

sustained long enough to support continued looking by the fixation system. Critically,

whether this occurs depends on the magnitude of inhibition in PF created by a stable WM

peak. The looking behavior of the young infant model to metrically similar (close) and met-

rically dissimilar (far) test items is shown in Fig. 7A (black line). As can be seen in the fig-

ure, the young infant model exhibits habituated levels of looking to the close test but

elevated looking to the far test; the young infant model generalizes its WM representation to

the similar, novel item but shows a discrimination response to the dissimilar item.

Fig. 7D and 7E illustrates the mechanisms underlying these behaviors. This figure shows

the state of PF and WM when the young infant model is looking at the close (D) and far (E)

test. When the model looks at the close test, the stimulus excites neurons in PF that are

strongly inhibited by the stable WM peak associated with the habituation stimulus (see

lower panel of D). Thus, the novel stimulus builds a relatively weak peak in PF, and this

field provides little support to the fixation system, and looking time does not exceed habitu-

ated levels. When the model looks at the far test stimulus, in contrast, the stimulus excites

relatively uninhibited neurons in PF (E). Thus, strong PF activity ensues, which provides

strong excitatory input to the fixation system and supports continued looking.

In summary, when our autonomous exploratory system is situated in a habituation task, it

exhibits long looking early as it encodes a stimulus and forms a memory. It exhibits a

decrease in looking late as it forms a stable WM peak associated with the stimulus, which

suppresses further encoding, and, in turn, releases fixation. Dishabituation occurs in the

model when a new stimulus is presented that re-ignites a peak in the PF.
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5. Mechanisms of developmental change

Across the first year, infants habituate more rapidly, exhibit shorter look durations, and

switch gaze more frequently (for a review, see Colombo & Mitchell, 1990). These behavioral

changes have been attributed to increases in processing speed. Across the first year, infants

also exhibit an enhanced ability to discriminate between highly similar familiar and novel

stimuli (Brannon et al., 2007). These findings have been attributed to change in the precision

with which infants remember visual stimuli. Recall that existing theories of infant visual

habituation have not tested whether these developmental changes arise from a common mech-

anistic source. Here, we show that an increase in the strength of excitatory and inhibitory

interactions in our model captures both developmental phenomena simultaneously.

Our implementation of changes in neural interaction was guided by the SPH proposed by

Schutte, Spencer, and colleagues (Schutte & Spencer, 2009; Schutte et al., 2003; Simmering

et al., 2008). The SPH posits that excitatory and inhibitory neural interactions become stronger

over development as children accumulate experience across diverse contexts. Such increases

in neural interaction strength are a likely outcome of general Hebbian processes as the same

neural system is activated across time and situations. Interestingly, stronger neural interactions

do not simply increase the efficiency of neural processes; they also lead to more precise neural

representations as seen in work examining developmental changes in children’s spatial recall

performance (Schutte & Spencer, 2009) and position discrimination (Simmering et al., 2008).

Here, we implement the SPH and test whether it captures developmental changes in

infant habituation and discrimination. To create an old infant model, we implemented the

SPH on our standard, young infant model. In particular, we increased the strength of local

excitatory connections in PF (cuu) and WM (cww), and we increased the strength of the

inhibitory projection from Inhib to PF (cuv) and Inhib to WM (cwv; see Schutte & Spencer,

2009). The parameter settings for the old infant model can be seen in Table 2.

The neural dynamics underlying the looking behavior of the old infant model are shown

in Fig. 8. As can be seen in panels A and B, the old infant model is comparable to the young

infant model at the start of habituation. Note, however, that the old infant model has a stable

WM peak during the ISI of trial 4 (see lower panel in D), and by trial 7, this WM peak sup-

presses activity in PF when the model looks at the stimulus (E). Fig. 8G shows the distribu-

tion of activation in PF and WM at the start of each habituation trial across the simulation

set (for ease of comparison to the young infant model, we have reproduced Fig. 6G in panel H).

As can be seen, the old infant model first formed a stable WM peak earlier in habituation

than the young infant model, producing inhibition in PF quite early. Moreover, the old infant

model builds a more robust—and sharper—WM peak by the end of learning, with strong

local excitation and noticeable surround inhibition (Fig. 8G, lower panel). This is an emer-

gent consequence of stronger cross-layer interactions between WM and Inhib. Strong neural

interactions mean that there is a sharper gradient at the left and right edge of the peak. Con-

sequently, fewer neurons participate in the locally excitatory interactions (Schutte & Spen-

cer, 2009; for related ideas see Schutte et al., 2003).

The effect of these neural dynamics on the looking profile during habituation and test is

shown in Fig. 7 (gray lines). The early formation of a strong, stable WM peak leads to sup-
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pression of PF activity early. This, in turn, leads to a faster decline in looking time over tri-

als (A), a faster rise in the number of looks (B), and a steeper decline in look durations rela-

tive to the young infant model (C). Thus, the old infant model shows the looking profile

associated with faster processing speed in the infant literature.

The neural dynamics for the old infant model also influence discrimination. As shown in

Fig. 7A, this model dishabituates to both the close and far test. This enhanced discrimination

performance emerges from the stronger neural interactions in the old infant model as shown

in Fig. 7F. When the old infant model looks at the close test, this stimulus excites neurons in

PF that are near the region inhibited by the WM peak. Nevertheless, because the close stimu-

lus is near—but distinct from—the location of the sustained WM peak, the system updates the

WM representation and builds a new WM peak at the site of the close stimulus value (see cir-

(A) (B) (C) (D)

(E) (F) (G) (H)

Fig. 8. The state of PF and WM in the old infant model across the habituation phase. Like the young infant

model, early in learning the model encodes, begins to form a working memory, and accumulates a long-term

memory (gray line, right y-axis) for the stimulus as it looks and looks away (A–D). However, the old infant

model establishes a stable WM peak more rapidly. In this example, the model acquired a stable WM peak by

trial 4, which produces strong inhibition in PF via Inhib across the remaining habituation trials and, behavior-

ally, low levels of looking time. For comparison, the activation profile of the young (G) and old (H) infant

models at the onset of each habituation trial are shown side by side. The strong excitatory and inhibitory inter-

actions of the old infant model enable it to encode and form a working memory more quickly than the young

infant model. In addition, the strong interactions of the old infant model lead to a sharpened WM peak with

strong lateral inhibition.
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cled region in the lower panel of Fig. 7F). The updating of WM takes time which enables PF

to support continued fixation of the test stimulus, leading to looking times that exceed habitu-

ated levels. The mechanism underlying discrimination between the habituation stimulus and

the far test is comparable to the young infant model (see Fig. 7G). Here, stronger excitatory

connections within PF tend to sustain above-threshold activation while a WM peak is forming

(see lower panel). This helps PF support longer looks to the far test stimulus.

In summary, simulations in this section demonstrate that the SPH yields both an increase

in processing speed over development and enhanced discrimination. The SPH was initially

proposed as an account of developmental changes in 2- to 6-year-olds’ memory for spatial

locations. The fact that the SPH captures developmental changes in looking behavior in

infancy is remarkable.

6. Autonomy and emergent individual differences

Recall that one limitation shared by existing theories of infant habituation is that they

have not accounted for the interdependency between looking and learning. Moreover, they

Table 2 Model parameters

Young Infant Old Infant

Wetherford and Cohen (1973)

6 Weeks 8 Weeks 10 Weeks 12 Weeks

Fixation(f)
hrest )5 – – – – –

hdown )2.5 – – – – –

cff 1.2 – 1.07 1.13 1.2 1.2

cfu 0.15 – 0.137 0.144 0.15 0.15

cuf 1 – – – – –

PF(u)

hu )10 – – – – –

cuu 0.693 0.791 0.035 0.329 0.42 0.497

ruu 3 – – – – –

Inhib(v)

hv )10 – – – – –

cuv 0.239 0.265 0.255 0.255 0.255 0.357

ruv 15 – – – – –

cvu 0.8 – – – – –

rwu 5 – – – – –

cvw 3.2 – – – – –

rvw 5 – – – – –

cwv 0.023 0.136 0.0025 0.0025 0.02 0.0625

rwv 15 – – – – –

WM(w)

hw )3.5 – – – – –

cww 0.771 1.232 0.2067 0.2385 0.7791 1.0494

rww 3 – – – – –

cwu 0.15 – – – – –

rwu 5 – – – – –
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have not accounted for the nonlinear tie between looking and memory formation. Here, we

show that implementing looking as an active behavior overcomes these limitations. Addi-

tionally, we show that the interdependency between looking and learning and the nonlinear

tie between looking and memory formation are, in fact, related.

