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This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial
precision hypothesis (SPH). Between 3 and 6 years of age, there is a qualitative shift in how children use
reference axes to remember locations: 3-year-olds’ spatial recall responses are biased toward reference
axes after short memory delays, whereas 6-year-olds’ responses are biased away from reference axes.
According to the DFT and the SPH, quantitative improvements over development in the precision of
excitatory and inhibitory working memory processes lead to this qualitative shift. Simulations of the DFT
in Experiment 1 predict that improvements in precision should cause the spatial range of targets attracted
toward a reference axis to narrow gradually over development, with repulsion emerging and gradually
increasing until responses to most targets show biases away from the axis. Results from Experiment 2
with 3- to 5-year-olds support these predictions. Simulations of the DFT in Experiment 3 quantitatively
fit the empirical results and offer insights into the neural processes underlying this developmental change.

Within the domain of spatial cognitive development, there is a
rich body of research that has identified what is changing as
children develop a host of spatial cognitive skills (Plumert &
Spencer, 2007). For example, beginning around 1 year of age there
is a transition from coding locations primarily egocentrically to
coding locations allocentrically (Acredolo, 1978; Bremner & Bry-
ant, 1977). A second example comes from work by DeLoache and
colleagues (e.g., DeLoache, 2000; DeLoache, Miller, & Rosen-
gren, 1997; see also DeLoache, 2004, for a review). These re-
searchers have demonstrated that 2.5-year-olds have difficulty
using information about the location of an object in a scale model
to find a corresponding object in a large room. Three-year-olds, by
contrast, succeed in the same task when they acquire dual repre-
sentation—an understanding that something can be an object in
and of itself and refer to the location of another object in another
space. We also know that spatial memory becomes more precise
over development between 3 and 11 years, leading to smaller
spatial memory errors and less variability in memory responses
(e.g., Huttenlocher, Newcombe, & Sandberg, 1994; Plumert,
Hund, & Recker, 2007; Schutte & Spencer, 2002; Spencer &
Hund, 2003). These examples highlight that developmental
changes in spatial cognition can take on both a qualitative and
quantitative flavor. Critically, however, there are few cases in the
spatial cognitive domain where we understand the mechanisms
underlying developmental change (Plumert & Spencer, 2007;

Spencer, Simmering, Schutte, & Schöner, 2007). The present
paper moves in this direction by focusing on one particular case
study—the development of spatial memory.

Remembering the locations of objects is fundamental to suc-
cessful interaction with the world. Nevertheless, the complexity of
many real-world situations can often make it difficult to remember
where objects are when they are out of view. One strategy for
reducing this complexity is to capitalize on the fact that richly
structured contexts are naturally carved into smaller spatial re-
gions—the desk by the window, the shelves by the door, the
cabinet across the room. Anchoring memory to these smaller
regions can enrich our encoding of locations and can support
accurate memory for locations when we need to find hidden
objects.

Given the complexity of real-world settings, researchers have
often probed children’s ability to remember locations using rela-
tively simple spatial recall tasks. Use of such tasks has revealed
that spatial memory undergoes dramatic changes in the first few
years of life, particularly with regard to how children anchor
memories to the perceived structure of the task space. In a inno-
vative set of experiments, Huttenlocher and colleagues (1994;
Newcombe, Huttenlocher, Drummey, & Wiley, 1998) found that
early in development there is a transition in how children remem-
ber locations relative to the edges and symmetry axes of a rectan-
gular space. Children’s spatial memory abilities were tested using
a sandbox task in which the experimenter buries a toy in a long,
narrow sandbox, there is a delay, and then the child is allowed to
search for the toy. Huttenlocher and colleagues found that between
6 and 10 years of age, there is an inversion in the direction of recall
errors: children 6 years of age and younger make errors toward the
midline axis of the sandbox, whereas children 10 years of age and
older make errors away from the midline axis and toward the
center of each half. Figure 1 shows a schematic of these biases.
The fact that these biases completely reverse direction suggests a
major shift in how children anchor spatial memories to the struc-
ture of the task space.
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The dominant account of this transition in the literature is
grounded in a formal theory of spatial recall—the category-
adjustment model (CA model) (Huttenlocher, Hedges, & Duncan,
1991; Huttenlocher et al., 1994). According to the CA model,
people represent locations in memory at two levels of detail. They
represent fine-grained information—the direction and distance of a
location from a reference point. In addition, they represent infor-
mation about the category in which the target is located. A cate-
gory is a region that is bounded by either visible boundaries (e.g.,
the edges of a table) or “mentally imposed” reference axes (e.g.,
the midline symmetry axis of the sandbox). These boundaries
and the most prototypical member of the category—the center of
the category (see P’s in Figure 1)—are represented in memory. At
recall, people combine their fine-grained representation of the
location and categorical information. Under conditions of uncer-
tainty (e.g., after a memory delay), people weight prototypical
information more heavily. This weighting results in errors that are
biased away from category boundaries and toward spatial proto-
types (see the P’s in Figure 1).

According to Huttenlocher and colleagues (1994), the transition
in geometric categorization over development reflects a change in
children’s ability to subdivide space (see also Sandberg, 1999).
Specifically, young children treat large, homogeneous spaces as
one category with a prototype at the center (see Figure 1, top
panel). As a result, children’s responses at recall are biased toward
the prototype at the center of the space. Older children and adults,
however, subdivide large spaces into two categories with spatial
prototypes at the centers of the left and right categories (see
Figure 1, lower panel). Thus, older children and adults’ responses
are biased away from the midline of the task space and toward
prototypes to the left and right.

Although this account explains performance before and after the
transition, the CA model says little about how the transition occurs
or what is happening across this developmental transition. This
leaves us with a host of unanswered questions. For instance, the
CA model does not specify how children go from treating large
spaces as one category to subdividing the same spaces into two
categories. Moreover, this model fails to predict whether the
developmental transition is an all-or-none shift from categorizing
space using one category to using two categories versus a more
gradual transition where children vacillate between use of one and
two categories. Finally, the CA model says little about the mech-
anisms that underlie this developmental transition, that is, the
processes that give rise to changes in geometric category use.

