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Within cognitive neuroscience, computational models are designed to provide insights
into the organization of behavior while adhering to neural principles. These models should
provide sufficient specificity to generate novel predictions while maintaining the
generality needed to capture behavior across tasks and/or time scales. This paper
presents one such model, the dynamic field theory (DFT) of spatial cognition, showing
new simulations that provide a demonstration proof that the theory generalizes across
developmental changes in performance in four tasks—the Piagetian A-not-B task, a
sandbox version of the A-not-B task, a canonical spatial recall task, and a position
discrimination task. Model simulations demonstrate that the DFT can accomplish both
specificity–generating novel, testable predictions–and generality—spanning multiple tasks
across development with a relatively simple developmental hypothesis. Critically, the DFT
achieves generality across tasks and time scales with no modification to its basic structure
and with a strong commitment to neural principles. The only change necessary to capture
development in the model was an increase in the precision of the tuning of receptive fields
as well as an increase in the precision of local excitatory interactions among neurons in
the model. These small quantitative changes were sufficient to move the model through a
set of quantitative and qualitative behavioral changes that span the age range from
8 months to 6 years and into adulthood. We conclude by considering how the DFT is
positioned in the literature, the challenges on the horizon for our framework, and how a
dynamic field approach can yield new insights into development from a computational
cognitive neuroscience perspective.
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1. Introduction

A central goal of computational cognitive neuroscience is to
develop models of cognitive processes that provide insight
into the organization of behavior while adhering to neural
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principles. As such, theorists strive to create models with
sufficient specificity–both behavioral and neural–to generate
novel, testable predictions. It is also critical, however, that
theories achieve a sufficient degree of generalizability across
tasks. This is not a trivial accomplishment: capturing the
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details of performance in even a single task can be difficult, let
alone generalizing across multiple tasks, multiple behaviors,
and, perhaps even more challenging, multiple time scales
(e.g., extending into learning and development).

Several theories have confronted the challenges of achiev-
ing generality with specificity, with varying levels of success
(e.g., Cohen and Servan-Schreiber, 1992; Love et al., 2004;
McClelland et al., 1995; Morton and Munakata, 2002); here, we
present one such theory, the dynamic field theory (DFT) of
spatial cognition (Spencer et al., 2007). The dynamic field
framework was originally developed to capture the dynamics
of neural activation in visual cortex (Amari, 1977). More
recently, this framework has been extended to account for
the processes that underlie saccadic eye movements (Kopecz
and Schöner, 1995; Wilimzig et al., 2006), motor planning
(Erlhagen and Schöner, 2002; Schutte and Spencer, 2007),
infants’ performance in Piaget’s A-not-B task (Thelen et al.,
2001), the dynamics of neural activation in motor and
premotor cortex (Bastian et al., 1998, 2003), and the behavior
of autonomous robots (Bicho et al., 2000; Iossifidis and
Schöner, 2006; Steinhage and Schöner, 1998).

In the present report, we present new simulations of a
dynamic field theoryof spatial cognition thatdemonstrate that
this theory generalizes across developmental changes in
performance in four tasks—the Piagetian A-not-B task, a
version of the A-not-B task conducted in a sandbox, a
canonical spatial recall task, and a position discrimination
task. Moreover, simulations of our theoretical model demon-
strate that the DFT can span developmental changes in
performance in these tasks across a range of ages from
8months to 6 years through adulthoodwith a relatively simple
developmental hypothesis. This highlights a novel develop-
mental insight: because we use a richly structured real-time
neural system, we can get “more from less” over development,
that is, we can produce both quantitative and qualitative
changes in performance via a simple developmental mecha-
nism. Critically, the same model can perform these different
behaviorswithnomodification to its basic structure andwith a
strong commitment to neural principles (see Amari, 1977;
Bastian et al., 1998, 2003; Erlhagen et al., 1999; Jancke et al.,
1999). These simulations demonstrate that the DFT can
achieve both generality and specificity.

In the section that follows, we provide an overview of the
DFT including its foundations in neural principles and our
central developmental hypothesis. Next, we describe behav-
ioral signatures in four spatial cognition tasks that have
previously been simulated with earlier versions of the frame-
work presented here—but never within a single model with a
single parameter setting scaled systematically over develop-
ment. Simulation results showthat the current instantiationof
the model can capture development within and across these
tasks by scaling a small set of parameters. Thus, the exact
same model with slight modification in parameters can show
the complex pattern of developmental change observed across
these four tasks. We conclude by placing our theoretical
framework in the broader literature, considering the chal-
lenges on the horizon for our theory, and discussing the novel
insights into developmental process offered by the simula-
tionspresentedhere, inparticular, howonecanget “more from
less” over development.
Please cite this article as: Simmering, V.R., et al., Generalizing t
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2. Overview of the dynamic field theory

A growing number of researchers have argued that we should
take inspiration from the densely interconnected and dynamic
nature of the brain to rethink cognition (e.g., Barsalou, 1999;
Skarda and Freeman, 1987; Spencer and Schöner, 2003). A
centerpiece of this approach is to embrace the use of complex,
dynamic neural networks to capture brain–behavior relations.
Although neural networks have architectures that can be
depicted as separate systems, they are at their core complex,
reentrant, densely interconnected systems that violate core
assumptions of encapsulation and separability (for discussion,
see Spencer et al., 2007).

We have contributed to this broader agenda using contin-
uous dynamic neural fields first proposed to capture neural
dynamics within the topographic organization of visual cortex
(Amari, 1977; Amari and Arbib, 1977). More recently, this
approachhas been extended to capture the dynamics of neural
activity in cortical areas with a non-topographic organization
(e.g., motor cortex). For instance, time-dependent changes in
neural activation in a dynamic field model of motor planning
were compared to single-unit neural activity in motor cortex
measured in a precue paradigm using population coding
techniques (Bastian et al., 1998, 2003; Erlhagen et al., 1999).
The first step in making this comparison was to map the
responses of neurons to basic stimuli and create a continuous
field by ordering the neurons based on their “preferred”
stimulus. This was followed by a behavioral precuing task
that probed predictions of a dynamic field theory ofmovement
preparation (Bastian et al., 1998, 2003; Erlhagen and Schöner,
2002). Note that this same theory has also been tested using
ERP techniques (McDowell et al., 2002). These studies have
reported a robust relationship between predictions of dynamic
field models and neural measures, suggesting that this
particular marriage between theoretical and behavioral neu-
roscience is quite promising.

The theory we present here uses additional insights gained
fromstudies of the layered structure of cortex. In particular,we
use a multi-layered architecture inspired by the cytoarchitec-
ture of visual cortex (Douglas andMartin, 1998). This has given
us an entry point into the dynamics that emerge from
interactions among cortical layers. Moreover, our approach to
long-term memory is grounded in established neural princi-
ples: we use long-term memory fields (described below) that
capture a form of Hebbian learning (see Schöner, 2007;
Wilimzig and Schöner, 2005, in preparation).

2.1. A 5-layer dynamic field model of spatial cognition

Our focus in the present report is on a process-based theory of
spatial cognition instantiated in a 7-layer dynamic neural field
model that captures children’s and adults’ performance in a
host of spatial tasks (for a complete description of the theory,
see Spencer et al., 2007). Here, we focus on the dynamics of five
layers of the model, shown in Fig. 1 (for equations and
parameter details, see Appendix A.1): a perceptual field (PF;
Fig. 1B), a spatialworkingmemory field (SWM; Fig. 1E), a shared
inhibitory field (Fig. 1D), and two long-term memory fields
coupled to PF (LTMPF; Fig. 1C) and SWM (LTMSWM; Fig. 1F). In
he dynamic field theory of spatial cognition across real and
res.2007.06.081
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Fig. 1 – A simulation of the dynamic field theory performing one spatial recall trial. In each panel, location is across the x-axis,
activation on the y-axis, and time on the z-axis. (A) Inputs are presented directly to the model in an object-centered reference
frame (see text for details of the calibration process that transforms spatial information from an egocentric frame of reference in
the fullmodel). After this shift, activation is passed to themodel consisting of 5 layers: (B) a perceptual field; (C) a long-termmemory
field associated with this perceptual field; (D) a shared layer of (inhibitory) interneurons; (E) a spatial working memory field; (F) a
long-termmemory field associated with the spatial working memory field. Solid arrows show excitatory connections between
layers, and dashed arrows show inhibitory connections between layers.
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each field, the x-axis consists of a collection of spatially tuned
neurons; the y-axis shows each neuron’s activation level;
lastly, time is captured along the z-axis, beginning at the front
of the figure. These layers pass excitation and inhibition as
indicated by solid and dashed arrows, respectively.