The canonical habituation curve shown in Fig. 7 arises from the model’s dynamics speci-

fied by the parameter settings; however, embedded within this curve are simulation-to-simu-

(A)

(B)

(C)

(D)

(E)

(F)

Fig. 9. A sample of the looking time, number of looks, and look duration during the habituation and test phase

from five simulations of the young (A–C) and old (D–F) infant models are shown. Each line color is the behavior

of a different simulation. The looking behavior of the model fluctuates across trials and simulations. Across sim-

ulations, both models exhibit a decline in looking time across trials, an increase in the number of looks, and a

decrease in look duration. Across the sample simulations, the old infant model exhibits a more rapid decline in

looking time than the young infant model, which is associated with a steeper incline in the number of looks and

decline in look duration across trials.
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lation variations. Fig. 9 shows sample simulations of the young (A–C) and old (D–F) infant

models for three indices of performance during habituation. These individual simulations

show rather striking differences in the model’s performance across simulation runs. Criti-

cally, this variation is not random; rather, there is underlying structure (see also Aks, Zelink-

sky, & Sprott, 2002). A central contributor to this structure is variance in the time course of

stable WM peak formation. As we show next, the formation of a stable WM peak is a non-

linear event that occurs over learning as WM transitions from the self-stabilized (input dri-

ven) to self-sustaining (maintenance) state. Critically, the formation of a self-sustaining

WM peak has a significant, nonlinear impact on looking.

Fig. 10 shows the distribution of trials on which a stable WM peak was first formed

across the 200 simulations for the young and old infant models. Our criterion for the onset

of a stable WM peak was the trial during which a peak remained above-threshold for the

duration of the ISI. Both sets of simulations show dramatic variation in the onset of stable

WM peak formation across simulation runs, even though all simulations at a given age used

exactly the same model parameters. What factors determine which simulations learn quickly

and which simulations learn more slowly? As discussed previously, the DNF model brings

together the second-to-second dynamics of looking with the trial-to-trial dynamics of learn-

ing. Critically, the pattern of looking through time affects the emergence of a stable WM

peak, just as the emergence of a stable WM peak affects the pattern of looking through

time.

To show the interdependence between looking and learning, we selected a set of simu-

lations with an early onset of stable WM peak formation and a set of simulations that

showed a late onset for both the young infant model (trials 5 and 8, respectively) and the

old infant model (trials 2 and 5, respectively). Next, we anchored our three behavioral

Fig. 10. The distribution of trials on which a stable WM peak first emerged across simulations. The young infant

model tended to form a stable WM peak on trials 5–8, whereas the old infant model tended to form a stable WM

peak on trials 2–5. These differences in the rate at which the young infant and old infant models form a stable

WM peak are attributable to the SPH.
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(D)

(E)

(F)

Fig. 11. Highlights the linkage between looking and the time course of stable WM peak formation. The looking

behavior of the young infant and old infant models is anchored to the trial on which a stable WM peak was

formed. (A–C) Looking time, number of looks, and look duration of the young infant model for simulations that

acquired a peak on trials 5 (green lines and triangles) and 8 (gray lines and circles). (D–F) Same looking mea-

sures for the old infant model for simulations that acquired a peak on trials 2 (green lines and triangles) and 5

(gray lines and circles). In both models, high levels of looking, few looks, and long look durations early in learn-

ing were associated with stable WM peak formation earlier than low levels of looking, many looks, and short

look durations early in learning. The formation of a stable WM peak also gave rise to behavioral signatures of

memory formation, including a dramatic decline in looking, increase in the number of looks, and decrease in

look duration. For simplicity, error bars are not shown. SD (in s) for the young infant model that formed a stable

WM peak on trial 5 during the first block of three trials was 3.01, 2.85, and 2.80; SD for the young infant model

that formed a stable WM peak on trial 8 during the first block of three trials was 3.51, 2.73, and 2.76; SD for the

young infant model that formed a stable WM peak on trial 5 during the last block of three trials was 2.77, 2.64,

and 2.44; SD for the young infant model that formed a stable WM peak on trial 8 during the last block of thee tri-

als was 2.89, 2.50, and 1.96. SD for the old infant model that formed a stable WM peak on trial 2 during the first

block of three trials was 4.01, 3.46, and 3.31; SD for the old infant model that formed a stable WM peak on trial

5 during the first block of thee trials was 3.09, 2.63, and 2.79; SD for the old infant model that formed a stable

WM peak on trial 2 during the last block of three trials was 1.18, 1.10, 1.05; SD for the young infant model that

formed a stable WM peak on trial 5 during the last block of three trials was 1.50, 1.78, and 1.31.
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measures of the model’s performance to the trial of WM formation. Fig. 11A–11C shows

the looking behavior of the young infant model for early-onset (green line) and late-onset

(gray line) simulations. Late-onset simulations exhibited relatively low levels of looking

time, a high number of looks, and short look durations early in habituation. This pattern

of looking slows perceptual encoding and memory formation. In contrast, early-onset

simulations exhibited relatively high levels of looking time, few looks, and long look

durations early in habituation. These looking dynamics facilitate encoding and memory

formation early in learning.

The old infant model exhibits very similar behavior. Fig. 11D–11F shows the looking

behavior of the old infant model for early-onset (green line) and late-onset (gray line)

simulations. Late-onset simulations exhibited low levels of looking, a high number of looks,

and short look durations early in habituation. Early-onset simulations, in contrast, exhibited

high levels of looking, few looks, and long look durations early in habituation. Note that

these differences in looking dynamics were evident on the very first trial—they reflect ini-

tial, random fluctuations in the fixation and neural systems. These initial fluctuations cas-

cade into meaningful changes in looking and learning over trials. In addition, the emergence

of a stable WM peak has a nonlinear impact on looking. Notice the sharp decline in looking

time, sharp increase in the number of looks, and sharp decrease in look duration once a sta-

ble WM peak emerges in Fig. 11.

These simulations illustrate that looking and learning are interdependent in the DNF

model. This interdependence emerges from integration of processes operating over multi-

ple time scales. The second-to-second dynamics of fixation, for example, impact the evolu-

tion of real-time neural activation. This, in turn, impacts the slower dynamics of LTM

formation which reciprocally influences WM formation. And ultimately, these WM

dynamics feedback on the second-to-second dynamics of looking. The behavior of the sys-

tem we are studying, then, reflects the self-organization of multiple processes evolving on

multiple time scales (for related concepts, see Ihlen & Vereijken, 2010; Holden, Van Or-

den, & Turvey, 2009).

7. Comparison of DNF model to Schöner and Thelen (2006)

Schöner and Thelen (2006) used a DNF model to capture infant visual habituation. We

wanted to probe the resemblance between our model and theirs by testing whether our

model retains two central innovations of the Schöner and Thelen model: (1) looking and

learning in their model was influenced by the stimulus and task context; (2) their model was

able to capture a familiarity preference in single presentation tasks. We show that our model

retains these innovations. We also probe the contribution of a key difference between mod-

els. In particular, the Schöner and Thelen model habituated via an inhibitory memory. Our

model, in contrast, habituates via an excitatory memory. We show that this enables our

model to specify how a long-term learning history impacts looking and learning in

real-time.
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7.1. Stimulus strength

Infants exhibit elevated levels of looking to complex stimuli (Brown, 1974; Caron &

Caron, 1969; Cohen et al., 1975; Greenberg et al., 1973) and, in some cases, more

quickly learn about stimuli that are dynamic (Horst, Oakes, & Madole, 2005; Robinson

& Sloutsky, 2004). One hypothesis for these findings is that complex and dynamic stim-

uli recruit and require more information processing resources. In DNFs, the strength of

activation is an index of the processing of stimuli (Schöner, 2009), which is influenced

by stimulus strength. To illustrate this concept, Schöner and Thelen (2006) showed that

intense stimulation produced more looking time across trials but, interestingly, did not

affect habituation rate.