In addition to these theoretical questions, there has not been any
detailed empirical examination of the transition in geometric cat-
egorization. Huttenlocher and colleagues found that the transition
occurred between 6 and 10 years of age in the sandbox task
(Huttenlocher et al., 1994). Spencer and colleagues (Schutte &
Spencer, 2002; Spencer & Hund, 2002, 2003) also documented the
transition using a similar spatial memory task. In this task, children
had to remember the location of a spaceship-shaped target on a
large, homogeneous table. Spencer and colleagues found a devel-
opmental shift in geometric biases between 3 and 6 years of age
(Schutte & Spencer, 2002; Spencer & Hund, 2002, 2003). Criti-
cally, all of these studies have probed changes in spatial memory
across a broad age range and none have investigated the develop-
mental course of the transition in detail.

The current paper tests whether a new theory of spatial cogni-
tion, the Dynamic Field Theory, can capture the detailed develop-
mental course of the transition in geometric categories. The DFT
is a dynamic systems approach to spatial cognition instantiated in
a particular type of neural network called a dynamic neural field
(DNF) which is made up of several layers or fields of neurons, one
of which is a spatial working memory field. Neurons within this
field interact with each other according to a local excitation/lateral
interaction function. Specifically, when a neuron is excited, it
activates nearby neurons and, through an inhibitory field, inhibits
neurons that are far away. Through these excitatory and inhibitory
interactions the field is able to maintain a peak of activation.
Spencer and colleagues (2007; see also Simmering, Schutte, &
Spencer, 2008) recently demonstrated that this dynamic neural
field model of spatial recall can capture both the early and later end
points of the transition in geometric biases without recourse to a
change in spatial subdivision per se. Rather, changes in the stabil-
ity of working memory processes, as well as changes in children’s
ability to use perceived reference frames to anchor the memory of
a target location to available perceptual cues, result in the transi-
tion in geometric biases.

What specific modifications were needed in the model to cap-
ture the end points of the transition? To accomplish this goal,
Spencer et al. (2007) implemented a central developmental hy-
pothesis—the spatial precision hypothesis. According to the SPH,
neural interactions become stronger and more precise over devel-
opment, that is, excitatory interactions become stronger and nar-
rower (i.e., more precise) with an increase in the strength of
inhibitory interactions as well (Schutte, Spencer, and Schöner,
2003; Simmering, Schutte, & Spencer, 2008; Spencer et al., 2007;
for related ideas, see Westermann & Mareschal, 2004; Mareschal
et al., 2007). Figure 2, created using the interaction function
equations from Schutte et al. (2003), illustrates this hypothesis.
Figure 2 displays different developmental interaction profiles rel-
ative to one neuron, x. When neuron x is activated, it excites
neurons that code for nearby locations and inhibits neurons that
code for locations far away. Early in development excitation is
broad and weak and inhibition is also weak (see light grey bold
line in Figure 2). Later in development, excitation is strong and
precise and inhibition is also strong (see black bold line in Figure
2). Schutte and colleagues (2003) proposed that interaction
changes quantitatively over development (see lines in Figure 2),
and they tested several predictions generated from this proposal
with 2- to 6-year-old children using a sandbox task. All predictions

Figure 1. Schematic of memory biases in the sandbox task. Arrows
indicate the direction of memory biases. The dashed line indicates the
midline axis of the sandbox, and P’s indicate the location of the CA model
prototypes.
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were confirmed, and the data were quantitatively fit using the SPH.
Importantly, the changes in neural interaction captured by this
developmental hypothesis should also have consequences for how
locations are remembered near reference frames and developmen-
tal changes in geometric biases. The goal of this report is to probe
these consequences using simulations of the DFT and empirical
tests of model predictions.

In Simulation Experiment 1 of the present paper, we take the
basic account of the end points of the transition in geometric biases
proposed by Spencer and colleagues and ask whether the step-by-
step changes in neural interaction specified by the SPH generate
novel predictions regarding the nature of this developmental tran-
sition. This is indeed the case. Quantitative manipulation of the
precision of neural interactions in the model generated a set of
detailed predictions regarding how biases toward/away from mid-
line would change, as well as predicting changes in variability over
development. In Experiment 2, we tested these predictions with
3-to 5-year-olds. Results from Experiment 2 generally supported
the predictions of Experiment 1, except the bias away from midline
did not emerge exactly at the spatial locations predicted by the
model. In Simulation Experiment 3, we examined whether
the model could capture the specific pattern of bias away from
midline over development, which was indeed the case. In the
general discussion, we consider the implications of these findings
for the DFT and CA accounts of geometric biases, as well as for
our understanding of the development of spatial cognition more
generally. We contend that the present paper offers the first neu-
rally grounded theory of the mechanisms underlying changes in
spatial cognitive development in early childhood.

Simulation Experiment 1

The DFT of spatial cognition (Schutte et al., 2003; Spencer,
Smith, & Thelen, 2001; Spencer & Schöner, 2003; Spencer, Sim-

mering, & Schutte, 2006) captures children’s and adults’ perfor-
mance in a variety of spatial working memory (SWM) tasks
(Schutte & Spencer, 2002; Schutte et al., 2003; Spencer et al.,
2006; Simmering, Spencer, & Schöner, 2006). Previously, we used
this theoretical framework to account for developmental changes
in perseverative errors in a sandbox task (Schutte et al., 2003), as
well as categorical biases that emerge as the result of verbal and
motor responses (Spencer et al., 2006). Here we build on a new
account that captures the end points of the developmental transi-
tion in geometric biases. This new account relies on two novel
insights: (a) that geometric biases result from bias away from
perceived reference frames rather than toward spatial prototypes
(see Spencer & Schöner, 2003; Spencer et al., 2007), and (b) that
developmental changes in spatial working memory can be cap-
tured by quantitative changes in the precision of neural interactions
that underlie working memory (Edin, Macoveanu, Olesen, Tegner,
& Klingberg, 2007; Schutte, Spencer, & Schöner, 2003; Simmer-
ing, Peterson, Darling, & Spencer., 2008; Spencer et al., 2007). In
the sections below, we begin by describing the basic theory. Then
we discuss how it captures biases away from a reference axis, and,
finally, how the model captures developmental changes in geo-
metric biases.