Inputs to the full 7-layer model described in Spencer et al.
(2007) come from two additional layers not used in the
simulations presented here: a perceptual field that receives
input in an egocentric frame of reference (e.g., retinal
coordinates) and a system that translates spatial information
from this egocentric frame into an allocentric frame grounded
in perceptual cues in the task space (e.g., the edges of a
tabletop). These two layers keep our spatial system calibrated
Please cite this article as: Simmering, V.R., et al., Generalizing t
developmental time scales, Brain Res. (2007), doi:10.1016/j.brain
with theworlddespite, for instance, interveningmovements of
the head and/or body. To simplify discussion of the model
here, we have replaced these two layers with the input layer
shown in Fig. 1A. This layer simply presents inputs (i.e.,
Gaussian activation profiles) to PF and SWM in an allocentric
frame with a time structure dictated by events in the task. For
instance, the simulation shown in Fig. 1 shows performance in
a single spatial recall trial where the target was presented at
−40° in the task space (see Target in Fig. 1A) and there were
perceptual cues in the task space marking the midline axis of
the table (i.e., 0°; see Midline in Fig. 1A). Note that input from
themidline axis is relatively weak compared to input from the
target; this reflects the increased salience of the target item
he dynamic field theory of spatial cognition across real and
res.2007.06.081
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due to task instructions to remember its location.We also note
here that inputs to SWMwere considerably weaker that inputs
to PF (multiplied by 0.2 in all simulations).

A central component of themodel is the neural interactions
among the 5 layers depicted in Figs. 1B–F. Neurons within PF
(Fig. 1B) and SWM (Fig. 1E) have locally excitatory interactions
where activated neurons boost the activity of their local neigh-
bors. In addition, neurons in PF and SWM have reciprocal con-
nections to the layer of interneurons (Fig. 1D): neurons in these
layers increase the activation of interneurons tuned to “prefer”
similar locations, and these interneurons, in turn, project
broad inhibition back to PF and SWM. These combined
interactions among the PF, Inhib, and SWM layers lead to
locally excitatory and laterally inhibitory interactions within
PF and SWM that enable these fields to form self-sustaining
“peaks” of activation that maintain themselves in the absence
of input (Amari and Arbib, 1977). For example, Fig. 1E shows a
self-sustaining peak in SWM near −40° that “remembers” the
target location after the target input was removed.

In addition to capturing working memory for a target on a
given trial, this 5-layer structure also allows themodel to learn
from its previous experience through a type of Hebbian
learning, incorporated using long-term memory (LTM) fields.
Above-thresholdactivation in PF andSWMpasses excitation to
associated sites in the respective LTM fields (see Figs. 1C and F),
leaving corresponding traces of activation. These activation
traces gradually accumulate across a slower time scale and
decay in the face of competing activation. Importantly, these
traces pass excitation back into PF and SWM, which can bias
the creation of activation peaks in these layers as well as shift
the spatial position of such peaks (an issue we discuss in
greater detail in the following sections). Note that each LTM
Table 1 – Parameter values for simulations

Layer τ h Self-
excitation

Excitatory
projection(s)

u (PF) 80 −7 cuu=1.25
σuu=3

v (Inhib) 10 −12 cvu=4.38
σvu=5
cvw=2.2
σvw=6

w (SWM) 80 −4 cww=2.05 cwu=1.75
σww=5 σwu=3

Developmental
scaling parameters

dev_cself=0.3
(8–10 months)
dev_cself=0.4
(10–12 months)
dev_cself=0.5
(N12 months)

Note. The top portion of the table shows parameter values used for all sim
The bottom portion shows developmental scaling parameters for the rem
listed above.
a Because we only simulated the spatial recall task with the adult param
used in conjunction with the developmental scaling parameters for the i
b Target inputs for the discrimination task were weaker, reflecting the diff
toys in A-not-B). For the discrimination simulations, ctar=20. All other pa

Please cite this article as: Simmering, V.R., et al., Generalizing t
developmental time scales, Brain Res. (2007), doi:10.1016/j.brain
field serves a unique and emergent behavioral function. The
LTM associated with PF tracks the use of reference frames in
the environment. For instance, the simulation in Fig. 1C has
relatively strong activation at 0°, reflecting the continual
presence of perceptual cues at midline in the task space—the
system comes to remember that midline provides a salient
reference axis in this task, which allows it to re-align to the
same object-centered frame of reference from trial to trial (see
Spencer et al., 2007 for details). By contrast, the LTM field
associated with SWM accumulates traces of previously re-
membered locations over trials. In Fig. 1F, the long-term
memory shows traces of the targets from the two previous
trials at −20° and −50°, respectively, aswell as traces built from
activation associated with the current target at −40°. Because
these targets are relatively close in space and have been
presented only once each, the long-term memory traces are
relatively weak and blend together. It is this field that allows
the model to accurately capture performance in A-not-B-type
tasks (see below), as well as effects of experience-dependent
spatial categories (see, e.g., Spencer and Hund, 2002).

2.2. Development in the DFT

We have previously captured behavioral changes across tasks
and development within the dynamic field framework using
a relatively simple developmental hypothesis—the spatial
precision hypothesis (SPH, Schutte et al., 2003; Simmering
and Spencer, in press; Spencer and Hund, 2003; Spencer et al.,
2007). The SPH posits that neural interactions become
stronger and more precise over development. The simula-
tions presented here show how small, quantitative changes
in neural interaction are sufficient for the model to reproduce
Inhibitory
projection(s)

Reference
input

Task input Target
input

cuv=1.1 cref=10 ctaska=10 ctar b=40
σuv=5 σref=3 σtask=3 σtar=3
kuv=0.05

cwv=0.665 All inputs scaled by cs=0.2
σwv=38

kwv=0.05
dev_cv=0.1 dev_cref=0.7 dev_ctask=0.7 dev_ctar=0.8

dev_σv=4 dev_σref=18 dev_σtask=1 dev_σtar=1.5

ulations described as “adult” parameters (see Figs. 1, 2B, 3E–H, and 4).
aining simulations, which were multiplied by the “adult” parameters

eters, task input was not used. We provide the values here that were
nfant A-not-B task.
erence in salience of the dots used in this task (compared to attractive
rameters remained unchanged.

he dynamic field theory of spatial cognition across real and
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Fig. 2 – The local excitation (+)/lateral inhibition (−) function
used for child (A) and adult (B) simulations. Dashed line
indicates the zero threshold.
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a complex pattern of behavioral performance observed across
four tasks, beginning with infancy and spanning childhood
into adulthood.

This general hypothesis is consistent with a host of
neurophysiological evidence, particularly during the age
range that is the focus of the present report—8 month to
6 years (for a related hypothesis about changes in neural
processes over development, seeWestermann andMareschal,
2004). For instance, it is likely that the development of the
dorsolateral prefrontal cortex plays a central role in the tasks
we discuss because this region of cortex is heavily involved in
the on-line maintenance of spatial information (Awh et al.,
1999; di PellegrinoandWise, 1993; Kessels et al., 2000;Nelsonet
al., 2000). Moreover, the development of the prefrontal cortex
shows a protracted course that continues into the postadoles-
cent years (Gogtay et al., 2004; Rakic, 1995; Sowell et al., 2001).
Synaptic density in the prefrontal cortex reaches its peak at
about 2 years of age in humans (Huttenlocher, 1979) and then
declines until it finally reaches adult levels at about 16 years of
age (Huttenlocher, 1990). Myelination is also still occurring in
the frontal lobe between the 2 and 6 years of age (Sampaio and
Truwit, 2001). To the extent that these neurophysiological
changes lead to stronger and more efficient neural processing
in spatial tasks, they are, at least at a qualitative level,
consistent with the SPH.

Implementing the spatial precision hypothesis in our
model has three components (see Model parameters in
Appendix A.2 and Table 1). First, we have made feed-forward
inputs to the model (i.e., activation from the input layer to PF
and SWM) stronger and more precise over development (see
Scaling of inputs in Appendix A.2.2 and Table 1). This reflects
both enhanced tuning of feed-forward cortical projections over
time due to, for instance, Hebbian processes (Kohonen, 1982),
as well as an improved ability to stably align and re-align
egocentric and allocentric reference frames (see Spencer et al.,
2007). Note that the values listed in Table 1 were multiplied by
the “adult” parameters to arrive at the values used in the
developmental simulations. Second, we have made similar
modifications to input to the LTM fields (see Scaling of long-
term memory projections in Appendix A.2.3). For instance,
peaks of activation in SWM project activation into LTMSWM via
a broader projection early in development relative to the
“adult” version of our model. Again, the narrowing of this
projection over development reflects improvements in neural
precision via learning aswell as an improved ability to re-align
current memories to past memories.

Third, we have altered the strength and precision of neural
interactions among the PF, Inhib, and SWM layers (see Scaling
of local excitation/lateral inhibition in Appendix A.2.1 and
Table 1). In particular, inhibitory projections from the layer of
interneurons to bothPF andSWMwerebroadandweak in early
development andbecamemoreprecise to create adult patterns
of responding. We also modified local excitatory interactions
within PF and SWM, with weaker local excitation early in
development and stronger local excitation later. These
changes in local excitation and lateral inhibition are depicted
in Fig. 2, which shows the locally excitatory profilewithin SWM
superimposed on the laterally inhibitory projection from Inhib
in early childhood (Fig. 2A) and adulthood (Fig. 2B). In a similar
architecture, this type of change in the precision of neural
Please cite this article as: Simmering, V.R., et al., Generalizing t
developmental time scales, Brain Res. (2007), doi:10.1016/j.brain
interactions over development predicted developmental
changes in BOLD signals (measured with fMRI) during a
working memory task (Edin et al., 2007).