In our DNF model, strong stimulation produces similar results. Fig. 12 shows the looking

time (A) and distribution of trials on which a stable WM peak was formed (B) for the stan-

dard, young infant model when the stimulus strength was increased from 17 (black line) to

19 (blue line). Stronger stimulation led to an overall increase in looking time but no dra-

matic change in habituation rate. The model also formed a stable WM peak earlier when

strength was increased to 19 (blue bars). Although a stable WM peak emerges early in habit-

uation, looking time does not show a sharp decrease over trials because strong excitation in

PF counteracts the inhibitory contribution from WM. We also tested the model with a

weaker stimulus of strength 15, which led to low levels of looking (green line in A) and a

(A) (B)

Fig. 12. The looking time (A) and distribution of trials on which a stable WM peak was formed (B) for the stan-

dard (young infant) model presented with three different stimulus strengths. When the stimulus strength was

increased from 17 (black line and circles) to 19 (blue line and diamonds), looking time was elevated across trials

but habituation occurred at the same rate. When the stimulus strength was decreased to 15, looking time was

reduced across trials and the model did not exhibit any habituation (green line and squares). The stronger stimu-

lus strength increased the rate at which a stable WM peak was formed (blue bars) relative to the standard young

infant model memory (black bars), and the weaker stimulus strength slowed the rate at which a stable WM peak

was formed (green bars). For simplicity, error bars are not shown. SD (in s) for strength 15 during the first block

of three trials was 4.34, 3.69, and 3.06; for strength 17 was 3.16, 2.75, and 2.91; for strength 19 was 2.99, 3.04,

and 3.45. SD for strength 15 during the last block of three trials was 2.53, 2.55, and 2.57; for strength 17 was

3.11, 2.68, and 2.25; for strength 19 was 5.13, 4.69, and 5.11.
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spread distribution of WM peak formation (green bars in B). These results are consistent

with Hunter and Ames’s (1988) multifactor model, which posits that the time course of

memory formation is affected by the stimulus context.

7.2. Inter-stimulus interval

When the ISI is long, infants exhibit little or no habituation (Lewis, 1969). Long ISIs can

also negatively affect infants’ ability to maintain a working memory representation of a

stimulus (Oakes & Ribar, 2005; Ross-Sheehy et al., 2003; Smith, Thelen, Titzer, & McLin,

1999). Schöner and Thelen (2006) showed that long ISIs slowed habituation.

In our model, long ISIs attenuate habituation because the formation of a stable WM

peak is slowed or prevented. This has two sources. First, activation in HWM decays over

long delays, which provides little support for WM as the model repeatedly encounters a

stimulus across trials. Second, WM peaks can be destabilized during long delays in the

presence of noise. Fig. 13A shows the looking time of the standard model with ISIs at

5 s (black), 30 s (green), 60 s (blue), and 120 s (red). Habituation was slowed with an

ISI of 30 s, slowed even more with an ISI of 60 s, and the model did not exhibit any

habituation with an ISI of 120 s. The differences in habituation rate mirror the rate at

which the model formed a stable WM peak across the different ISIs (see Fig. 13B). At

the longest ISI, the model rarely formed a stable WM peak. These results are, once again,

consistent with both Schöner and Thelen’s (2006) model and Hunter and Ames’s (1988)

(A) (B)

Fig. 13. The looking time (A) and distribution of trials on which a stable WM peak was formed (B) for the stan-

dard young infant model for four different ISI lengths. As the ISI was increased from the standard 5 s (black line

and circles) to 30 (green line and squares) and 60 (blue line and diamonds), the model exhibited relatively little

habituation. When the ISI was increased to 120 s (red line and triangles), the model exhibited no habituation. As

the ISI was increased, the model acquired a stable WM peak increasingly later in the habituation phase. The

model was rarely able to form a working memory when ISIs were set to 60 s (blue bars) and 120 s (red bars).

For simplicity, error bars are not shown. SD (in s) for ISI 5 s during the first block of three trials was 3.16, 2.75,

and 2.91; for ISI 30 s was 3.28, 2.85, and 2.80; for ISI 60 s was 3.08, 2.92, and 2.78; for ISI 120 s was 3.34,

2.84, and 2.76. SD for ISI 5 s during the last block of three trials was 3.11, 2.68, and 2.25; for ISI 30 s was 2.59,

2.88, and 2.47; for ISI 60 s was 2.41, 2.73, and 2.96; for ISI 120 s was 2.24, 2.14, and 2.44.
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multifactor model which posit that task factors such as the ISI affect the time course of

memory formation.

7.3. Capturing familiarity and novelty over development

Familiarity preferences have long been observed, but the mechanism that underlies such

preferences is still poorly understood. Familiarity preferences are more pronounced early in

learning and early in development (for a review, see Rose, Feldman, & Jankowski, 2004,

2007). Familiarity preferences are typically studied in the visual paired comparison proce-

dure, in which infants’ preference to look at a familiar stimulus over a novel one is assumed

to reflect active encoding and initial memory formation. Why infants would be biased to

look at a familiar stimulus over a novel one in single presentation tasks, however, is not

immediately obvious. Indeed, it is rather striking that infants will sometimes exhibit rela-

tively less looking to a novel stimulus on one trial relative to a familiar item on a previous

trial. Schöner and Thelen (2006) were able to capture familiarity preferences in a single pre-

sentation task. Here, we probe whether our model can also capture familiarity preferences in

a single presentation task as well as capture a familiarity-to-novelty shift over development.

In doing so, we provide an explanation for why familiarity preferences are more prevalent

early in development.

To investigate these issues, we asked whether the DNF model could quantitatively cap-

ture the only existing empirical data set examining a familiarity-to-novelty shift over devel-

opment in a single presentation habituation task (Wetherford & Cohen, 1973). This study

was particularly intriguing because it examined habituation in very young infants—between

6 and 12 weeks—who have not been the focus of previous formal theories of infant

habituation. Results showed a dramatic developmental transition from a lack of habituation

and familiarity preferences to rapid habituation and novelty preferences across a 2-week

period. This developmental period is also important because there are significant changes in

the control of fixation. For example, during this period, there is increased control over con-

tinuous visual tracking, orienting, and disengaging (for a review, see Johnson, 2002), and it

is during this period that movements of the body and shifts of gaze become tightly coupled

(Robertson et al., 2001b).

Wetherford and Cohen (1973) habituated 6-, 8-, 10-, and 12-week-olds to a two-dimen-

sional stimulus that consisted of one shape and one color across 17 trials. On trials 2, 9, and

16, they measured infants’ stimulus preferences using a different novel stimulus for each of

the three trials. An example of the experimental design is shown in Fig. 14A. Infants’ look-

ing time across blocks of two trials is shown in 14B. Blocks consisted of the average looking

time on adjacent trials, excluding the novel stimulus (e.g., trials 1 and 3, 4 and 5, and so on).

Six- and 8-week-olds did not exhibit any evidence of habituation, 10-week-olds showed

habituation late in the habituation phase, and 12-week-olds rapidly habituated. Infants’ pref-

erence scores are shown in Fig. 14C. Six- and 8-week-olds showed a familiarity preference

on the second and third tests, while 10-week-olds showed a novelty preference on the third

test. The 12-week-olds also showed a novelty preference after the first block of trials. Thus,
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(A)
(B) (C)

(D) (E)

Fig. 14. (A) Experimental design from Wetherford and Cohen (1973). Six-, 8-, 10-, and 12-week-old infants

were habituated to a single stimulus (shown as gray star) across seventeen 15-s trials with ISIs of 8 s. On trials

2, 9, and 16, a different novel stimulus was presented. A preference to look at the novel stimulus was calculated

by subtracting looking time to the novel stimulus from looking time on the preceding trial with the familiar,

habituation stimulus. (B–E) The (estimated) empirical and model results of Wetherford and Cohen (1973). (B)

Looking time across seven blocks of two trials from 6-, 8-, 10-, and 12-week-old infants. Six- (blue lines and dia-

monds) and 8-week-old (red lines and triangles) infants exhibited no evidence of habituation. At 10 weeks of

age (green lines and squares), infants exhibited a decline in looking late in habituation, and at 12 weeks of age

(black lines and circles), infants rapidly habituated. (C) Infants’ change in looking to the novel stimuli on trials

2, 9, and 16 relative to the preceding trial. Six-week-old showed a trend toward a familiarity preference on the

third novel test, and 8-week-olds tended to exhibit a familiarity preference on the second and third novel tests.