The DFT is a dynamic systems approach to spatial cognition
instantiated in a particular type of neural network called a dynamic
neural field (DNF). Simulations of our particular DNF model of
spatial recall are shown in Figure 3. Figure 3a shows the model
using “adult” parameters, and Figure 3b shows the model using
young “child” parameters (e.g., 3-year-olds). Each simulation
models a single trial in a simple spatial memory task used in
Schutte and Spencer (2002) (see Figure 4). In this task, the par-
ticipant sees a spaceship-shaped target appear on a large, black
tabletop. The target turns off, and following a short delay the
computer says “go.” The participant then places a small rocket-
shaped marker at the remembered target location. Critically, young

Figure 2. Modulation of interaction function over development created using the interaction function equations
from Schutte et al., 2003.
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children show systematic biases toward the midline symmetry axis
in this task (see 0° line in Figure 4 inset), while older children and
adults show biases away from the midline axis.

The model is made up of several layers (or fields) of neurons. In
each layer, the neurons are lined up along the x-axis according to
their “preferred” locations, that is, the locations for which they fire
maximally. The activation of each neuron is on the y-axis, and
time is on the z-axis. The top layer in each panel is the perceptual
field, PFobj. This field captures perceived events in the task space,
such as the appearance of a target, as well as any stable perceptual
cues in the task space, such as the midline reference axis. This
layer sends excitation to both of the other layers (see green
arrows). The third layer, SWMobj, is the working memory field.
This field receives weak input from perceived events in the task
space and stronger input from the perceptual field. The SWM field
is primarily responsible for maintaining a memory of the target
location through self-sustaining activation—a neurally plausible
mechanism for the maintenance of task-relevant information in
populations of neurons (Amari, 1989; Amari & Arbib, 1977;

Compte, Brunel, Goldman-Rakic, & Wang, 2000; Trappenberg,
Dorris, Munoz, & Klein, 2001). The second layer, Inhibobj, is an
inhibitory layer that receives input from and projects inhibition
broadly back to both the perceptual field and the working memory
field. Note that the layered structure shown in Figure 3 was
inspired by the cytoarchitecture of visual cortex (see Douglas &
Martin, 1998). Note also that the full model includes longer-term
memory layers that we will not consider here, because they do not
affect the hypotheses we are testing (for an overview of the full
model, see Spencer et al., 2007).

The working memory field, SWMobj, is able to maintain an
activation pattern because of the way neurons interact with each
other. Specifically, neurons that are sufficiently activated (rising
above zero activation from a negative resting level) excite neurons
that code for locations that are close by, and—through the Inhibobj

layer—inhibit neurons that code for locations that are far away.
The result is an emergent form of local excitation/lateral inhibition
which sustains activation in working memory in the absence of
inputs from the perceptual layer (see Amari, 1989; Amari & Arbib,

Figure 3. Adult (a) and child (b) simulations of the Dynamic Field Theory. Panels represent: perceptual field
(PFobj); inhibitory field (Inhibobj); excitatory working memory field (SWMobj). Arrows represent interaction
between fields. Green arrows represent excitatory connections and red arrows represent inhibitory connections.
In each field, location is represented along the x-axis (with midline at location 0), activation along the z-axis,
and time along the y-axis. The trial begins at the back of the figure and moves forward. Time slices from the
end of the delay for the adult model (c) and the child model (d).
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1977; Compte et al., 2000, for neural network models that use
similar dynamics).

Considered together, the layers in Figure 3 capture the real-time
processes that underlie performance on a single spatial recall trial.
At the start of the trial, the only activation in the perceptual field
is at the location associated with the perceived reference axis (see
highlighted reference input in Figure 3a). This is a weak input and
is not strong enough to generate a self-sustaining peak in the
SWM field, though it does create an activation peak in the
perceptual field (PFobj). Note that this input to the model is
assumed to be generated by relatively low-level neural pro-
cesses that extract symmetry using the visible edges of the task
space (for evidence that symmetry axes are perceived as weak
lines, see Li & Westheimer, 1997). We have not included the
visible edges in simulations of the model because they are quite
far from the target locations probed in our experiments. Given
that neural interactions in the DFT depend on metric separation,
these additional inputs far from the targets would have negli-
gible consequences.

The next event in the simulation in Figure 3a is the target
presentation. This event creates a strong peak in PFobj (see target
input in Figure 3a) which drives up activation at associated sites in
the SWM field (SWMobj). When the target turns off, the target
activation in PFobj dies out, but the target-related peak of activation
remains active in SWMobj. In addition, activation from the refer-
ence axis continues to influence PFobj because the reference axis is
supported by readily available perceptual cues (see peak in PFobj

during the delay).
Central to the DFT account of geometric biases is how the

reference-related perceptual input affects neurons in the working
memory field during the delay. Figure 3c shows a time slice of the
SWMobj field at the end of the delay. As can be seen in the figure,
the working memory peak has slightly lower activation on the left
side. This lower activation is due to the strong inhibition around
midline created by the reference-related peak in PFobj (see high-

lighted reference input in Figures 3a & 3c). The greater inhibition
on the left side of the peak in SWM effectively “pushes” the peak
away from midline during the delay, that is, the maximal activity
in SWM at the end of the trial is shifted to the right of the actual
target location (for additional behavioral signatures of these inhib-
itory interactions, see Simmering et al., 2006). Note that working
memory peaks are not always dominated by inhibition as in Figure
3c. For instance, if the working memory peak were positioned very
close to or aligned with midline (location 0), it would be either
attracted toward or stabilized by the excitatory reference input.
This hints at how the DFT accounts for developmental changes in
geometric biases.