In summary,we implemented the SPHby scaling the spatial
precision (i.e., widths) and strength of three classes of neural
interactions in themodel: projections from the input layer into
PF and SWM; projections from PF and SWM into the associated
LTM fields; and locally excitatory/laterally inhibitory interac-
tions among PF, Inhib, and SWM (see Table 1). Importantly, to
systematicallymove fromsimulations of infants’ performance
in the Piagetian A-not-B task to children’s performance in two
types of spatial recall tasks, we only changed a single scaling
parameter: wemodulated the strength of local excitation from
0.3 for the young infants in the A-not-B task to 0.4 for older
infants in the A-not-B task to 0.5 for all other toddler/child
simulations (seeTable 1). Critically, thesequantitative changes
in local excitation combined with the more global shift from
the “child” to “adult” parameter sets were sufficient to capture
both quantitative and qualitative changes in performance
across tasks and time scales without any other modifications
to model parameters.

Note that the four tasks we simulated here have not been
explicitly linked in the behavioral literature; rather, they are
generally considered to be separate tasks that index separate
developing abilities. Concretely, developmental changes in
infants’ performance in the Piagetian A-not-B task has been
used as a measure of the developing object concept (Piaget,
1954), improvements in infants’ representation of space (e.g.,
Acredolo, 1985; Bremner, 1978; Bremner and Bryant, 1977),
maturational changes in prefrontal cortex (e.g., Diamond,
1990a,b; Diamond and Goldman-Rakic, 1989), and improve-
ments in infants’ memory for objects (e.g., Munakata, 1998;
Munakata et al., 1997), amongothers. By contrast, performance
in the two spatial recall tasks we simulated has been linked to
how children use long-term spatial memories and geometric
spatial categories to remember locations (e.g., Huttenlocher et
he dynamic field theory of spatial cognition across real and
res.2007.06.081
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al., 1994; Schutte and Spencer, 2002; Spencer and Hund, 2003).
Finally, the position discrimination task we simulated has
typically been viewed from a psychophysical perspective
(Kinchla, 1971; Palmer, 1986a,b) and has only recently been
directly linked to phenomena discussed in the spatial recall
literature (Simmering et al., 2006; see also, Werner and
Diedrichsen, 2002).

In the past decade, we have shown that these phenomena
can be brought under the same theoretical umbrella–the
dynamic field framework–and that this framework can
generate novel, testable predictions (Schutte et al., 2003;
Simmering and Spencer, in press; Simmering et al., 2006;
Spencer et al., 2007). Here we take this claim one step further
by demonstrating–for the first time–that these phenomena
can, in fact, be integrated within a single model (the 5-layer
version of the DFT shown in Fig. 1) using a well-specified
developmental hypothesis.
3. Unifying behavior across real and
developmental time scales

In the sections that follow, we present simulations of the DFT
that capture key behavioral signatures from four tasks that
span infancy through adulthood. Note that although we use
the same model for all simulations presented here, we focus
on different aspects of themodel’s functioning in the different
sections because interactions between SWM and LTM are
central to A-not-B-type effects, whereas interactions among
PF, Inhib, and SWM are central to effects in recall and dis-
crimination tasks. This shift in focus reflects the changing
demands of tasks typically used in infancy compared to those
used with older children and adults, but it also reflects the
emergence of new abilities in our model that arise due to
earlier developmental changes.1 For instance, more “mature”
behaviors such as precise position discrimination depend on
prior developing abilities such as the ability to stably sustain a
pattern of activation in working memory (though for ties
between the mechanism of discrimination in childhood and
visual recognition in infancy, see Perone et al., 2007).

3.1. Piaget’s A-not-B task in infancy

In Piaget’s A-not-B task, an attractive toy is hidden repeatedly
at an “A” location, where infants generally search accurately.
The toy is then hidden at a nearby (and perceptually similar)
“B” location. After a short delay, 8–10-month-old infants tend
to search inaccurately at A. Slightly older infants, around 10–
12 months, search accurately at the B location. Previous work
by Thelen and colleagues (2001) demonstrated that a dynamic
field model of reaching behavior could capture infants’ A-not-
B performance. According to Thelen et al., infants’ reaches in
this task depend on the interaction between a long-term
memory of past reaches to the A location and amemory of the
cuing event at the B location (see also Diedrich et al., 2001,
2000; Smith et al., 1999). Infants “fail” in this task because the
1 We thank an anonymous reviewer for highlighting this aspect
of our developmental work.

Please cite this article as: Simmering, V.R., et al., Generalizing t
developmental time scales, Brain Res. (2007), doi:10.1016/j.brain
memory of B is not robust and is dominated by the long-term
memory of A; infants succeed in this task when they can
effectively sustain the memory of B during short-term delays.
This developmental shiftwas originallymodeled by changing the
resting level of neurons in a dynamic field model. Thelen et al.
used a low resting level in early development; consequently,
activation patterns in the field were “input-driven”, where
activation takes the form of input and decays to a resting level
when input is removed. To model later development, a higher
resting level made the field dynamics more “cooperative”.
Consequently, activation in the field could achieve a self-
sustaining state where activation associated with the B location
could be sustained in the absence of input.

Although thismodel effectively captured a host of data and
generated novel predictions (e.g., Clearfield et al., 2006;
Diedrich et al., in preparation, 2001, 2000), it is limited in
several respects. For instance, it does not address issues of
how reference frames are calibrated and re-aligned during the
task. Moreover, this account has not been directly integrated
with developmental changes in spatial cognition and action
that occur beyond the age of 12 months. One way to move
beyond these limitations is to integrate this account of A-not-
B performance with our more general theory of the develop-
ment of spatial cognition (Spencer et al., 2007). We take a step
in this direction here by demonstrating that the 5-layer model
and our implementation of the SPH can capture developmen-
tal changes in the A-not-B task.

Fig. 3 shows simulations of a younger infant’s performance
(e.g., age 8 to 10 months; see Figs. 3B, C) and an older infant’s
performance (e.g., age 10 to 12months; see Figs. 3D, E) in the A-
not-B task. Fig. 3A shows the input profiles used in both
simulations, and the left and right panels show two layers of
the 5-layer model: SWM (Figs. 3B, D) and its associated LTM
field (Figs. 3C, E). We focus solely on these two layers because
the critical behaviors–reaching to A on the first B trial (i.e.,
making the A-not-B error) and reaching correctly on the first B
trial–arise due to activation in these layers. Note, however, that
the full 5-layermodelwas run in all simulations.Moreover, the
modelwas simulated across the entire sequence of trials in the
A-not-B task even though we only show results from the first
trial to the B location. Simulation details for the younger and
older infantmodelwere identicalwith one exception: the older
model had stronger locally excitatory interactions within PF
and SWM (see Table 1).

Each simulated trial began with the presentation of the
“task” input to the model that captured perception of the box
in the task space with two distinct hiding locations. We
implemented this task input with twoweak constant inputs at
the A and B locations (see Hiding Wells in Fig. 3A). Next, we
presented a strong input (i.e., the toy) at the target location (A
or B) for 1000 time steps (equivalent to 2 s) and then waited a
short delay (3000 time steps, equivalent to 6 s). At the end of
the delay in the canonical A-not-B task, the box is pushed
forward and the infant is allowed to reach to retrieve the toy.
To capture this in the model, we increased the strength of the
task input after the delay. The model then “reached” to the
location associated with the center of mass of the peak of
activation in SWM.

Wepresented themodelwith four trials to theA location. Like
most infants in this task, the model “reached” successfully to A
he dynamic field theory of spatial cognition across real and
res.2007.06.081

http://dx.doi.org/10.1016/j.brainres.2007.06.081


Fig. 3 – Simulations of the infant A-not-B task. Both simulations began with four trials to the A location (not shown) then used
identical input (A) on the first B trial. Note that these simulations include only the relevant layers of the model, SWM (B, D),
and LTMSWM (C, E). Local excitatory interactions were lowest for the “young” infant simulations (B, C), which showed an
A-not-B error (see peak circled in panel B). Local excitationwas increased for the “older” infant simulation (D, E), which correctly
responded at B (see peak circled in panel D). Axes are as in Fig. 1.
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on these trials, leaving a memory trace of the A location in
LTMSWM (see LTM of A at the start of the trial in Figs. 3C, E). Next,
we presented the younger and older models with a B trial. The
presentation of the target at B (see Target in Fig. 3A) formed a
peak of activation at the B location in SWM for both models.
However, in the younger model (Fig. 3B), neural interactions in
SWMwere not strong enough to sustain this peak once the input
was removed (i.e.,when the toywashidden).Asa result, thepeak
decayedduring thedelayandactivationbegan togrownear theA
location due to continual input from LTM (see Fig. 3C).
Consequently, at the end of the delay when we increased the
strength of the task input to prompt a response, a peak formedat
the A location and the younger model reached to this location,
making the A-not-B error. The older model, by contrast,
effectively sustained the peak at B even when the target input
was removed (Fig. 3D). Thus, after the delay, thismodel correctly
reached to theB location.Note that theactivationpeak remained
stably aligned with the B location during the delay despite the
LTM at the A location (Fig. 3E) due to the continued presence of
the task input. This input effectively provided an anchor for the
peak in SWM, an issue we return to in the next section.