Ten- and 12-week-olds tended to exhibit a novelty preference on the second and third novel tests. The model

effectively produced the same looking behavior across trials (D) and preferences at test (E). For simplicity, error

bars are not shown. SD (in s) during block 1 for 6-week model was 1.16; 8-week model was 2.48; 10-week

model was 1.76; 12-week model was 1.38. SD during block 7 for 6-week model was 1.21; for 8-week model

was 1.35; for 10-week model was 0.99; for 12-week model was 0.50. SD on preference scores for 6-week model

on test 1 was 3.16, test 2 was 2.57, and test 3 was 2.72; SD on preference scores for 8-week model on test 1 was

4.40, test 2 was 4.44, and test 3 was 3.89; SD on preference scores for 10-week model on test 1 was 3.52, test 2

was 2.94, and test 3 was 3.60; SD on preference scores for 12-week model on test 1 was 2.94, test 2 was 3.40,

and test 3 was 2.99.
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across only a 2-week period, there was a developmental transition from familiarity-to-nov-

elty preferences late in learning.

To examine whether the DNF model could capture this rapid developmental transition,

we tested the model with Wetherford and Cohen’s procedure. The metric similarity of the

stimuli used by Wetherford and Cohen is unknown. Thus, we assumed a moderate amount

of similarity among items by setting the metric distance between items to 30 neurons, half

the distance between the close and far test items from the habituation stimulus in the simula-

tions described previously. The first novel test was 60 neurons from the familiar stimulus,

and the second and third novel tests were positioned 30 neurons on either side of the familiar

stimulus.

We created 6-, 8-, 10-, and 12-week-old infant models by implementing the SPH (see

Table 2). Pilot simulations revealed that changes to only the SPH parameters, in isolation,

were not sufficient to capture the looking behavior of 6- and 8-week-olds. Given the dra-

matic changes in the control of fixation during this period, we added a second type of devel-

opmental change—we made the fixation dynamics less stable early in development by

implementing the SPH on the fixation system. Specifically, we weakened the excitatory con-

nection to PF from the fixation system (cui) and from PF to the fixation system (ciu), as well

as the self-excitation of the fixation system (cii). These changes slowed the transitions from

the looking away state to the looking state and the tendency of the fixation system to reenter

the looking away state once fixated. Finally, we increased the noise in PF, which affects the

model’s ability to form a working memory for a stimulus. Noise in PF was set to .4 for the

6-week-old model, decreased to .2 for the 8-week-old model, and returned to its base value

of .12 for the 10- and 12-week-old models.

As can be seen in Fig. 14D and 14E, the model produced the same pattern of looking

as infants. Simulations of 6- and 8-week-olds did not exhibit habituation, 10-week-old

simulations exhibited a decline in looking during the last blocks of the habituation phase,

and 12-week-old simulations exhibited a rapid decrease in looking, showing minimal look-

ing by block 4. The novelty preferences for each age group on the three novel tests are

shown in 14E. The 6-week-old model exhibited a slow increase in the strength of its famil-

iarity preference across trials. The 8-week-old model, in contrast, exhibited a rapid increase

from a null preference on the first novel test to a strong familiarity preference on the second

and third novel test. Both the 10- and 12-week-old models exhibited a novelty preference on

the second novel test, but only the 10-week-old model exhibited a stronger novelty prefer-

ence on the third novel test.

To illustrate the dynamics that underlie this rapid developmental transition, Fig. 15

shows the state of PF and WM at the onset of the three novel tests for the 8-week-old (A-C)

and 10-week-old (D–F) models. Eight-week-olds exhibit an increasing familiarity prefer-

ence across trials. How might such a behavior arise? When the 8-week-old infant model

encounters the first novel test on trial 2, HPF has accumulated little activity (A; gray line,

right y-axis). The model has yet to accumulate any bias to look at the familiar stimulus on

previous trials and, therefore, cannot exhibit a decline in looking to what amounts to an

equally novel stimulus. Across trials, activity in HPF accumulates, leading to an increase in

looking to the familiar stimulus. In contrast, when the model encounters the novel stimulus
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on trials Fig. 9B and Fig. 16C, the lack of HPF activity associated with these novel feature

values leads to little looking. At 8 weeks of age, then, familiarity preferences are driven by

the neural dynamics associated with perceptual encoding. Note that neural interactions are

too weak to support stable WM peak formation (see circle in C); consequently, no habitua-

tion occurs.

(A) (B) (C)

(D) (E) (F)

Fig. 15. The mechanisms by which looking fails to habituate at 8 weeks of age (A–C) and habituates at

10 weeks of age (D–F). The state of PF and WM is shown at the onset of the first novel test (A and D), second

novel test (B and E), and third novel test (C and F). The placement of the familiar stimulus and three novel tests

along a metrically organized feature dimension is shown at the top. The 8-week-old infant model acquires strong

activation in HPF across trials (see gray line, right y-axis in B and C), which biases looking to the familiar over

the novel stimulus. The 10-week-old infant model establishes a stable WM peak late in habituation (F), which

leads to a decline in looking and an increase in looking to the novel stimulus.
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The picture is very different just 2 weeks later. Although the 10-week-old model is compa-

rable to the 8-week-old model on the first novel test (trial 2, see D), some simulations have

started to form a WM peak by the second novel test on trial Fig. 9E. This leads to a small

decline in looking across simulations. By the third novel test on trial Fig. 16F, the model has

established a stable WM peak, inhibition in PF is strong, and looking has declined. Conse-

quently, the model exhibits a strong relative increase in looking to the novel stimulus.

These simulations show that small, quantitative increases in the strength of neural inter-

actions lead to a qualitative shift in memory formation over development (for discussion of

related issues, see Spencer & Perone, 2008). Interestingly, this developmental shift mirrors

the qualitative transition from encoding to working memory formation that occurs over

learning in the young and old infant models (see Fig. 8G and 8H). These simulations also

demonstrate that the DNF model can quantitatively capture the details of infants’ perfor-

mance within a specific task context. It is noteworthy that the model was able to capture this

data set in particular. To our knowledge, these are the first quantitative simulations of look-

ing data from infants this young. It is also noteworthy that quantitative fits required imple-

menting changes to the fixation system (and increasing noise). This provides a point of

convergence between our modeling efforts and empirical work showing dramatic changes

in fixation dynamics during this early period.

7.4. Integration of learning with real-time process

Learning in Schöner and Thelen’s (2006) model did not involve excitatory memory. Our

model, in contrast, learns via an excitatory Hebbian process that builds a long-term learning

Fig. 16. Looking time of the standard young infant model as it was initialized with an increasing strength of

HPF and HWM from 0% to 35% of that accumulated in the simulations shown in Fig. 7. As initialization strength

increased, the model habituated more quickly. This mimics robust long-term memory after only short delays

between first and second exposures to the habituation stimulus.
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history as the model looks and looks away in real time. Several studies on delayed

recognition have shown that infants’ long-term memory for a stimulus contributes to their

subsequent looking. For example, Martin (1975) found that infants habituated to a stimulus

more quickly during a second experimental session after habituating to the same stimulus

during the first experimental session (for related results, see Fagan, 1973; for a review, see

Rose et al., 2007). Similarly, Bahrick and Pickens (1995) found that infants spent more time

looking to a familiar stimulus as the delay between initial exposure and test increased. Here,

we test whether learning from one session in the DNF model produces these behavioral pat-

terns when that learning is carried forward to a subsequent session.

To probe this, we initialized the standard, young infant model with the HPF and

HWM accumulated from the simulations described previously (Fig. 7). To account for

the decay and interference processes that occur over varying time delays, we modulated

the strength of HPF and HWM from 0% to 35%. Fig. 16 shows the looking time across

trials as the strength of HPF and HWM was increased from 0% to 35%. The model, like

infants, habituated more quickly when it has a learning history with the stimulus (Mar-

tin, 1975). Importantly, no learning history with the stimulus (i.e., initialization 0, black

line) or a weak history (i.e., initialization .15, green line) induced more looking early

than did a relatively strong history (i.e., initializations .25 and 35, blue and red lines;

Bahrick & Pickens, 1995). These simulations show that very little retention (<35%) is

needed to have a large impact on subsequent behavior. Our Hebbian learning

mechanism accounts for fast and flexible task-specific learning well, and it also

accounts for the time-dependent decline that a long-term learning history has on

infants’ behavior. It is important to point out, however, that it is unclear whether our

Hebbian learning mechanism in its current form can be applied to time delays on the

order of weeks, months, or years between initial learning and subsequent testing. We

are currently probing this issue in our laboratory.