A simulation of the model with “child” parameters is shown in
Figure 3b. This simulation is the same as the adult simulation in
Figure 3a, except the interaction among neurons within each field
and the projections between the fields have been scaled according
to the spatial precision hypothesis: the neural interactions within
the SWMobj and PFobj fields are weaker (relative to the adult
parameters), the widths of the projections between the fields are
broader, and the excitatory and inhibitory projections are
weaker (for a more detailed discussion see below). As can be
seen in Figure 3b, these changes in interaction result in a
broader peak in the SWMobj field. Additionally, the reference
input is broader and weaker to reflect young children’s diffi-
culty with reference frame calibration, that is, their ability to
stably align and realign egocentric and allocentric reference
frames (see Spencer et al., 2007). The result of these changes is
that neural interactions in PFobj are not strong enough to build
a reference-related peak during the delay. Consequently,
SWMobj is only influenced by the broad excitatory input from
detection of midline in the task space and the SWMobj peak
drifts toward the reference axis instead of away from the axis.

The simulations in Figure 3 demonstrate that the spatial preci-
sion hypothesis and the DFT can capture the general pattern of
geometric biases in early development and later development, but

Figure 4. Apparatus used for spaceship task. Inset shows sample target locations relative to the starting point.
Targets are projected onto the table from beneath and responses are recorded using an Optotrak movement
analysis system. Note that the lights in the room are turned on for the photograph. During the experiment the
lights were dimmed, and the table appeared black.
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what is happening between these two points in time? We examined
this in the present simulation experiment by parametrically scaling
the parameters related to the spatial precision hypothesis to gen-
erate a set of predicted behavioral changes during the period
between 3 and 6 years of age.

Method and Results for Simulations of Developmental
End Points

All simulations were conducted using MATLAB software. The
simulations used a 10-s delay, and we ran 100 simulations to each
target location for each parameter set. The target locations were 0°,
10°, 20°, 30°, 40°, 50°, and 60° from the reference axis. For
specifics of the model and a complete list of parameters see the
Appendix and Table A1 (see also Spencer et al., 2007; Simmering
et al., 2008).

Our first task in the present report was to move from the
qualitative simulations of development in Figure 3 to quantitative
simulations of the end points of the transition in geometric biases.
We began by finding a set of parameters that matched the pattern
of error adults make in our spatial recall task using data from
Spencer and Hund (2002). We examined fits of the model for both
mean directional error (constant error) and within-subject standard
deviations (variable error) to each target (0°–60°) over 0, 5, and
10-s delays. Figure 5 shows the model data (left panels) and the
behavioral data (center panels) (Spencer & Hund, 2002). Exami-
nation of constant error confirmed that the models’ errors in-
creased as delay increased for targets 20°, 40°, and 60° (the targets
for which we had behavioral data), and errors were comparable in
magnitude to the behavioral data. Additionally, errors to the 0°
target remained near zero. Variable error for the adults increased

Figure 5. Panels on the left show simulation results for Experiment 1 including (a) mean constant error over
delays for parameter set 1, the 3-year-old model, (b) mean constant error over delays for parameter set 8,
the adult model, and (c) standard deviation over delays for the adult model. Panels in the center show mean
constant error for (d) 3-year-old children from Schutte and Spencer (2002) and (e) adults from Spencer and
Hund (2002). Panel (f) shows standard deviations (variable error) for the adults from Spencer and Hund
(2002). Panels on the right show mean constant error over delay for Experiment 3 for (g) parameter set 1,
the 3-year-old model, and (h) parameter set 6, the adult model, and (i) standard deviations over delay for
parameter set 6.
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over delay (Figure 5c) and was similar to the variable error from
Spencer and Hund (2002) (see Figure 5f). Variability was lowest
to the 0° target in both the model and the data from Spencer and
Hund. Thus, we were able to successfully model the adult data in
quantitative detail for these target locations.

We then implemented the spatial precision hypothesis by scal-
ing the strength of local excitation, the strength and width of the
reference input, and the strength and width of the inputs between
the fields. We increased the various width parameters and de-
creased the various strength parameters until we fit the 3-year-old
data from Schutte and Spencer (2002), showing biases toward
midline for all targets to the left and right of this axis. The
parameter values are given in Table A1.

Figures 5a and 5d show the model data (left panels) and the
behavioral data (center panel) for the 0° target and mean error
collapsed across the 20°, 40°, and 60° targets (Schutte & Spencer,
2002). Note that Schutte and Spencer (2002) did not find a differ-
ence between responses to the 20°, 40°, and 60° targets for
3-year-olds, so we collapsed across these targets. As can be seen in
the figure, errors toward midline (i.e., negative directional errors)
increased as delay increased for the 3-year-old model, providing a
good match to the behavioral data. Additionally, errors to the 0°
target remained near zero. Thus, by scaling parameters related to
the spatial precision hypothesis, we were able to successfully
model 3-year-olds’ performance in quantitative detail.

Implementation of the SPH During the
Developmental Transition

To examine the behavior of the model during the transition, we
scaled parameters linked to the SPH between the 3-year-old and

adult parameter values used above yielding eight total parameter
sets. The parameter values for each set are given in Table A1. The
criteria we used for determining the scaling parameters were the
following: parameters had to be scaled in a smooth, gradual
manner, and each parameter set needed to show the right qualita-
tive behaviors across target locations, that is (a) successfully build
a peak in SWM when the target turned on, (b) maintain this peak
in SWM during the 10 s delay, and (c) hold onto the peak in SWM
without forming a second peak associated with the midline refer-
ence frame (which can occur if the reference input is too salient).