To summarize, the simulations in Fig. 3 illustrate that
relatively modest changes in neural precision in the 5-layer
model can capture the qualitative difference in performance
between8and10months in thePiagetianA-not-B task.Although
additional work will be needed to probe whether the 5-layer
model can capture the full range of effects described by Thelen
etal. (2001), theworkpresentedhere takesan important first step
in this direction. This has the potential to integrate the account
proposed by Thelen and colleagues with our work on the
development of spatial cognition, bringing new insights to bear
on the A-not-B error in infancy, including how the alignment of
egocentric and allocentric information might impact infants’
Please cite this article as: Simmering, V.R., et al., Generalizing t
developmental time scales, Brain Res. (2007), doi:10.1016/j.brain
performance (see, for instance, Acredolo, 1985; Bremner, 1978;
Bremner and Bryant, 1977).

3.2. A sandbox version of the A-not-B task with toddlers

According to Thelen and colleagues (2001), the A-not-B error
reflects the complex, real-time dynamics that underlie reach-
ing behavior. This theoretical perspective predicts that similar
patterns of reaching will be evident in other tasks and at later
points in development. Spencer et al. (2001) examined this
possibility by altering one important aspect of the A-not-B
task: they removed the visible hiding locations and, instead,
hid the toy in a rectangular sandbox. Spencer et al. found that
2-, 4-, and 6-year-old children showed biases toward a
previously remembered A location when searching for a toy
hidden at a nearby B location, that is, these children made an
A-not-B-type error.

We simulated this result in Fig. 4 using the 5-layer model.
To approximate the homogeneous task space provided by the
sandbox, we removed the static inputs at the hiding locations
(see Fig. 4A). In addition,we increased the local excitation from
the previous simulations (see Table 1) to reflect 2-year-olds’
enhanced WM abilities (Schutte et al., 2003; Spencer et al.,
2001). As with the infant version of the A-not-B task, we began
our simulations with four A trials, which themodel performed
successfully. Then, on the first B trial (Figs. 4B, C) we presented
the target at a nearby B location (see Target in Fig. 4A). Note
that the distance between A and B in this simulation was the
same as in the infant simulations in Fig. 3. As the B peak
sustained in SWMduring the delay (Fig. 4B), activation at the A
location from LTMSWM (Fig. 4C) began to “pull” the memory
peak toward A. Thus, at the end of the trial, the model
“reached” to a location about halfway between A and B,
he dynamic field theory of spatial cognition across real and
res.2007.06.081
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Fig. 4 – Simulations of the sandbox A-not-B task. Both simulations beganwith four trials to the A locationwith identical inputs
(not shown). On the first B trial, the target was presented either near (A–C) or far (D–F) from A. When B was near A (see A), the
peak in SWM (B) drifted toward the activation from LTMSWM (C). When B was far from A (see D), on the other hand, the peak in
SWM remained stable and did not drift (E). Axes are as in Fig. 1.
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comparable to the errorsmade by children in the sandbox task
(Schutte et al., 2003; Spencer et al., 2001).

The simulation in the right panel of Fig. 4 shows, however,
that we can eliminate this bias by increasing the spatial sepa-
ration between A and B (Figs. 4D–F). In particular, when the
targetwas presented at amore distant B location (see Target in
Fig. 4D), the SWM peak did not overlap with activation from
LTMSWM, and the model’s memory remained accurate
throughout the delay (Fig. 4E). Schutte and colleagues reported
the same pattern in children: 6-year-olds showed significant
A-not-B-type biases when A and B were 2 in. apart, but not
when these targets were 6 and 9 in. apart. Importantly, these
metric dependencies change over development as predicted
by the SPH. For instance, 2- and 4-year-olds show significant
A-not-B-type biases at 2, 6, and 9 in. separations. These data
have been quantitatively modeled using a one-layer dynamic
field model by varying the separation between targets as well
as the strength and precision of local excitation and lateral
inhibition over development (Schutte et al., 2003).

3.3. Spatial recall in children and adults

These connections between infants’ performance in Piaget’s
A-not-B task and toddlers’ spatial memory performance are
exciting; however, the developmental changes in these
examples are rather intuitive—spatial memory becomes
more robust and accurate over time. But the 5-layer DFT and
SPH also make the less obvious prediction that changes in
memory precision should lead to a qualitative change in a
second class of spatialmemory effects—biases associatedwith
reference frames. Although other models have been proposed
to capture developmental changes in reference frame biases
(e.g., Huttenlocher et al., 1994), such models fail to connect
performance in recall tasks to the A-not-B findings described
above (a point we return to in the concluding section).
Moreover, these accounts have not specified a developmental
Please cite this article as: Simmering, V.R., et al., Generalizing t
developmental time scales, Brain Res. (2007), doi:10.1016/j.brain
mechanism that explains what leads to qualitative changes in
spatial recall abilities.

In a typical spatial recall task, a target is presented within a
homogeneous task space, and participantsmust remember its
location for a short delay (e.g., 5–20 s) before reproducing the
remembered location. Studies using these tasks have revealed
systematic “geometric” biases that change markedly over
development. For young children, around 2–3 years of age,
responses aligned with visible lines and symmetry axes are
accurate, whereas responses to targets on either side of such
reference axes are biased toward these axes over delay (e.g.,
Huttenlocher et al., 1994; Schutte and Spencer, 2002; Schutte
et al., 2003). Older children (6–11 years) and adults, on the other
hand, show biases away from reference axis over delay (e.g.,
Engebretson and Huttenlocher, 1996; Spencer and Hund, 2002;
Tversky and Schiano, 1989; Werner and Diedrichsen, 2002).

The 5–layer DFT and the SPH are able to capture this
qualitative shift in how children and adults use reference
frames in spatial recall. Fig. 5 shows simulations of the DFT
performing a single spatial recall trial with broad (A–D) versus
narrow (E–H) interactions (see Fig. 2 and Table 1). Three layers
of the model (PF, Inhib, and SWM) are shown in Fig. 5 to clarify
the origin of geometric biases in the model. The trial began
with a constant, low level input at 0°, reflecting perception of
the midline symmetry axis of the task space (see Midline in
Figs. 5A, E; note that, for simplicity, we did not include the
edges of the task space in these simulations). Next, a target
was presented as a strong input to the model at −40° in the
task space for 2 s (see Target in Figs. 5A, E). Recall that these
inputs were broader and weaker in the child model (Fig. 5A) to
capture the hypothesized broader feed-forward projections in
early development as well as an imprecise ability to align
egocentric and allocentric reference frames.

The combination of less precise midline input into PF and
weaker interactions early in development (i.e., the profile
shown in Fig. 2A) allows themodel to capture young children’s
he dynamic field theory of spatial cognition across real and
res.2007.06.081

http://dx.doi.org/10.1016/j.brainres.2007.06.081


Fig. 5 – Simulations of spatial recall trials with child (A–D) and adult (E–H) parameter settings. To approximate developmental
changes in reference frame calibration, the inputs are broader andweaker in the childmodel (A) relative to the adultmodel (E). In the
child model, midline does not provide enough focused input to form a peak in PF (B), and the target peak in SWM (D) is attracted
toward the sub-thresholds activation frommidline. In the adult model, on the other hand, midline forms a peak in PF (F), which
contributes inhibition via Inhib (G) to SWM (H), resulting in the peak being repelled frommidline. Axes are as in Fig. 1.
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biases toward midline in recall tasks. With weak interactions
early in development, the midline input was not sufficient to
form a peak at 0° in PF (Fig. 5B). Instead, throughout the delay,
this input provided weak excitatory input to SWM. Conse-
quently, the memory peak in SWM drifted toward midline to
about −32°—an 8° “geometric” error toward midline (Fig. 5D).

With stronger interactions later in development, on the
other hand, a self-stabilized peak formed atmidline in PF after
the target input was removed (seeMidline Peak in Fig. 5F). This
reference peak in PF produced a strong inhibitory profile
around midline in Inhib (Fig. 5G). This reference-related
inhibition was then projected into SWM, effectively repelling
the memory of the target location away from midline during
the delay (Fig. 5H). As a result, at the end of the trial, themodel
responded at about −46°—a 6° geometric error away from
midline.