8. Are learning and development the same thing?

In the DNF model, real-time cognition and behavior create cognition and behavior

over the timescale of learning in the task. A provocative question is whether the real-time

scale can also create behavioral changes comparable to those captured by the SPH. To

test this possibility, we compared the delayed recognition simulations with a new set of

developmental data produced by a fine-grained version of the SPH. In particular, we cre-

ated variations of the young and old parameter sets used previously (Fig. 7), effectively

breaking development up into smaller, incremental steps. To determine the specific

parameters at each developmental step, we performed a linear interpolation between the

young and old infant models for each parameter of the SPH (cuu, cww, cuv, cwv). We then

divided the difference between the young and old infant model parameters into propor-

tional steps and sampled from the following proportions: ).15, 0, +.15, +.3, +.45, where

zero is the young infant or old infant model shown previously. This created 10
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developmental steps, ranging from less mature (weaker) interactions to more mature

(stronger) interactions.

The top row of Fig. 17 shows results from the delayed recognition simulations. In partic-

ular, these panels show the mean and standard deviation for total looking time (A), look

duration (B), and the emergence of a stable WM peak (C) as the strength of the initial state

of HPF and HWM increased from 0% to 35%. As can be seen, total looking time, look dura-

tion, and the trial on which a stable WM peak emerged decreased as the strength of the ini-

tial state of HPF and HWM increased from 0% to 35%.

The bottom row of Fig. 17 shows the mean total looking time (E), look duration (F), and

trial of stable WM peak formation (G) for the 10 developmental models (bars represent 1

SD across the individual simulations in each set). Over development, total looking time

(A) (B) (C) (D)

(E) (F) (G) (H)

Fig. 17. The top row (A–D) illustrates how a long-term history with a stimulus affects looking behavior and

working memory formation when encountering the stimulus in a habituation task. The figure shows the mean

(error bars are 1 SD) looking time (A), look duration (B), and trial on which a stable WM peak emerged across

trials (C) when the model was initialized with an increasing strength of HPF and HWM ranging from 0% to 35%

of that accumulated in the simulations shown in Fig. 7. As the strength of initialization increased, looking time,

mean look duration, and the trial on which a stable WM peak was formed decreased, but looking time to the

close test did not change (D). The bottom row (E–H) illustrates how the strength of neural interactions affects

looking behavior and working memory formation for a set of young infant and old infant model parameters. The

figure shows the mean (error bars are 1 SD) looking time (E), look duration (F), and the trial on which a stable

WM peak emerged across trials (G) for the young infant models and old infant models. As the strength of neural

interactions increased, looking time, mean look duration, and the trial on which a stable WM peak emerged

across trials decreased. Looking to the close test increased as the strength of neural interactions increased (H).

Note that within the young infant and old infant groups, the relative relationship between the weakest neural

interactions and the strongest interactions is preserved.
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decreased, look duration decreased, and the trial on which a stable WM peak emerged

decreased. Critically, these changes look remarkably like the changes produced in the

delayed recognition simulations. Thus, for these three indices of performance, learning and

development are nearly identical. Put differently, an increase in processing speed can arise

from both mechanisms.

Interestingly, this is not the case for discrimination. Fig. 17D shows the performance of

the delayed recognition model when it is shown the close test. As is clear from the figure,

the model generalizes its looking to this similar novel stimulus. This is similar to the perfor-

mance of the young infant model shown in H. Critically, however, as we changed the

strength of neural interactions, the model started to look longer at the close test—it began to

show enhanced discrimination. This indicates that our learning mechanism (Hebbian learn-

ing) does not yield enhanced discrimination, while our mechanism for development (SPH)

does. We return to this topic in the General Discussion.

9. Looking matters for learning

The focus of existing theories of infant visual cognition has been on how changes in cog-

nitive processing create changes in looking over time (e.g., Cohen, 1972b; Colombo &

Mitchell, 1990; Hunter & Ames, 1988; Rose et al., 2007; Sirois & Mareschal, 2004). Theo-

retical accounts of the influence of looking (as an exploratory act) on learning are nonexis-

tent. Simulations in the previous sections show that looking and learning are interdependent.

However, we have yet to illustrate a central thesis of this paper—that the dynamics of look-

ing itself directly impact learning. Here, we experimentally manipulate looking to illustrate

the direct influence of looking on learning. These manipulations were inspired by work

showing that manipulations of individual infants’ look durations can have a profound effect

on learning in the laboratory (e.g., Jankowski et al., 2001) and social settings (e.g., Landry

& Chapieskie, 1988).

The promise of a model that implements looking as an active behavior is that it might

explain and predict how specific manipulations of looking over time will impact subsequent

learning. To examine this, we created two looking contexts, a look bias context and an away
bias context. These contexts were implemented with an algorithm that added an input boost

to the fixation system contingent on how the standard young infant model autonomously dis-

tributed its looks through time. In the look bias context, an extra input was provided to the

fixation system when the model looked away from the stimulus for 1 s. When this occurred,

a small boost (+.5) was added to cstatic for 2 s. In the away bias context, the opposite

occurred. Specifically, when the model had accumulated 2 continuous seconds of looking at

the stimulus, a small boost ().5) was subtracted from cstatic for 1 s. Conceptually, these

boosts are like ‘‘attention getters’’ (e.g., tapping an object) that influence shifts of gaze

toward or away from locations in the task space (see Kopecz & Schöner, 1995). With the

exception of the added inputs, the look bias and away bias models were identical.

The models were situated in a successive presentation habituation task. The learning

phase consisted of twenty-eight 20-s trials, and the test phase consisted of two 20-s test
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trials. All ISIs were 5 s. During the learning phase, the models were presented with a differ-

ent stimulus randomly sampled from a set of 99 that could be centered at any site within the

range 120–220 except site 170. Note that across simulations both models were presented

with the exact same random distribution of stimuli. On trial 29, the biasing inputs were

turned off and the models were presented with a within novel test, a novel stimulus that fell

within the range sampled during the learning phase centered at site 170. On trial 30, the

models were presented with an outside novel test that fell outside the range sampled during

the learning phase, centered at site 270.

The looking behavior of the look bias and away bias models is shown in Fig. 18. During

the learning phase, the look bias model exhibited high levels of looking (A) with a decline

in looking across trials. As looking time declined, there was an associated decline in look

durations (C) and an increase in the number of looks (B). The away bias model, in contrast,

exhibited relatively low levels of looking (A), a moderate number of looks (B), and moder-

ate look durations (C). Note that all three indices of looking behavior remained constant

across trials. The increased looking time for the look bias model relative to the away bias

(A) (B)

(C) (D)

Fig. 18. The looking behavior and working memory formation of the look bias (black) and away bias (green)

models. The look bias model exhibited more looking time across the learning phase than the away bias model

(A). The look bias model recognized the within stimulus and renewed looking to the outside stimulus, whereas

the away bias renewed looking to the within and outside test items. Across the learning phase, the look bias

model exhibited an increase in looks (B) and decrease in look duration (C). The look bias model more frequently

formed a stable WM peak than the away bias model (E).
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model simply shows that our experimental manipulation had the expected impact. But why

did one model show a change over learning while the other did not?

The two models exhibit entirely different patterns over learning because they showed dif-

ferent propensities to form working memories for novel stimuli. Fig. 18D shows the percent

of simulations that formed a stable WM peak on a given trial. As the figure shows, the likeli-

hood of forming a stable WM peak increased across trials for the look bias model, but

remained low for the away bias model. As the look bias model began to form a stable WM

peak for different, successively presented items during the learning phase, learning of previ-

ously presented items facilitated WM formation. The model, in turn, generalized looking to

those items. Moreover, when the fixation system looked away, it was contingently biased to

reacquire the looking state. This further enhanced the model’s ability to learn about each

novel stimulus. In contrast, the away bias model was contingently biased to look away from

each stimulus early in the learning phase. This prevented long-term learning, which, in turn,

led to little support for stable WM peak formation over time.

In addition to showing different behaviors over learning, these two model sets showed

differences in looking during the test phase when the biasing inputs were turned off. As is

evident in 18A, the look bias model exhibited low levels of looking to the within novel test,

recognizing the stimulus as familiar. In contrast, this model showed relatively high levels of

looking to the outside novel test, detecting the stimulus as novel. The away bias model

looked equally to the within and outside test stimuli, encoding both novel tests a new. Note

that looking on the test trials must be interpreted in the context of the general shift in base-

line looking for each model that occurred when we turned the biasing inputs off. In particu-

lar, the look bias simulations showed less overall looking when the look bias input was

removed, while the away bias simulations showed more overall looking when the away bias

input was removed.