To meet these criteria, we scaled the width of the reference axis
input exponentially, and the strength of the reference axis input
using a negative exponential function. The width and strength of
projections from the inhibitory layer (Inhibobj) to the SWMobj and
PFobj layers were also scaled using a negative exponential func-
tion. The strength of excitatory connections within the PFobj layer
was scaled using the following linear equation:

dev_cuu n � dev _cuu n�1 � �.0155 � n�

Where n is the number of the parameter set (i.e., 1-8), and
dev_cuu is the value of the scaling parameter (see appendix and
Table A1). The strength of excitatory connections within SWMobj

was scaled smoothly such that strength increased more rapidly for
the initial parameter sets, and more gradually for the later param-
eter sets. This differential scaling was needed to maintain stable
peaks in SWMobj across all parameter sets. Figure 6 shows the
developmental trajectories of the parameters showing that all of
the parameter values fell on smooth curves. Note that scaling the
parameters in other ways, including scaling all of the parameters
linearly, violated one or more of the criteria listed above (e.g., the
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Figure 6. Panels (a) and (b): Developmental scaling parameters for parameter sets 1 through 8. Panel (c):
Developmental changes in the self-sustaining peaks in the SWM field as a result of changes in spatial precision
parameters from early in development (black bold line) to later in development (light gray bold line).
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peak died during the delay or two peaks formed—one at the target
and one at midline).

The resultant effect on self-sustaining peaks in the SWM field
can be seen in Figure 6c. Figure 6c shows a time-slice of the
activation peak at the end of the delay for each parameter set when
the target was presented at 0°. Note that noise was not included in
these exemplary simulations to highlight differences in peak struc-
ture across parameter sets. The peak in the 3-year-old model is
broader and weaker (see black, bold line) than the peak in the adult
model (see light gray, bold line). As the parameters are scaled, the
peak becomes narrower and stronger (see black to light gray lines).
Thus, the scaling replicated the central aspects of the SPH, that is,
peaks in SWM became more precise over development.

Although we scaled the parameter values to maintain target
peaks, the target peaks still died out on a few trials, particularly in
the context of the strong noise we needed to capture the variability
present in children’s responses. Note that a similar effect occurs in
our experimental data as well (see discussion of perseverative
errors in Experiment 2). These trials were removed from analysis.
Overall, 2.5% of trials (138 trials out of a total of 5600 trials) were
removed (parameter set 1: 6.6%, parameter set 2: 0%, parameter
set 3: 1%, parameter set 4: 2.7%, parameter set 5: 4.7%, parameter
set 6: 4.3%, parameter set 7: 4.3%, parameter set 8: 0%).

Results of Developmental Simulations

The constant error at each target location for each parameter set
at the end of the delay is shown in Figure 7. Negative errors are
toward the reference axis and positive errors are away from the
reference axis. Two things are clear in the figure. First, the bias
toward the reference axis gradually reduced, with the targets
furthest from the axis showing the reduction in bias first. Second,
repulsion from the reference axis emerged and gradually spread to
all but the 10° target. To determine which data points were
significantly different from 0 error, we performed t-tests on the

errors to each target for each parameter set. The data points that are
not significantly different from 0 error are circled in the figure. As
can be seen in the figure, as the parameters scaled up for each
target location except 0° and 10°, the bias toward the reference
axis reduced until the target was not significantly biased, and then
a significant bias away from the reference axis emerged first at far
targets and then gradually increased and spread to all targets
except 10°. Note that the performance of the model at 10° was not
realistic, particularly for the adult parameters. Adults in our task
show biases away from midline at 10°, while the model shows
slight attraction toward midline at 10° (see, e.g., Simmering &
Spencer, 2007). This poor fit reflects practical constraints in our
numerical simulations. The size of the fields used here (397 units)
was too small to achieve repulsion at the 10° target and larger
fields produce prohibitively slow simulation times (the current
simulator required 3 hr to run a complete set of simulations for one
parameter set). Thus, we excluded simulation data for the 10°
target in subsequent analyses of the model’s behavior.

To examine changes in response variability, we computed the
standard deviation of responses to each target location for each
parameter set. We then averaged the standard deviations across the
20° to 60° targets for each parameter set (see Figure 8). Note that
we computed response variability to 0° separately because results
from previous studies show that responses to targets aligned with
reference frames are accurate with low variability, while responses
to non-0° targets show comparable performance (see Spencer &
Hund, 2002; Engebretson & Huttenlocher, 1996). As can be seen
in Figure 8, there was a reduction in variability over development
in the model even though the noise strength was constant across
simulations. Figure 8 also shows that variability at the 0° target
was lower than at the other target locations for all parameter sets.
Although over development there is most likely a decrease in
noise, the results here demonstrate that even without varying noise,
there is a robust increase in the stability of SWM over develop-

Figure 7. Mean constant error from simulation Experiment 1 for each parameter set to each target at the 10 s
delay. Parameter set 1 is the 3-year-old model (black line), and Parameter set 8 is the adult model (light gray,
dotted line with circular markers). The values that are not significantly different from 0 error are circled.
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ment in the model, consistent with results from Spencer and Hund
(2003). This is important because it shows a link between changes
in spatial recall biases and reductions in variability—as SWM
becomes more stable, geometric biases change and WM is less
influenced by random fluctuations.

Discussion

The first goal of this simulation experiment was to determine
whether the model could quantitatively fit the time-dependent
pattern of error from studies of adults’ spatial recall abilities. The
model successfully captured the pattern of error for the adults with
reasonable quantitative precision. This was the case for both mean
responses as well as response variability. Most critically, the adult
model was biased away from midline at all but the 10° target
locations. Additionally, the model successfully captured adults’
reduced variability at 0° and the increase in variability over delays.
It is not clear whether the CA model can capture either aspect of
response variability. According to the CA model, response vari-
ability should be high near midline because on some trials partic-
ipants are likely to miscategorize the target. This is not the case
empirically. Moreover, because the CA model is not a process
model, there is no mechanism to produce an increase in variance
over delays.

How does the DFT capture these two effects? The reduction in
variability for targets aligned with a reference axis emerges in the
DFT through coupling between the perceptual and working mem-
ory fields and sustained reference-related input to these layers
during the delay. These two factors help keep working memory
peaks stably aligned with the continuously available perceptual
structure in the task space (i.e., the table’s edges and symmetry
axis). The increase in variability over delays is a natural product of
the dynamics in the model: as peaks “drift” in the context of noise,

there is an increase in variance over delays due to stochastic
fluctuations in how quickly peaks drift over delays on different
trials.