These simulations demonstrate that the DFT can capture
the qualitative transition in geometric bias over development
via the quantitative changes in neural precision specified by
the SPH. This highlights that the DFT can move beyond
results showing that memory simply becomes better toward
findings that are much less intuitive. Indeed, we are currently
probing whether a systematic scaling of neural interactions
step-by-step over development can capture the complex
pattern of changes in geometric bias observed between 3
and 6 years (Schutte, 2004; Schutte and Spencer, submitted for
publication).
Please cite this article as: Simmering, V.R., et al., Generalizing t
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3.4. Position discrimination in children and adults

Thus far, we have demonstrated that the DFT and SPH can
capture infants’ and toddlers’ performance in two versions of
the A-not-B task, as well as children’s and adults’ biases in
spatial recall tasks. This illustrates howweare able to getmore
from less with the SPH—a simple developmental hypothesis
can capture bothquantitative andqualitative shifts inmemory
performance from infancy through adulthood. Although this
level of generalization is impressive, each of these tasks
involved relatively simple spatial recall responses. Another
type of generalization that is critical to achieving a truly
flexible real-time system is generalization across tasks. To
explore whether the DFT can handle this challenge, wemoved
to a new behavior–same/different judgments–and a new task—
position discrimination (Simmering et al., 2006).

In a typical position discrimination task, two stimuli are
presented in quick succession (i.e., 500 ms apart) and the
participant responds whether the locations were in the same
or different locations. This task differs from spatial recall in
three key ways that must be captured in our model. First, two
stimuli are presented instead of one. Second, the time scale is
much shorter than typical recall trials. Third, the task requires
a same/different decision rather than a pointing response. The
DFT can adapt to these three differences across tasks with
virtually nomodification. Because the systemoperates in real-
time, the first two changes are straightforward to implement
he dynamic field theory of spatial cognition across real and
res.2007.06.081
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Fig. 6 – The DFT performing same (A–C) and different (D–F) responses in position discrimination. In both simulations, S1 was
presented at −40°, with S2 presented at −40° for same and −30° for different. Note that, for simplicity, we did not include
reference input in these simulations. Axes are as in Fig. 1.
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in the model: we can simply present two inputs at the
appropriate delay. Generating a decision presents a more
substantive challenge; aswe demonstrate below, however, the
dynamic interplay between PF and SWM can lead to emergent
same and different decisions.

Fig. 6 shows simulations of same (A–D) and different (E–H)
discrimination trials using the “adult” interaction profile
shown in Fig. 2B. Same/different responses in the model
depend on the spatial overlap between the input to PF as
the second stimulus (S2) is presented and the location of the
SWM peak associated with the first stimulus (S1). The
simulation in the left column shows a case when S1 and S2
overlap, that is, when the two stimuli were presented in the
same location. The trial begins with the presentation of S1 at
−40° for 1 s (500 time steps; see Fig. 6A). As in the recall
simulations in Fig. 5, this event builds a target peak in SWM
(Fig. 6D) that is sustained during the brief memory delay
(500 ms or 250 time steps). The peak in SWM is supported by
inhibition from the Inhib layer (Fig. 6B) which also projects
inhibition back to PF. When S2 is presented in the same
location as the peak in SWM, this inhibition suppresses the
incoming activation in PF (Fig. 6B)—essentially, the system
“decides” that it already has S2 in working memory.
Consequently, S2 fails to build a peak in PF (Fig. 6B), the
SWM peak is maintained, and the model makes a same
response (Fig. 6D).

The simulation in the right column shows how the model
responds when S1 and S2 are presented in different locations.
Please cite this article as: Simmering, V.R., et al., Generalizing t
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This simulation is identical to the same simulation up to the
point where S2 is presented—now S2 is shifted to the right
relative to the location of S1 (Fig. 6E). Because S2 does not
overlap spatiallywith theworkingmemory of S1, its activation
falls outside of the inhibited range of PF and builds a different
peak (Fig. 6F). This, in turn, suppresses the SWM peak
associated with S1 (see Fig. 6H) due to the shared inhibition
generated by the S2 peak in PF. Consequently, the simulation
ends with a peak in PF and no above-threshold peak in SWM—
the basis for a different response.

The simulations in Fig. 6 highlight that the dynamic
interactions among layers in the DFT lead to emergent
behaviors that generalize beyond the simple spatial recall
behaviors that were central to the development of this
theory. Importantly, the mechanism for discrimination
illustrated in Fig. 6 has generated a host of novel predictions
that have been successfully tested with both children
(Simmering and Spencer, in press) and adults (Simmering et
al., 2006). Moreover, we have recently extended this mecha-
nism to account for performance in a canonical change
detection task (Johnson et al., in press). Although the details
of this work are beyond the scope of the present report, we
note that the mechanisms described here that underlie dis-
crimination and self-sustained activation can be effectively
generalized to a situation where multiple items (i.e., multiple
peaks) must be simultaneously maintained in working
memory and compared to a multi-item test array in the task
space.
he dynamic field theory of spatial cognition across real and
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4. Conclusion and future directions

The goal of this paper was to demonstrate–for the first time–
that a 5-layer dynamic field theory of spatial cognition can
capture the real-time dynamics of performance in a variety of
tasks and connect performance in these tasks across develop-
ment with a simple developmental hypothesis. We demon-
strated that changes in spatial precision can capture
developmental changes in A-not-B errors, reference effects in
spatial recall, and position discrimination performance, span-
ning the age of 8 months to 6 years and into adulthood. Model
simulations demonstrate that the DFT can account for the
details of performance across tasks while maintaining a
commitment to neural principles. Considered together, then,
the simulations in thepresent report demonstrate that theDFT
can achieve generality with specificity. In the sections that
follow, we evaluate our model of spatial cognition by consid-
ering three central issues: is the DFT strongly grounded in
neural principles, how does this theory compare to other
existing models of the phenomena presented here, and what
insights do this model offer for understanding development,
and what are the future challenges regarding developmental
change?

4.1. The DFT is grounded by neural principles

In the overview of the DFT presented earlier, we discussed
several ways in which the DFT is grounded by neural
principles. We return to that discussion here to link dynamic
field models more tightly to issues central to the field of
computational cognitive neuroscience.

As discussed above, there is a demonstrated link between a
population dynamics approach to cortical activation and
patterns of activation in dynamic fields, as well as clear
methods that can be used to map single-unit recordings onto
dynamic population representations that can be directly
compared to dynamic field models (Erlhagen and Schöner,
2002). Importantly, this link has been tested in both motor
cortex and visual cortex (Bastian et al., 1998, 2003; Erlhagen et
al., 1999; Jancke et al., 1999). There is also evidence that space is
neurally represented across continuous,metric featuredimen-
sions, though it is important to emphasize that this topogra-
phy is functional rather than anatomical inmost cortical areas
(di Pellegrino and Wise, 1993; Georgopoulos et al., 1989, 1993;
Wilson et al., 1993). Similarly, there is strong evidence from
studies of cortical neurons for the basic local excitation/lateral
inhibition form of neural interaction used in dynamic field
models (e.g., Durstewitz et al., 2000). Moreover, because
cortical neuronsnever project both excitatorily and inhibitorily
onto targets, the inhibitory lateral interaction must be
mediated through an ensemble of interneurons. We used a
generic, two-layer formulation (Amari and Arbib, 1977) to
realize this interaction where an inhibitory activation field
receives input from an excitatory activation field and in turn
inhibits that field.

Next, as we noted previously, the type of interactivity
among layers used in our 5-layer model was inspired by
studies of the cytoarchitecture of visual cortex (Douglas and
Martin, 1998). This work on visual cortex played a particularly
Please cite this article as: Simmering, V.R., et al., Generalizing t
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strong role in our implementation of interactions among the
three primary layers (PF, Inhib, and SWM). That said,
interaction among these layers could be implemented in
other ways. For instance, the same type of interaction could be
achieved using a four-layer structure, with separate inhibitory
layers associated with PF and SWM. We chose to use a shared
layer of interneurons because it is both more parsimonious
(i.e., three layers vs. four layers) and more strongly con-
strained (i.e., fewer “free” parameters). Finally, our approach
to the integration of dynamics acrossmultiple time scales (i.e.,
real-time and learning time) is consistent with basic forms of
Hebbian learning (see Wilimzig and Schöner, 2005, in prepa-
ration), though our implementation of Hebbian learning using
activation in long-term memory fields (rather than through
synaptic weight changes) is somewhat atypical. In each of
these cases, then, the dynamic field framework retains strong
ties to known neural principles.

Less clear in our approach is a commitment to neural
localization. Here we are, frankly, riding the fence. On one
hand, several characteristics of dynamic activation patterns in
our model reflect processes that have been linked to different
cortical areas. For instance, the self-sustaining working
memory peaks discussed here can survive intervening pre-
sentations of stimuli, a characteristic of spatial representa-
tions in dorsolateral prefrontal cortex (di Pellegrino and Wise,
1993). By contrast, although activation patterns in our
perceptual field can be sustained under some conditions (see
the generation of a “different” response in Fig. 6), sustained
activation in this field is generally disrupted by the presenta-
tion of new stimuli, a characteristic of spatial representations
in parietal cortex (Constantinidis and Steinmetz, 1996; Stein-
metz and Constantinidis, 1995). Given that there is a mapping
between the dynamic properties of activation patterns in our
model and the localization of brain function, why are we
hesitant to assign cortical labels to our layers? This reflects, in
part, our grounding in dynamic systems theory with its
emphasis on the collective behavior of a system (see Kelso,
1997; Schöner and Kelso, 1988; Thelen and Smith, 1994), as
well as our commitment to the massive reentrancy and
interconnected across cortical circuits in the brain (Fuster,
1995) and the profound potential for reorganization and brain
plasticity in early development (e.g., Stiles et al., 1998). In
short, these conceptual biases make us hesitant to embrace a
strong form of localization.