These simulations illustrate that how looking is distributed through time impacts learning

in the moment, which impacts the long-term learning history acquired via looking. These

simulations provide a particularly salient example of how looking and learning are

linked—the same models with the same parameters showed dramatically different learning

trajectories depending on the presence of a contingent, biasing input. We discuss the impli-

cations of these simulations in the General Discussion.

10. General discussion

Seminal theories of early cognitive and behavioral development described infants as

active agents who acquire knowledge by autonomously exploring the world (Gibson,

1988; Piaget, 1952). The major challenge for these theories, however, has been to

describe the link between real-time cognitive and behavioral dynamics with enough spec-

ificity to understand how cognition and behavior work together. Over the past decade,

DFT has focused on this link. In this article, we proposed a DFT of visual exploration in

which looking is one component of a dynamic, exploratory system that is influenced by

content in the world and recent activity in the cognitive system. We formally
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implemented these ideas in a DNF model that learns autonomously as it looks and looks

away from a stimulus over time. We situated our model in a habituation task and showed

that it effectively captured developmental change in visual habituation. Our model exhib-

ited a rich interplay between looking and learning even in the simplest of task contexts.

Below, we discuss key insights from our theory.

10.1. Insights from the DFT of infant habituation

The DNF model was able to overcome three limitations shared by existing theories, and

in doing so, led to novel insights about the process of learning in a looking context. First,

existing theories have not provided an account of the interdependency between looking and

learning observed in experimental (Jankowski et al., 2001) and social (Landry & Chapies-

kie, 1988) settings. This interdependency became transparent when we anchored looking to

the trial on which the model formed a stable WM peak. This anchoring revealed a rich inter-

play between looking and learning: Simulations that spontaneously exhibited high levels of

looking early in learning established a stable WM peak for the stimulus more quickly,

whereas simulations that spontaneously exhibited low levels of looking early established a

stable WM peak for the stimulus more slowly.

Second, existing theories have not accounted for the nonlinear tie between looking and

memory formation. In the DNF model, the formation of a stable WM peak reflects a nonlin-

ear neural transition over learning in which the WM layer moves from the self-stabilized

(input driven) to the self-sustaining (maintenance) state. This change in state led to a dra-

matic decline in looking time, decline in look duration, and increase in number of looks.

Third, existing theories have not tested whether developmental changes in processing

speed and discrimination can arise from a common mechanistic source. This is an important

limitation because (1) these changes occur during the same developmental period and (2)

discrimination is one measure of processing speed. We presented a new hypothesis about

the mechanisms underlying developmental change in processing speed and discrimination.

In particular, we extended the SPH from studies in the domain of spatial cognition (Schutte

& Spencer, 2009; Schutte et al., 2003; Simmering et al., 2008). This hypothesis posits that

the strength of excitatory and inhibitory interactions increases over development. Strong

neural interactions produced an increase in processing speed and led to enhanced discrimi-

nation. The DNF model, then, posits that developmental changes in processing speed and

discrimination have a common mechanistic source.

We captured developmental differences in looking and discrimination performance by

implementing the SPH by hand. This hypothesis states that neural interactions increase in

strength in an experience-general manner, that is, as children accumulate diverse experi-

ences across time and situations. But what process might lead to the specific changes we

captured here? One possibility is that neural interaction strengths increase over development

via the self-organizing properties of neural systems (Miikkulainen, Bednar, & Sirosh, 2005).

For instance, within and cross-layer neural interaction, strength can be modulated in an

activity-dependent, Hebbian manner, such that excitatory connections between coactive

neurons become stronger through repeated activity. The simulation results in Fig. 17 in
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which we sampled developmental change across a series of fine-grained steps suggest that

an activity-dependent mechanism that produces gradual, quantitative changes in neural con-

nections could yield systematic changes in looking and learning over development. We are

currently exploring this possibility in several projects.

Interestingly, changes in behavior produced by the SPH were not isomorphic with

changes produced by the contribution of a long-term learning history across multiple ses-

sions. Both types of changes produced an increase in processing speed, but only the SPH led

to enhanced discrimination over development. This contrast is striking given that both types

of changes are likely to arise via activity-dependent, Hebbian processes. However, Hebbian

learning in each case has a distinctive flavor. Changes in interaction strength have a more

global influence on the stability of peaks in a neural field, while long-term learning influ-

ences are more local. Thus, these two mechanisms map onto what we might call task-gen-

eral versus task-specific learning. Ongoing work in our lab is exploring whether a richer set

of autonomous experience might enable long-term learning to mimic more properties of the

SPH.

This discussion is also linked to another central topic in developmental science: What is

the source of individual differences in cognition? Individual differences in looking are often

attributed to developmental differences in processing speed (Colombo & Mitchell, 1990;

Rose et al., 2007). Although this view has led to a rich empirical literature, the processing

speed hypothesis provides only a limited view of individual differences—short lookers are

fast processers and long lookers are slow processers. In the DNF model, there are three

sources of individual differences. One source is stochastic forces. The fixation, perceptual,

and working memory systems in the model are noisy, which influence how an individual

learns over the course of a task. This leads to a second source of individual differences—each

individual’s long-term learning history is created emergently over the course of a task and

can be carried forward in time and influence behavior. A final source of individual differ-

ences in the DNF model is the neurodevelopmental state of the infant captured by the SPH.

The tendency of the DNF model to encode and remember information at a given rate is

strongly influenced by neural interaction strength. We illustrated this in Fig. 17 by simulating

a range of fine-grained developmental steps, but these simulations could also be placed in the

context of individual differences. In particular, each parameter set could be viewed as a dif-

ferent individual within some range of a normative developmental parameter set (see Gil-

more & Thomas, 2002 for a similar approach). We believe that this last source of individual

differences most closely resembles the processing speed hypothesis. However, if changes in

neural interaction strength can emerge in an activity-dependent way as we suggested above,

it is possible that the stochastic contribution to learning over the task time scale combined

with a long-term learning history accumulated across multiple tasks would be sufficient to

mimic the behaviors associated with changes in neurodevelopmental state we observed here.

10.2. Comparison with other theories

Our theory closely resembles seminal conceptual theories of infant habituation. For

example, our model resembles Cohen’s (1972b) dual-process model. The dual-process
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model situated an active infant in a task space who looks and looks away from a stimulus

over time. The model posited that when the infant looks, looking is sustained by encoding

of the perceptual features. As the stimulus is repeatedly presented, long-term memory for-

mation supports recognition, leading infants to look away. Similarly, our model situates an

active, autonomous agent in a task space that looks at and encodes a stimulus. Encoding

contributes to the maintenance of looking and memory formation, and memory formation

contributes to the release of fixation.

Our theory shares many concepts with existing neural network models as well. Most

models of infant habituation implement some comparator process (e.g., French et al., 2004).

Looking in these models declines as the stimulus representation begins to match or can

assimilate the input. In this regard, our model is similar. In addition, in some models of

infant habituation, a stimulus is processed, remembered, and looking declines through a

combination of excitatory and inhibitory processes (Sirois & Mareschal, 2004). In this

regard, our model is also similar.

However, our model departs in three important ways from existing models. First, our

model is an autonomous exploratory system that evolves over multiple time scales—look-

ing evolves on the second-to-second time scale in the same spirit as Robertson et al.

(2004) and is integrated with the trial-to-trial dynamics of memory formation. Second,

looking time is not only influenced by memory formation but also the dynamics of fixa-

tion, events in the world, and the state of encoding. This enables the DNF model, like

infants, to respond more robustly to stimuli that demand processing resources or to manip-

ulations of the physical world by others. Last, habituation in our model arises through the

interaction of general cognitive processes that have accounted for visual recognition pro-

cesses and change detection at later points in development (Johnson et al., 2009). This

opens the door to studying developmental continuity in these basic visual cognitive pro-

cesses. Other models implement neurally plausible forms of representation formation, but

it is not always clear how these models relate to basic perceptual and cognitive processes

more generally.