In addition to capturing the adults’ data, the second goal of our
simulations was to quantitatively capture the other end point of
development, the 3-year-olds’ data (Schutte & Spencer, 2002), by
scaling parameters related to the spatial precision hypothesis. The
model was able to quantitatively match the 3-year-old data: the
lateral targets (20°, 40°, and 60°) were biased toward midline, and
the bias increased as delay increased. Additionally, mean error to
the 0° target was smaller. Although previously the DFT has been
used to qualitatively capture the spatial recall performance of
adults and 3-year-olds (e.g., Schutte & Spencer, 2002; Simmering
et al., 2008; Spencer et al., 2007), this is the first time the DFT has
been used to quantitatively model the spatial recall performance of
these age groups. Critically, the DFT captured the performance of
3-year-olds in a manner directly analogous to parameter changes
implemented in Schutte et al. (2003) to capture young children’s
performance in a sandbox task.

The third goal of this simulation experiment was to derive a set
of developmental predictions by scaling the neural interaction
parameters linked to the spatial precision hypothesis between the
young child and adult settings. Results of these simulations led to
three predictions about how spatial working memory performance
should change over development. First, during the transition,
the spatial region across which targets are biased toward the
reference axis will narrow. This occurs as reference-related inputs
to the model become narrower and more precise, that is, as
children’s perception of the midline reference axis becomes more
precise. The narrowing of peaks in SWM also contributes here,
because narrower peaks are less likely to overlap with the excita-
tory reference input near midline.

Figure 8. Mean variable error (standard deviation) for parameter sets 1 (3-year-old model) to 8 (adult model)
for the 0° target (light gray, dotted line), the 10°�60° targets (dark gray, dashed line), and the 20°�60° targets
(black, solid line).
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Second, the model predicts that as inhibition increases over
development, repulsion away from the reference axis should
emerge and become stronger. Early in development, reference-
related inhibition is not strong enough to cause significant repul-
sion from the midline axis (see Figure 7, black line). With increas-
ing inhibition, however, repulsion effects gradually increase until
the majority of targets are biased away from midline (see, e.g.,
parameter set 8 in Figure 7).

The third prediction is that variability will decrease over devel-
opment. It is important to note that the decrease in variability in
our simulations occurred even though the amount of noise in the
model remained constant across all parameter settings. We ac-
knowledge that this is a relatively weak prediction since most
accounts of development would expect noise to decrease. Never-
theless, the prediction is important because changes in recall biases
and reductions in variability arise from the same dynamic pro-
cesses in the model—changes in the stability of working memory
peaks. Consequently, if we were to see changes in recall biases that
were not accompanied by reductions in variability, this would
violate model predictions. We tested these three predictions em-
pirically in Experiments 2a and 2b.

Experiment 2a

The goal of Experiment 2 was to test the predictions of the DFT
about the nature of the developmental transition in geometric
effects. We tested these predictions using a spaceship game (see
Figure 4). In this task the child sat at a large table. A spaceship-
shaped target was projected onto the table, there was a delay, and
then the child moved a small rocket to the remembered target
location. Prior research has demonstrated that 3-year-olds show
attraction toward the midline axis in the spaceship task for targets
as far as 80° from midline (Schutte & Spencer, 2002; see also,
Huttenlocher et al., 1994). Six-year-olds, 11-year-olds, and adults,
by contrast, are repelled from midline for targets as close as 10°
(Spencer & Hund, 2002, 2003; see also, Huttenlocher et al., 1994).
Thus, we know that in the spaceship task, the transition in geo-
metric biases occurs between 3 and 6 years of age, so we tested
three age groups: 3-, 4-, and 5-year-olds.

Method

Participants. Thirty-seven 3-year-olds (M � 3 years, 6.2
months, SD � .43 months, range � 3 years 5.3 months to 3 years
7.2 months), 33 4-year-olds (M � 4 years 3.9 months, SD � 1.35
months, range � 4 years 1.5 months to 4 years 7.2 months) and 33
5-year-olds (M � 5 years 3.2 months, SD � 1.5 months, range �
4 years 11.2 months to 5 years 5.8 months) participated in this
experiment. Seventeen children participated who were not in-
cluded in the final analyses for the following reasons: 6 children
(one 3-year-old, two 4-year-olds, and three 5-year-olds) only par-
ticipated in one session due to scheduling conflicts, 8 children
(seven 3-year-olds and one 4-year-old) stopped playing the game
early, two 3-year-olds did not understand the game, and one
3-year-old did not have enough trials following initial data analysis
(see below for details). The dropout rate for the 3-year-olds is
higher than is ideal (although it is comparable to previous studies,
see Schutte et al., 2003). It is important to note, however, that most
children did not have difficulty understanding and playing the

game. Rather, 3-year-olds had difficulty attending to the game
long enough to complete the number of trials required to test the
detailed predictions of the DFT. Children participated in two
sessions that were generally scheduled within 1 week of each
other. Children received a small gift following each session. The
parents of all participants gave informed consent.

Apparatus. Participants sat at a large table. The tabletop was a
rear projection screen with an arc removed from one side (see
Figure 4). The participant’s chair was positioned within the arc. A
video projector positioned below and to the rear of the table
projected images onto the table’s surface. The display size was 4�
by 3� (.91 m by 1.22 m) with a resolution of 1024 � 768 pixels.
The room lights were dimmed and black curtains were hung along
the walls to the front and sides of the table and across the ceiling.
This prevented reflections from appearing on the tabletop that
could be used as reference points. A yellow dot was projected
along the midline axis of the table 15 cm from the front edge. This
was the starting point for each trial. A rocket ship 5.5 cm high and
2 cm in diameter sat on this dot. Participants used the rocket to
indicate where “spaceships” were hiding. A computer controlled
the type and timing of all stimuli presented in the experiment using
customized software. Prerecorded messages were played through
two speakers on either side of the table. These messages led
participants through the game and gave feedback after each trial.