Although we remain uncommitted to a strong form of
localization, it is still possible to generate predictions from
dynamic field models that can be tested using technologies
that rely on localized neural signals (Bastian et al., 1998, 2003;
Jancke et al., 1999; see also Edin et al., 2007 for fMRI
predictions using a similar architecture and developmental
mechanism). For example, the DFT framework has generated
novel predictions regarding links between behavioral and
electrophysiological measures of performance in a motor
planning task. Specifically, McDowell et al. (2002) measured
reaction times and event-related potentials (ERPs) during a
two-choice pointing task where they varied both the angular
separation between the two targets (narrow separation of 20°
versus wide separation of 120°) and the probability of the two
responses (frequent versus infrequent). According to a
dynamic field theory of movement preparation (see also,
he dynamic field theory of spatial cognition across real and
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Erlhagen and Schöner, 2002), reaction times to the wide-
infrequent target should be slower compared to the other
three targets. Based on the mechanism that underlies this
effect in the model, McDowell et al. predicted that there
should be a related increase in the P300 ERP component
which has been linked to detection of “subjectively rare”
events (e.g., Johnson, 1993). Results showed the predicted
reaction time–P300 relationship.

Moving beyond the issue of brain localization, our com-
mitment to dynamic systems theory also factors in to our
emphasis on sustained activation peaks or “bump” attractors
(Amari, 1977; see also, e.g., Vogels et al., 2005). One advantage
to using dynamic field models is that this class of neural
networks has been quasi-formally analyzed (Amari, 1977).
Thus, we have a good understanding of the attractor states
dynamic field models can realize, and in the bifurcations the
modelmoves through as one attractor state becomes unstable
(e.g., the input-driven state) and another attractor state forms
(e.g., the self-sustaining state). We can (and routinely do!)
probe these attractor states across repeated simulations by
manipulating, for instance, the presence or absence of inputs
(e.g., does activation sustain after input is removed?), as well
as evaluating the stability of the attractor (e.g., does themodel
remain in the attractor state as noise is increased?). Moreover,
we know which model parameters are central to the stability
of these attractor states (e.g., the relative strengths of
excitatory and inhibitory projections among layers) and,
thus, understand why the model works the way it does, as
well as the critical factors that influence the dynamics of the
network. This detailed understanding of the attractor dynam-
ics of the model is not a standard feature of theoretical
frameworks within computational cognitive neuroscience.
Indeed, this characteristic of dynamic fields is what initially
drew us to work by Amari and colleagues (Amari, 1977, 1989;
Amari and Arbib, 1977).

Importantly, the issue of forming attractor states, that is,
achieving a stable pattern of activation through time is a
central challenge in a massively interconnected nervous
system (for a discussion, see Spencer and Schöner, 2003). In
this context, it is important to note that other researchers
have probed the stability properties of bump attractors using a
more biophysical style of neuralmodeling (Compte et al., 2000;
Wang, 2001). In our view, both approaches demonstrate that
stable peaks of activation provide a viable neural mechanism
for the formation of “working” memories. Indeed, our
empirical work shows direct behavioral signatures (e.g.,
time-dependent “drift”) of this basic stabilization mechanism.
In this context, we note that, although all of the simulations
reported here had a single “bump” present inworkingmemory
at any moment in time, the dynamic field framework can be
naturally extended to capture multi-item working memory,
that is, the simultaneous representation of multiple bump
attractors within a single field (Johnson et al., 2006, in press).
More generally, we envision that multiple neural patterns
could be simultaneously represented via collections of peaks
distributed across many cortical layers. We are currently
pursuing this view as an entry point into the representation of
multiple objects distributed across both spatial and non-
spatial feature dimensions (Faubel and Schöner, submitted for
publication; Johnson et al., in press).
Please cite this article as: Simmering, V.R., et al., Generalizing t
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4.2. Comparing the DFT to other models

The fact that the DFT captured performance across tasks and
time scales with relatively simple developmental changes
suggests continuity across behaviors that have previously
been considered in separate literatures. Indeed, in each of
these literatures, separate models have been proposed to
capture infants’, children’s, and adults’ performance. In this
section, we contrast the DFT with several existing models.

One connectionist model that has captured a variety of
effects in the canonical A-not-B task is Munakata’s PDPmodel
(Munakata, 1998). This model accounts for infants’ perfor-
mance in a manner comparable to the account proposed by
Thelen et al. (2001) and the simulations reported here. For
instance, developmental change in the PDP model is achieved
through strengthening connections within the hidden layer,
which effectively produces a more robust “active” memory for
the current trial. This increased ability to sustain activation is
similar to the increase in local excitation in our model.

Although Munakata’s model is certainly close in spirit to
the model by Thelen et al. and our own, there are some
substantive differences (for discussion see Munakata and
McClelland, 2003; Spencer and Schöner, 2003). First, activation
in the PDP model is “chunked” into discrete spatial nodes
rather than being distributed across continuous, metric
dimensions. This is a fine simplification in the context of the
A-not-B paradigm, but prevents generalization to the other
spatial tasks described here. It is possible that this limitation
could be overcome; however, adding continuous metrics to
the PDP framework is a non-trivial endeavor and is likely to be
insufficient to capture, for instance, the time-dependent
“drift” observed in our simulations of spatial recall (see Figs.
4 and 5). Such drift is a consequence of the local excitation/
lateral inhibition form of neural interaction in the DFT (see
also Compte et al., 2000).

Another difference is that the PDP model does not have
the same type of interactivity across layers present in our 5-
layer model of spatial cognition. Such interactivity plays a
central role in the generalization of our model across
response types. For instance, mutual interactivity between
the perceptual and working memory layers is central to the
performance in position discrimination (see Fig. 6). Impor-
tantly, we have strong evidence for this type of interactivity
early in development: as peaks drift in working memory in
early development (3 to 6 years), this creates predictable
asymmetries in discrimination performance (Simmering and
Spencer, in press).

Two final differences are worth noting because they are
linked to the issue of stability discussed above (see Spencer
and Schöner, 2003). First, the PDP model provides only a
limited view of the response generation process in that, on
each trial in the A-not-B paradigm, group choice probabilities
are estimated from the amount of activation across response
nodes after some settling time (see Mareschal, 1998 for a
similar critique). By contrast, DFT models of A-not-B perfor-
mance generate individual choice responses on each trial—the
model picks A or B. Through simulations of multiple trials in
the context of stochastic fluctuations, group response proba-
bilities can be computed and fitted to empirical results
(Dineva, 2005; Thelen et al., 2001). It is not clear whether the
he dynamic field theory of spatial cognition across real and
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PDP model could make similar achievements because group
and individual choice responses are conflated (for related
issues regarding response generation and the need for
stability, see Schöner and Dineva, 2007; Spencer and Schöner,
2003).

Geometric biases in spatial recall have been linked to
children’s and adults’ ability to divide space into geometric
categories (e.g., Huttenlocher et al., 1994). The Category
Adjustment (CA) model has been proposed by Huttenlocher
and colleagues to capture how categorical information influ-
ences memory along continuous dimensions, mostly notably
space (Huttenlocher et al., 1991), but also time (Huttenlocher et
al., 1988) and continuous feature dimensions like size and
shade of gray (Huttenlocher et al., 2000). According to this
model, people combine or “weight” fine-grained detail about
individual target items with information about the geometric
category within which the items were placed. Under condi-
tions of uncertainty (e.g., after long memory delays), categor-
ical information is weighted more heavily leading to a bias in
recall responses toward the center of the relevant spatial
category. To account for developmental changes in spatial
recall, Huttenlocher et al. (1994) have proposed that young
children treat large spaces such as a tabletop as one large
category with a prototype at the center. Consequently, young
children show recall biases toward the center of the space.
Older children and adults, by contrast, subdivide space into
two categories with prototypes at the centers of the left and
right halves of the tabletop. Consequently, they show recall
biases away from the center and toward the centers of the left
and right halves.

Although the CAmodel can capture the qualitative pattern
of results observed in recall studies with children and adults,
this model has several limitations relative to the DFT (see also
Spencer et al., 2006). First, the CA model is not a process
model: it does not specify the process that gives rise to spatial
memories (e.g., perceptual processes involved in the forma-
tion of activation peaks in the DFT), how memories for
location evolve in real time (e.g., peak drift in the DFT), the
process that gives rise to the formation of spatial categories
(e.g., the emergence of spatial categories in LTMSWM and the
use of perceived reference frames in the DFT), and the process
that gives rise to developmental changes in spatial recall
abilities (e.g., the spatial precision hypothesis). Moreover, the
CA model offers a limited account of the details of behavioral
performance. For instance, themodel predicts that variance in
recall responses near reference axes (i.e., category boundaries)
should be high, while variance near spatial prototypes should
be low. Empirical data demonstrate that the opposite pattern
is observed in adults’ recall responses (see Spencer and Hund,
2002). Importantly, the observed empirical pattern of variance
is consistent with the DFT: variance is low near reference axes
in our model due to the presence of continued reference input
during the memory delay which helps stabilize peaks in SWM
(much like the task input stabilized SWMpeaks in simulations
of the A-not-B model presented earlier).