Our theory of infant habituation also shares many qualities with the theory proposed by

Schöner and Thelen (2006). Perhaps most notably, both models specify the mechanisms that

underlie familiarity preferences in successive presentation habituation tasks and exploited

these mechanisms to quantitatively capture an empirical data set. We illustrated this by

quantitatively capturing an empirical data set from Wetherford and Cohen (1973) showing a

rapid familiarity-to-novelty shift over development. However, our model departs from Schö-

ner and Thelen (2006) in several ways. In their model, habituation happened via an inhibi-

tory long-term memory. Habituation in our model happens as a working memory is formed

and strong excitatory long-term memory accumulates. This enables our model to create an

excitatory learning history in real time and carry that history forward to new learning con-

texts. In addition, developmental change in looking and learning in our model happens as

the strength of excitatory and inhibitory interactions increases. Schöner and Thelen probed

developmental change simply by adjusting the initial state of the excitatory layer that con-

tributes to the rate at which inhibition accumulates and looking declines. As discussed

above, our theory has a richer source of change over the longer time scales of learning. We
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suspect these multiple sources will be critical to understanding both the origin of individual

differences and the origin of developmental change.

10.3. Limitations and future directions

10.3.1. Beyond habituation
The single presentation habituation task is commonly used to probe infants’ developing

perceptual and cognitive abilities. It is also the simplest context within which to probe the

interplay between looking and learning. However, one emerging question in the infant cog-

nition literature is how looking and learning differ across task contexts in which infants look

at a single item at one location or pairs of items at different locations (see Oakes, Horst,

Kovack-Lesh, & Perone, 2008). Infants perform differently in these two contexts (Oakes &

Ribar, 2005; see also Kovack-Lesh & Oakes, 2007).

The DNF model sheds light on these differences. In the single presentation task, looks

away from the stimulus are looks to task-irrelevant locations. This can result in spontaneous

decay of WM peaks. In paired presentation tasks, in contrast, looks away from one stimulus

might be looks to another identical or similar stimulus which can facilitate continued WM

formation. This, in turn, can foster more rapid learning. In addition, what constitutes evi-

dence of recognition and discrimination differs across single and paired presentation con-

texts. In single presentation tasks, recognition is inferred from a decline in looking to the

habituation stimulus and discrimination inferred when infants exhibit elevated levels of

looking to a novel stimulus on a subsequent trial. In paired presentation contexts, in contrast,

recognition is inferred from a preference to look at a novel over a familiar stimulus within a

single trial.

Perone, Simmering, and Spencer (2011) have shown that the basic theoretical con-

cepts presented here generalize to a paired presentation context. They situated a DNF

model in a change-preference task designed by Ross-Sheehy et al. (2003) to estimate

visual WM capacity development during infancy. Infants viewed two displays of col-

ored squares simultaneously blinking on and off. On a no-change display, all of the

items remained the same across blinks. On a change display, one item changed to a new

color. A preference for the change display was interpreted as memory for the number of

items per display (i.e., set size). The results showed that 6-month-olds exhibited a

change preference at set size one. Ten-month-olds exhibited change preferences up to

set size four.

In the Perone et al. (2011) DNF model, the fixation system looked at left, right, and away

locations in a winner-take-all fashion. Fixating one location opened a perceptual gate only

for the items present at that location. After exploring the displays, the model began to recog-

nize items on the no-change display and look away. When fixating the change display, in

contrast, the model encoded the novel, changing item. This led the model to prefer to look

at the change display longer than the no-change display.

In addition, Perone et al. (2011) implemented the SPH in the model and, quite

remarkably, showed that the very same hypothesis that has captured developmental

change in children’s performance in spatial working memory tasks (Schutte & Spencer,
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2009) and infant habituation also captured the developmental differences between young

and older infants. In this context in which the model was encoding multiple items across

multiple locations, the SPH had different implications for performance. In particular, the

young model formed less stable WM peaks that spontaneously decayed across fixations

at which multiple, different items were located. However, the old infant model formed

more stable WM peaks, enabling it to recognize items on the no-change display after

looks away. The strengthening of neural interactions appears to be a general develop-

mental mechanism that has diverse influences on neural and behavioral organization

across contexts.

10.3.2. Multidimensional learning
Our simulations focused on learning and discriminating along a single, metrically orga-

nized dimension. We showed that even this simple stimulus context yields novel insights

into the system under study. The DNF model can be expanded to provide an account of

learning about multidimensional stimulus events by reciprocally coupling neural fields

tuned to different dimensions to the fixation system. Consider a simple example. When

the model looks at a green square, it would encode and form a memory along color and

shape dimensions in parallel. If the model were tested with a red square (novel color),

the model would recognize the familiar shape but renew encoding of the novel color.

Interestingly, looking in this case would be less than if the model were tested with a red

circle (novel color and shape). Thus, the number of novel dimensions at test would affect

dishabituation. Importantly, the stimulus strength or experience on a specific dimension

can also impact memory formation, recognition, and novelty detection for features on that

dimension. Such issues have been of substantial interest in the past decade as researchers

probe what infants remember about different, simultaneously present dimensions (Horst

et al., 2005; Perone, Madole, Ross-Sheehy, Carey, & Oakes, 2008; Robinson & Sloutsky,

2004). We are currently exploring these possibilities in a multidimensional variant of the

model presented here.

10.3.3. Autonomous exploration and learning in social contexts
In this article, we developed an autonomous exploratory system that is embodied,

situated in its environment. This opens up a rich connection between the looking behavior

of the model and the environment it is situated in. One implication of this is that the model

can look, like infants, at a world that includes dynamic, stimulating events that influence

where it looks. We demonstrated this aspect of the model by experimentally manipulating

where the model looks in two contexts: a look bias context and an away bias context. These

contexts not only influenced looking and learning but also how the models explored novel

items. These simulations were inspired by demonstrations that experimental manipulations

of looking behavior can influence learning and exploration (Jankowski et al., 2001; Landry

& Chapieskie, 1988; Parrinello & Ruff, 1988).

We contend that this provides a critical link to studying how social partners influence

how infants distribute their looks, learn, and develop. For example, intervention studies
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that train parents to maintain their preterm infant’s gaze on objects result in positive

developmental change in basic social and cognitive abilities (Landry et al., 2008). Work-

ing with an embodied system that evolves over multiple time scales enables us to

explore how such manipulations impact learning across real and developmental time

scales.

10.4. Neural grounding
DNFs specify the link between cognitive and behavioral dynamics with a high degree

of neural realism (for a review, see Spencer et al., 2009). This realism enables DNFs to

interface with neurophysiological measures. For example, neuronal interactions within

DNFs have captured the distribution of population activity in cat visual cortex in

response to simple light stimulation (Jancke et al., 1999; for similar investigations see

Bastian et al., 2003). In addition, DNFs have been used to predict electrophysiological

measures. For example, McDowell, Jeka, Schöner, and Hatfield (2002) used concepts of

DNFs to predict changes in event-related potentials (ERPs) based on the frequency of

reaching responses as well as the metric similarity of the target locations. The dynamics

shown here resemble ERP studies with infants. For example, Snyder (2010; see also Sny-

der, 2007) found that a decrease in ERP amplitude during encoding was associated with

stronger preferences for novelty during test. In the DNF model, the emergence of a sta-

ble WM peak suppresses activity in PF, which, in turn, enables the DNF to exhibit dif-

ferential neural and behavioral responses for familiar versus novel items. This link

suggests that DNFs may provide a fertile foundation for understanding developmental

change in brain-behavior relations.

11. Conclusions

Developmental scientists have long held that children create knowledge through active

exploration in their environment. Looking is one of the few behaviors that young infants

can systematically and reliably engage in and a key behavior by which they begin to learn

about the visual world. Looking is also a powerful empirical tool, and looking is widely

recognized to be a window into the developing cognitive and neural system. In this article,

we recast looking as part of a dynamic exploratory system. We illustrated how looking

contributes to the dynamics of memory formation, showing that the act of looking and

memory are inseparable aspects of the processes we study in infant cognition. Although

we focused on the simplest situation in which looking and learning are linked—single pre-

sentation habituation—the rich interplay between looking and learning even in this context

highlights how important it is to understand this interplay when interpreting looking mea-

sures in infancy.