Participants’ movements of the rocket were recorded at 150 Hz
using an optical-electronic motion analysis system (Optotrak,
Northern Digital, Inc.). This system tracks small (radius � 3.5
mm), individually pulsed infrared emitting diodes (IREDs) within
a specified 3-D volume with better than 1 mm precision. One
IRED was attached to the tip of the rocket to track participants’
responses as they moved the rocket from the starting position to
the remembered location.

Procedure. At the start of the first session, the experimenter
played a warm-up game on the floor with the child to teach the
child the basics of the task. The child was told that he/she was
going to play a game to help “Buzz Lightyear” find his lost
spaceships. The experimenter gave the child the toy rocket and
then showed the child two flashcards, one with a spaceship on it
and one with a star. The experimenter pointed out the spaceship
card and placed both cards face down on the floor. When the
experimenter said “go,” the child was encouraged to place the
rocket on top of the spaceship card. The warm-up game was played
until the child successfully found at least two spaceships in two
different locations.

Next, the child was told he/she was going to play the game on
the special “spaceship table,” and the child and parent moved over
to the experimental table to start the task. The session began with
demo trials to help the child learn the game. These trials were
identical to the test trials except the experimenter performed the
task. The experimenter controlled the number of demo trials.
Generally, children required only one demo; however, demo trials
were repeated if a child did not attend to a complete demo trial or
was not willing to participate following the first demo trial.

Each trial began when the computer said, “Let’s look for a
spaceship.” Following a random pretrial delay, a spaceship was
illuminated for 2 s in one of two possible target locations (see
below). The child’s task was to move the rocket from the starting
location to where the spaceship was hiding when the computer said
“go, go, go.” If the participant moved the rocket before the “go”

1707DEVELOPMENTAL TRANSITION IN SPATIAL WORKING MEMORY



signal, the computer gave a verbal warning such as, “Don’t forget
to wait for the go.” After each trial, the target was re-illuminated
for 1.5 s so the child could compare the actual location with the
location of the rocket (i.e., the remembered location). The child
received verbal and visual feedback from the computer based on
whether he/she found the spaceship (the distance between the
response and the target was � 3 cm), was close to the spaceship
(the response-target distance was � 3 cm and � 5 cm), or was not
so close (the response-target distance was � 5 cm). For each
spaceship the child found, he/she received verbal feedback, a
picture of Buzz and/or his friends was displayed on the table, and
the child received a star, which was also displayed on the table.
When the response-target distance was between 3 cm and 5 cm, the
child received both verbal feedback and a picture of Buzz Light-
year. When the response-target distance was greater than 5 cm, the
child received only verbal feedback, such as “Nice try. We’ll get
it next time.” The parent or guardian was instructed not to talk
during a trial or give any signal that would help the child find the
spaceship, but was asked to give positive feedback after each trial.

Design. Participants were randomly assigned to one of three
conditions. In each condition, children recalled the locations of
two targets (one on each trial) separated by 80° relative to the start
location (see Figure 4). We chose to use only two target locations
with an 80° separation in order to minimize the interaction be-
tween the memory of the current target and the longer-term mem-
ory of the other target (see Schutte and Spencer, 2002; Schutte et
al., 2003). To further minimize this potential interaction, the tar-
gets were on opposite sides of midline. This was necessary to
isolate geometric effects from longer-term memory effects. For
instance, if a response is biased toward midline, these precautions
ensure that the bias is toward midline and not toward another target
(i.e., a perseverative error, see Schutte & Spencer, 2002; Schutte et
al., 2003) because the other target was very far away and on the
other side of the reference axis. The target counter-clockwise from
midline was always near midline (inner target), and the target
clockwise from midline was always far from midline (outer target).
The target locations across the three conditions were –10° and 70°,
–20° and 60°, and –30° and 50° from midline (see Figure 4). Note
that all of these target locations were closer to midline than to the
outer edges of the table. Delays of 0, 5, and 10 s were used. For the
4- and 5-year-olds, there were 48 test trials divided evenly between
two experimental sessions—8 trials to each target at each delay.
Children completed six practice trials at the start of each session.
For the 3-year-olds, there were 36 test trials divided evenly be-
tween the two experimental session—6 trials to each target at each
delay. Three-year-olds completed two practice trials at the start of
each session. It was necessary to reduce the number of trials for the
3-year-olds, because 3-year-olds were not able to attend to the
game as long as the 4- and 5-year-olds.

Children participated in two sessions that were each approxi-
mately 20 min long. The two sessions were identical except the
warm-up game was not played before the second session. Which
target appeared on each trial and the order of the delays were
randomized. Participants were encouraged to complete all the trials
during each session; however, during some sessions, children
stopped playing the game early (for details, see below).

Method of analysis. Optotrak data and customized software
were used to identify a starting and ending location for each trial.
The start of the movement was defined as the first data frame in a

trial with a tangential velocity � 2 cm/s. This “resting level”
criterion was used by Hund and Spencer (2003) and Schutte and
Spencer (2002) to distinguish low-level noise from the movement
of the hand/rocket. The end of the movement was identified by
searching backwards from the end of the trial to the last frame that
had a velocity less than 2 cm/s and a z-coordinate value (vertical
dimension) less than 8 cm and greater than 3 cm (recall that the
rocket was 5.5 cm high). A z-coordinate greater than 8 cm meant
the rocket was still in the air above the table. A z-coordinate less
than 3 cm meant the rocket had fallen over.

After the start and end locations were selected, the computer
calculated the directional error for each trial. Specifically, the
computer calculated the angle between the line connecting the start
location and the target location and a line connecting the start
location and the ending location. Negative directional errors indi-
cate errors toward midline relative to the target direction, and
positive errors indicate errors away from midline relative to the
target direction.

All trials that were not within 2 SDs of the median error for each
target at each delay were checked manually for computer selection
mistakes using an interactive version of the automated analysis
software. In addition, trials for which the computer could not find
valid start or end locations were also checked manually. The
interactive software allowed us to manually edit the start and end
locations. All manual selections, however, were required to meet
the starting and ending criteria outlined above.