Both Munakata’s PDP model and the CA model can
capture aspects of the developmental profiles simulated
here, and both models have been extended to other tasks
not currently addressed within our framework (e.g., Hutten-
locher et al., 2000; Morton and Munakata, 2002). Importantly,
Please cite this article as: Simmering, V.R., et al., Generalizing t
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however, these cases of generalization are closely tied to
tasks that rely on the same or similar response types—
selection of a limited number of choices in the case of
Munakata’s model and estimation along a continuous
dimension for the CA model. The DFT, by contrast, has
shown a different type of generalization by also capturing
different types of responses across tasks—reaching to a
visibly specified location in the infant A-not-B task, pointing
in continuous space for the sandbox and recall tasks, and
generating same/different decisions in position discrimination
(for additional extensions, see Spencer et al., 2006). This third
example is the most dramatic in that the processes that
underlie same/different discrimination are typically conceptu-
alized using a signal detection framework. For instance,
Kinchla (1971) proposed a signal detection model to account
for some of the discrimination results reported here (e.g.,
enhanced discrimination near a reference, see Simmering et
al., 2006). Importantly, our process model of discrimination
has moved beyond the signal detection framework by
generating several novel predictions about how the memory
of the first stimulus should “drift” differentially between
stimulus presentations depending on the location of the
stimulus relative to a reference axis (Simmering et al., 2006),
as well as how such effects should change over development
(Simmering and Spencer, in press).

Thus far, we have contrasted our model with other models
of the specific phenomena we presented in this paper. As a
final contrast, we consider other approaches to working
memory within the computational cognitive neuroscience
framework. Specifically, a growing class of models capture
working memory using a neural reverberation or neural
synchrony mechanism (e.g., Lisman and Idiart, 1995). In
these models, sustained oscillations code for the presence or
absence of items in working memory. This mechanism has
been used to capture elements of working memory such as
capacity limitations and feature binding (Raffone andWolters,
2001). Such models offer a clearly different neural mechanism
forworkingmemory than the one used here, and an important
future goal is to contrast these mechanisms directly. Toward
this end, it is unclear whether models that rely on neural
synchrony could account for some of the effects reported in
our studies of spatial recall. For instance, it is not clear how a
neural synchronymechanism could produce delay-dependent
“drift” in the contents of working memory given that working
memory in such models is not defined over a continuous,
metric dimension. Clearly, a vigorous comparison between
these broad classes ofmodels is needed to reveal the strengths
and weaknesses of each.

4.3. Insights into development and challenges on the
horizon

The simulations presented here highlight an emerging “more
from less” theme in our developmental work: by developing a
detailed, real-time account of behavior across multiple tasks,
we require less from developmental process. Thus, a coherent
set of relatively simple developmental changes effectively
captured key aspects of performance across the four tasks
discussed here, spanning the ages of 8 months to 6 years and
into adulthood with the same model, without introducing any
he dynamic field theory of spatial cognition across real and
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new components or processes. Indeed, our simulations
required only modest changes in local excitation to capture
changes across tasks between 8 months and 6 years. This is,
most certainly, an overly simplistic view of the changes in
spatial cognition taking place within this age range, and we
are confident that more substantive changes would be
required to provide a detailed account of all of the phenomena
discussed here. That said, the goals of the present report were
moremodest: to provide the first demonstration proof that the
phenomena discussed here could be linked together within a
single framework.

Although the simulations reported here are to demonstrate
a “more from less” view of developmental change, a critical
question is whether the “more” we built into our model was
reasonable. For instance, is “less” required from development
because we have built an overly complicated model that is
simply too powerful or underconstrained? Consider what is
known about the structure we built into the model (as
described in Section 4.1): cortical maps are well documented
and change over development (e.g., Kohonen, 1982; Miikku-
lainen et al., 1999); the layered structure of cortex is evident
prenatally (e.g., Rakic, 1995); receptive fields become tuned
with experience (e.g., Clark et al., 1988). In each of these cases,
the structurewe built into ourmodel is consistentwith studies
of both prenatal and postnatal development and is grounded
in neural principles.

Is our model overly complicated? Here, we contend that
complexity is in the eye of the beholder. From our vantage
point, the DFT is less complicated than many biophysical
models that implement bump attractors (e.g., Wang, 2001).
That said, the DFT is, in some ways, more complicated than a
typical connectionist architecture. To get a better sense of this
comparison, consider a few ways in which we could modify
the model presented here, yet retain the characteristics of the
model shown in the simulations. First, we could limit the
number of neurons in each layer to 50 or so. Next, we could get
rid of our LTM fields and, instead, implement long-term
memory using changes in synaptic weights among neurons in
PF and SWM. This would reduce our 5-layer model to a more
typical 3-layer structure. The resulting 3-layer model would
still have more pre-structure than the standard connectionist
model. Note, however, that much of this pre-structure arises
due to our commitment to neural principles. For instance, the
2-layered architecture we use to implement lateral inhibition
is a direct result of known cortical constraints on how
populations of neurons interact. Connectionist models typi-
cally do not implement local excitation/lateral inhibition in
this neurally grounded way. Given this, we view much of the
apparent complexity of our model as an important feature
that moves us closer to understanding brain–behavior
relations.

In summary, then, we contend that the model presented
here does shed new light on how a richly structured real-time
system requires less from developmental process. Although
this is an exciting insight into development, the DFT provides
only a limited window on this issue—our model identifies
what is changing, but not precisely how those changes are
taking place. As we look to the future, therefore, a clear
challenge will be to “close the loop” on development (Simon,
1962) within our framework to explore the origins of the
Please cite this article as: Simmering, V.R., et al., Generalizing t
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spatial precision hypothesis. Put concretely, the parameter
changes reported in Table 1 were all implemented “by hand”
for the present simulations. It will be important in future
efforts to probe whether such changes can emerge from, for
instance, Hebbian processes involved in the tuning of cortical
maps (Bednar and Miikkulainen, 2007; Kohonen, 1982; Miik-
kulainen et al., 1999). We have taken steps in this direction by
implementing a reference frame alignment and calibration
process in the “adult”model (Spencer et al., 2007). This process
will play a central role in exploring the consequences of
changes in children’s ability to align and re-align egocentric
and allocentric reference frames.
Acknowledgments

We would like to thank our collaborator on this work, Gregor
Schöner; earlier collaborators Esther Thelen and Linda Smith;
as well as Evelina Dineva, Alycia Hund, Jeff Johnson, John
Lipinski, Sammy Perone, Larissa Samuelson, and Wendy
Troob for their valuable contributions to the development of
the dynamic field theory and related empirical studies. We
would also like to thank the children, parents, andmembers of
the community who participated in the research described
here, as well as the numerous undergraduate research
assistants who helped with data collection.

This research was funded by NIMH R01 MH62480, NSF BCS
00-91757, and NSF HSD 0527698, all awarded to John P.
Spencer; NIMH F31 MN066595-01 awarded to Anne R.
Schutte; and NICHHD R01 HD22830-20 awarded to Esther
Thelen. Presentation of this work at the 2nd Computational
Cognitive Neuroscience Conference was made possible by a
conference student travel fellowship awarded to Vanessa R.
Simmering.
Appendix A

A.1. Model equations

In this section, we describe the equations that govern activa-
tion in each layer of the 5-layer model used in the present
report. Although the equations share most components, we
describe each separately to highlight the unique contributions
to the dynamics of each layer.

Activation in the perceptual field, PF (u) is captured by:

su �vðx; tÞ ¼ �uðx; tÞ þ hu þ
Z

cuuðx� xVÞKuuðuðxV; tÞÞdxV

�
Z

cuvðx� xVÞKuvðvðxV; tÞÞdxVþ cuu ltm
ultmðx; tÞ

þ Srefðx; tÞ þ Staskðx; tÞ þ Starðx; tÞ ð1Þ

where u̇ (x, t) is the rate of change of the activation level for
each neuron across the spatial dimension x as a function of
time t. The constant τ determines the time scale of the dyna-
mics (Erlhagen and Schöner, 2002). The first factor that
contributes to the rate of change of activation in PF is the
current activation in the field −u(x, t) at each site x. This com-
ponent is negative so that activation changes in the direction
of the resting level hu.
he dynamic field theory of spatial cognition across real and
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Next, activation in PF is influenced by the local excitation/
lateral inhibition interaction profile, defined by self-excitatory
projections, ∫ cuu(x−x′) Λuu(u(x′, t))dx′, and inhibitory projec-
tions from the inhibitory layer (Inhib; v), ∫ cuv (x−x′) Λuv(v(x′, t))
dx′. These projections are defined by the convolution of a
Gaussian kernel with a sigmoidal threshold function. In parti-
cular, the Gaussian kernel was specified by:

c x� xVð Þ ¼ c exp �ðx� xVÞ2
2r2

" #
� k; ð2Þ

with strength c, width σ, and resting level k. The sigmoidal
function is given by:

K uð Þ ¼ 1
1þ exp½�bu� ; ð3Þ

where β is the slope of the sigmoid, that is, the degree to
which neurons close to threshold (i.e., 0) contribute to the
activation dynamics. Lower slope values permit graded
activation near threshold to influence performance, while
higher slope values ensure that only above-threshold
activation contributes to the activation dynamics. At ex-
treme slope values, the sigmoid function approaches a step
function.