The DNF model has important implications for thinking about looking as we observe

it in the laboratory. Looking over the course of a task is a slice in time of a historical

system behaving and creating a history that will impact the future behavior of that sys-
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tem (Oyama, 2002). Looking over the course of a task cannot be separated from the

long-term learning history that an infant brings to the task, an individual’s developmental

state, and stochastic forces. We contend that the DNF model can foster an appreciation

for this level of complexity, helping us to understand the rich array of looking behaviors

infants exhibit in the lab, in naturalistic contexts, and in contexts that include social

partners.

Notes

1. We use the term ‘‘capture’’ throughout to mean produce behavioral patterns quantita-

tively or qualitatively comparable to the means and standard deviations produced by

infants, as well as, where relevant, across conditions and development.

2. The ‘‘+’’ in three-layer+ model refers to our addition of Hebbian layers to Johnson

et al.’s model.
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Appendix

Much of our empirical understanding of infants’ developing cognitive abilities has come

from looking measures using the infant-control procedure. Historically, the procedure’s

popularity stems from a critical assumption: The procedure tailors the exposure time

needed to learn about a stimulus to each individual’s memory formation abilities (see Dan-

nemiller, 1984; Deloache, 1975, 1976). For example, some infants may form a memory

for a stimulus quickly, exhibit a sharp decline in looking, and satisfy the habituation crite-

rion after only a few trials and begin the test phase. Other infants may form a memory for

a stimulus more slowly, exhibit a gradual decline in looking, and satisfy the habituation

criterion after several trials. By tailoring exposure time based on these individual differ-

ences, researchers assume that infants form comparable memory representations heading

into the test phase.

A number of studies cast doubt on this assumption. For example, fast and slow habitua-

tors perform differently at test (Cashon & Cohen, 2000; McCall, Hogarty, Hamilton, & Vin-

cent, 1973; see also Schöner & Thelen, 2006). If the procedure equates for individual

differences in learning, then we would expect individuals to exhibit similar performance at

test. Moreover, there is no clear consensus on how procedural variants affect the state of

memory entering the test phase. Do some procedures ensure that infants have a more robust

memory entering the test phase than others?

The dynamic neural field (DNF) model is ideally situated to address these issues

because looking in the model, as with infants, can be calculated on each trial. Thus, in

the simulations that follow, we situated the DNF model in two types of infant-control

procedures—the sliding-block design and the fixed-block design. The simulations

provide two critical insights. First, they show how emergent individual differences in

looking and learning influence the procedure and, reversely, how the procedure influ-

ences looking and learning. Second, our simulations show the state of memory entering
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the test phase is more robust in the fixed-block design, particularly for fast-habituating

simulations.

In the sliding-block design, looking is calculated across the first block of (typically) three

consecutive trials and the criterion is met when looking on any three consecutive trials is at

least 50% of looking during the first block. We implemented the sliding-block design using

the standard young infant model. Each trial was terminated once the model looked away for

three consecutive seconds or until 20 s had elapsed. The interstimulus interval was fixed at

5 s. Looking was calculated across overlapping blocks of three consecutive trials (e.g.,

block 1 is trials 1–3, block 2 is trials 2–4, and so on). There was a maximum of 12 trials. In

our implementation of the sliding-block design, then, the model could meet the habituation

criterion on any trial between 4 and 12.

The top portion of Appendix Table 1 shows simulation results for the sliding-block

design. To illustrate how looking contributes to satisfying the habituation criterion, we

parsed simulations into groups based on the trial that the model met the habituation crite-

rion. Note that we increased our simulation batch size from 200 to 1000 to ensure that we

could evaluate the behavior of a relatively large number of simulations regardless of the trial

on which the criterion was met. The model most frequently met the habituation criterion on

trials 7–12. As with infants, fast-habituating simulations accumulated more looking time

during the first block than slow-habituating simulations. The longest look (peak look) for

fast-habituating simulations was also longer and occurred earlier in habituation than for

slow-habituating simulations. Interestingly, the average trial on which a stable WM peak

was formed and the trial on which the habituation criterion was met became disconnected as

the trials to criterion increased. In particular, simulations that met the criterion early only

formed a working memory slightly earlier than simulations that satisfied the criterion later.

This happens because fast-habituating simulations accumulated high levels of looking dur-

ing the first block, which set a high criterion. As fast-habituating simulations formed a work-

ing memory, looking declined and the criterion was satisfied. Slow-habituating simulations,

in contrast, exhibited less looking during the first block, which set a low criterion. Despite

the low looking early, these simulations tended to form a stable WM peak relatively quickly.

However, these simulations did not move on to test until later because they were unable to

satisfy the low criterion set early in learning.
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Fast and slow habituation has implications for performance at test. In the infant-control

procedure, infants are typically re-presented with the habituation stimulus on the first trial

postcriterion as a baseline measure of looking. Previous studies have shown that infants’

looking to the postcriterion habituation stimulus is elevated relative to the last habituation

trial (Cohen & Menten, 1981). Inspection of Appendix Table 1 shows that the DNF model

produces this behavior. This was particularly pronounced for simulations that met the crite-

rion early. The left portion of Appendix Fig. 1 shows the mechanisms that underlie this

behavior. This figure shows the state of PF and WM entering the postcriterion trial for fast-

habituating simulations that met the criterion on trial 7 (blue line) and slow-habituating sim-

ulations that met the criterion on trial 12 (black line). Fast-habituating simulations had

weaker WM activity and weaker inhibition in PF than slow-habituating simulations, which

supports longer looking when the habituation stimulus is re-presented.

The state of memory entering the test phase for fast-habituating simulations is very different

when the model is situated in the fixed-block design. In the fixed-block design, looking is calcu-

lated across discrete, nonoverlapping blocks of trials. In our implementation of the fixed-block

design, there was a maximum of four blocks of three trials (e.g., block 1 was trials 1–3, block 2

was trials 4–6, and so on) for a maximum of 12 trials. The model could meet the criterion on tri-

als 6, 9, or 12. Each trial was terminated when the model looked away for 3 consecutive seconds

or 20 s had elapsed.

The sliding-block and fixed-block designs differ in an important way. In the sliding-block

design, the habituation criterion can be met on any successive trial. This means that a sud-

den decline of looking on one trial can have a significant impact on whether the model

meets the criterion. For example, if an infant exhibits little looking on trial 4, total looking

on the second block (trials 2–4) may satisfy the criterion based on the first block (trials

1–3). In the fixed-block design, the habituation criterion can only be met on nonoverlapping

blocks of trials. A sudden decline in looking, therefore, typically has a less immediate

impact. If an infant exhibits little looking on trial 4, for instance, total looking on the second

block (trials 4–6) may be low, but it might not satisfy the criterion if looking is renewed on

trial 5 or 6. This methodological difference has an important consequence—an infant can

satisfy the habituation criterion more easily in the sliding-block than in the fixed-block

design. This is evident in our simulations: as can be seen in Appendix Table 1, more simula-

tions failed to satisfy the habituation criterion with the fixed block (415) than with the slid-

ing-block design (310; see Horst et al., 2005 for similar results).

In our analysis of the sliding-block design, the state of memory entering test was weak

for fast-habituating simulations. How does the fixed-block design impact the state of mem-

ory entering test for fast-habituating simulations? The right portion of Appendix Fig. 1

shows the state of PF and WM for fast-habituating simulations that met the criterion on trial

9 (blue line) and slow-habituating simulations that met the criterion on trial 12 (black line).

WM activity and inhibition in PF were stronger for fast-habituating simulations in the fixed-

block design than fast-habituating simulations in the sliding-block design. Importantly, trial

9 in the fixed-block design is only the second opportunity to satisfy the habituation criterion.

This forces simulations that acquired a stable WM peak early and exhibited a decline in

looking to be exposed to the stimulus for several more trials. Indeed, 39% of the simulations

58 S. Perone, J. P. Spencer ⁄ Cognitive Science 37 (2013)



that met the habituation criterion on trial 9 in the fixed-block design would have met the cri-

terion prior to trial 9 in the sliding-block design. WM activity and inhibition in PF were

comparable for slow-habituating simulations in both designs.
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Appendix Fig. 1. Left portion shows the state of PF and WM for fast-habituating (blue

line) and slow-habituating (black line) simulations in the sliding-block design. Right portion

shows the state of PF and WM for fast-habituating (blue line) and slow-habituating (black

line) simulations in the fixed-block design. For both designs, WM activity and inhibition in

PF were stronger for slow-habituating than fast-habituating simulations. WM activity and

inhibition in PF were stronger for fast-habituating simulations in the fixed-block design.
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