PF also receives input from an associated long-term
memory field ultm with strength cuultm

. Lastly, in the full
version of the model, PF receives input from the world via a
second perceptual field in a retinal frame of reference (see
Spencer et al., 2007). For simplicity in the present simula-
tions, we replaced this retinal field with direct input already
in an object-centered reference frame. In particular, three
inputs passed activation to PF: the reference input (e.g.,
perception of the midline axis in the recall and discrimina-
tion tasks), the task input (e.g., the hiding wells in the infant
A-not-B task), and target input (e.g., the transient presenta-
tion of a target object in the task space). All inputs took the
form of a Gaussian:

S x; tð Þ ¼ c exp �ðx� xcenterÞ2
2r2

" #
vðtÞ; ð4Þ

centered at xcenter, with width σ and strength, c. These
inputs could be turned on and off through time (e.g., the
target appears and then disappears). This time interval was
specified by the step function χ(t) (see text for details on the
timing of inputs).

The next layer of themodel, LTMPF (ultm), is governed by the
following equation:

sltm
�ultmðx; tÞ ¼ ½ � ultmðx; tÞ þ

Z
cu ltmuðx� xVÞKu ltmuðuðxV; tÞÞdxV�

HðZ HðuðxW; tÞÞdxWÞ ð5Þ

This equation specifies the rate of change of activation,
u̇ltm (x,t), for each neuron in the long-term memory layer
across the spatial dimension x as a function of time t. A
separate constant τltm determines the time scale of the
dynamics and is set such that the LTM field builds activation
muchmore slowly (i.e., τltm≫τ). As above, the first component
that contributes to the rate of change is the current activation
Please cite this article as: Simmering, V.R., et al., Generalizing t
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in the field, −ultm(x, t), at each site x. Projections to this field
come from PF (u), as defined by ∫cultmu(x−x′) Λultmu(u(x′, t))dx′.
The contribution of LTMPF to the activation profile in PF is
one-to-one where cuultm

specifies the strength of the input
from ultm(x, t) to PF (see Eq. (1)). The final term, Θ (∫ Θ(u(x″, t))
dx″), is multiplied by the equation to essentially turn the
memory trace mechanism on and off. Specifically, if activa-
tion in PF is above zero at any location x, then the long-term
memory field is engaged and Θ(u)=1; otherwise, this field is
held constant and Θ(u)=0. This implements a form of
Hebbian learning (Schöner, 2007; Wilimzig and Schöner, in
preparation, 2005).

The third layer of the model, Inhib (v), is specified by the
following equation:

sv �vðx; tÞ ¼ �vðx; tÞ þ hv þ
Z

cvuðx� xVÞKvuðuðxV; tÞÞdxV

þ
Z

cvwðx� xVÞKvwðwðxV; tÞÞdxV: ð6Þ

As before, v̇(x, t) specifies the rate of change of activation
across the population of spatially tuned neurons x as a func-
tion of time t; the constant τ sets the time scale; v(x, t) captures
the current activation of the field; and hv sets the resting level
of neurons in the field. Note that Inhib receives activation
from two projections—one from PF, ∫ cvu(x−x′) Λvu(u (x′, t))dx′
and one from SWM, ∫ cvw(x−x′) Λvw(w (x′, t))dx′. As described
above, these projections are defined by the convolution of a
Gaussian kernel (Eq. (2)) with a sigmoidal threshold function
(Eq. (3)).

Next is the SWM layer (w) governed by the following
equation:

sw �w ðx; tÞ ¼ �wðx; tÞ þ hw þ
Z

cwwðx� xVÞKwwðwðxV; tÞÞdxV
�
Z

cwvðx� xVÞKwvðvðxV; tÞÞdxVþ
Z

cwuðx� xVÞKwuðuðxV; tÞÞdxV
þ cwwltm

wltmðx; tÞ þ csSrefðx; tÞ þ csStaskðx; tÞ þ csStarðx; tÞ: ð7Þ

Again, ẇ(x, t) is the rate of change of activation across the
population of spatially tuned neurons x as a function of time t;
the constant τ sets the time scale; w(x, t) captures the current
activation of the field; and hw sets the resting level. SWM
receives self excitation, ∫ cww(x−x′) Λww(w (x′, t))dx′, lateral
inhibition from Inhib, ∫ cwv(x−x′) Λwv(v (x′, t))dx′, and input
from PF, ∫ cwu(x−x′) Λwu(u (x′, t))dx′. This field also receives
input from an associated long-term memory field wltm with
strength cwwltm

and direct reference Sref(x, t), task Stask(x, t), and
target Star(x, t) inputs scaled by cs.

Lastly, LTMSWM (wltm) is governed by the following
equation:

sltm
�wltmðx; tÞ¼ ½�wltmðx; tÞþ

Z
cwltmwðx� xVÞKwltmwðwðxV; tÞÞdxV�

HðZ HðwðxW; tÞÞdxWÞ ð8Þ

This equation is identical to Eq. (5). As with LTMPF, the
contribution of LTMSWM (wltm) to the activation profile in SWM
(w) is one-to-one where cwwltm

specifies the strength of the
input from wltm (x, t) to w (see Eq. (7)). The final term, Θ (∫ Θ(w
(x″, t))dx″), is multiplied by the equation to turn the memory
trace mechanism on and off as described above.
he dynamic field theory of spatial cognition across real and
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A.2. Model parameters

This section provides the parameter values used in all simu-
lations. Table 1 shows the parameter values for the primary
layers of themodel for the “adult” simulations: PF (Eq. (1)), Inhib
(Eq. (6)), and SWM (Eq. (7)). The β parameter, used to threshold
activation in all projections, was always set to 5. In addition, the
resting level for theGaussiankernel kwasgenerally set to 0with
the few exceptions noted in Table 1. Lastly, the time scale and
projections to and from each long-term memory layer were
as follows: τltm=5000; cu l tmu= cuu l tm

= cw l tmw = cww l tm
= 0.05;

σultmu=σuultm
=σwltmw=σwwltm

=10.
To capture development in our model, we implemented

the spatial precision hypothesis by scaling the spatial pre-
cision (i.e., widths) and strengths of three classes of interac-
tions in the model: projections from the input layer to PF and
SWM; projections from PF and SWM into the associated LTM
fields; and locally excitatory/laterally inhibitory interactions
among PF, Inhib, and SWM. The details of these changes are
described separately below.

A.2.1. Scaling of local excitation/lateral inhibition
To capture developmental changes in neural precision, we
modified the local excitation/lateral inhibition profile as
shown in Fig. 2A. For this change, we added the scaling
parameter dev_cself to scale self-excitatory projections. Local
excitation was modified for both PF (cuu) and SWM (cww). We
also added parameters dev_cv and dev_σv to scale the
strength and width of inhibitory projections, respectively.
The lateral inhibition scaling parameters were multiplied by
the corresponding projection parameters from Inhib to PF
(cuv, σuv) and from Inhib to SWM (cwv, σwv). The scaling
parameter values are specified in the bottom portion of Table
1. Note that lateral inhibition did not change across de-
velopmental simulations; only local excitation increased with
age.

A.2.2. Scaling of inputs
We added two developmental scaling parameters to each set
of inputs to modulate the strengths (c) and widths (σ) of
inputs: dev_cref and dev_σref for reference inputs; dev_ctask
and dev_σtask for task inputs; dev_ctar and dev_σtar for target
inputs. Values of these parameters are shown in the bottom
portion of Table 1. Note that the reference and task inputs
were used only in specific simulations given the experimen-
tal details of the tasks we modeled and known empirical
effects. Moreover, note that the strength and width of the
reference input for the recall task were weak and broad
relative to the task input. This reflects the fact that the
reference in this task is defined by the midline symmetry
axis of the task space. Research has shown that symmetry
axes are perceived more weakly than visible lines (e.g.,
Palmer and Hemenway, 1978; Wenderoth and van der Zwan,
1991), which is reflected by the weaker dev_cref. In addition,
we propose that children have relatively imprecise (com-
pared to adults) alignment of egocentric and allocentric
reference frames (Spencer et al., 2007); as a result, the
reference input is spread out in space (relative to the more
precisely specified task input). We approximate this by using
a broader dev_σref.
Please cite this article as: Simmering, V.R., et al., Generalizing t
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A.2.3. Scaling of long-term memory projections
One final developmental parameter was added to approxi-
mate the decreased precision of long-term memory in early
development: dev_σltm=2 was multiplied by the widths of the
Gaussian projections into the two long-term memory fields,
σultmu and σwltmw. This parameter did not vary across develop-
mental simulations.
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