After manually inspecting the data, all trials that did not meet
the start and end criteria listed above were eliminated. This re-
sulted in a total of 94 trials being removed across all participants
(3-year-olds: 70 trials [5% of trials]; 4-year-olds: 16 trials [1% of
trials]; 5-year-olds: 8 trials [0.5% of trials]). In addition, inspection
of the data revealed that on several trials children made large
errors. A majority of these errors were in the direction of the
opposite target.

We examined two possible explanations for these large errors.
The first possible explanation was that children made persevera-
tive errors, that is, they responded to a just-previous target rather
than to the target on the current trial (see Schutte et al., 2003). A
second possibility was that children made “mirror image” errors,
that is, they responded to the target location on the opposite side of
midline (e.g., a response to 30° when the target was at �30°). To
examine these possibilities, we inspected data to the �20° and
�30° targets for the 3-year-olds because this age group made the
largest errors. We computed the number of trials where the re-
sponse was within 	 5° of the mirror image target (e.g., within the
spatial region 15° to 25° to the right of midline for the �20° target)
versus when the response was beyond the mirror image location
and closer to the perseverative target. Results of this analysis
revealed 8 mirror image responses and 34 perseverative responses.
Thus, children’s large errors were primarily due to perseverative
biases (note that similar results were obtained when we restricted
the spatial range for what qualified as a perseverative response
to 	 5° of the perseverative target).

Inclusion of perseverative errors in the analyses could result in
a false bias toward midline, because the other target was always on
the opposite side of midline. To isolate geometric biases from
these perseverative errors, we removed all trials from the overall
data analysis with an error greater than 50° and in the direction of
the non-cued target and analyzed these trials separately (see Re-
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sults for further details). Recall that the targets were separated by
80°. Thus, a 50° error meant the response was closer to the
incorrect target than the correct target. Note that trials with errors
greater than 50° that were not in the direction of the other target
were removed from all analyses. There were only two trials re-
moved for this reason across all participants.

Following removal of invalid trials and separation of trials with
errors greater than 50°, 3-year-olds completed an average of 30
trials (SD � 5.26), 4-year-olds completed an average of 45 trials
(SD � 5.00), and 5-year-olds completed an average of 47 trials
(SD � .98). One 3-year-old had at least one cell without any valid
trials; thus, data from this child were not included in the final
analyses. The median error to each target at each delay was
computed for each participant. We refer to this as directional error
below. Variable error was computed by calculating the standard
deviation of responses to each target at each delay for each
participant.

Results

Directional error. Mean directional error across participants
for each target at each delay is shown in Figure 9. Data from the
inner targets (�10°, �20°, and �30°) are in the left column and
data from the outer targets (50°, 60°, and 70°) are in the right
column. Positive errors indicate errors away from midline, and
negative errors indicate errors toward midline. As can be seen in
Figure 9a, as delay increased, 3-year-olds’ responses were biased
toward midline at �10° and �20° and were not biased at �30°. In
contrast, 4- and 5-year-olds’ responses to �20° and �30° were
biased away from midline and this bias increased as delay in-
creased (Figure 9b, c). Four- and 5-year-olds’ responses to the
�10° target, however, were relatively accurate over delays (Figure
9c). Errors to the outer targets were generally near zero for all
ages, with the exception of the 5-year-olds’ responses to the 50°
target (Figure 9f) which were biased away from midline over
delay.

Mean directional error was analyzed in a four-way ANOVA
with Condition (�10°/70°, �20°/60°, �30°/50°) and Age (3, 4, 5)
as between-subjects factors and Target (inner, outer) and Delay (0
s, 5 s, 10 s) as within-subjects factors. There was a main effect of
Age, F(2, 94) � 4.93, p � .01, 
2 � .10. There was also a
significant Delay � Age interaction, Wilks’ � � .82, F(4, 186) �
4.78, p � .001, 
2 � .09. Tests of simple effects revealed that the
3-year-olds were biased significantly toward midline over delays,
F(2, 72) � 3.15, p � .05, 
2 � .08 (0 s: M � .63, 5 s: M � �2.74,
10 s: M � �.87). In contrast, the 4-year-olds’ bias did not change
significantly over delays, F(2, 64) � .66, n.s., 
2 � .02 (0 s: M �
.92, 5 s: M � 1.82, 10 s: M � 1.31), and the 5-year-olds were
biased significantly away from midline over delays, F(2, 64) �
6.82, p � .01, 
2 � .18 (0 s: M � .52, 5 s: M � 2.20, 10 s: M �
2.55). There was also a main effect of Condition, F(2, 94) � 4.79,
p � .01, 
2 � .09, and a marginal Target x Condition interaction,
Wilks’ � � .94, F(2, 94) � 3.06, p � .052, 
2 � .06. Tests of
simple effects revealed a significant effect of Condition for the
inner targets, F(2, 100) � 6.74, p � .005, 
2 � .12, but not
the outer targets, F(2, 100) � .31, n.s., 
2 � .01. Thus, errors to
the three outer targets were similar, while errors to the inner
targets differed depending on the target. The �10° target was
biased slightly toward midline (M � �1.84), the �20° target was

relatively accurate (M � 1.16), and the �30° target was biased
away from midline (M � 3.11).

A central goal of this experiment was to test the predictions that
the region across which targets are attracted toward midline nar-
rows over development while inhibitory effects (repulsion from
midline) should emerge and become stronger over development.
To test these predictions directly, planned comparisons (t-tests
versus zero error) were conducted on the directional error col-
lapsed across 5- and 10-s delays for each target and age separately.
All t-tests were two-tailed given the predicted changing nature of
attraction and repulsion.

Mean error for each age at each target location is given in Table 1.
Three-year-olds’ responses to the �10° target were biased signif-
icantly toward midline, t(11) � �2.28, p � .05, and responses to
the �20° target were biased marginally toward midline, t(13) �
�1.96, p � .07. Responses to the other targets were not signifi-
cantly biased toward or away from midline. Four-year-olds’ re-
sponses to the �20° target were biased significantly away from
midline, t(9) � 2.83, p � .05, and their responses to the �30°
target were biased marginally away from midline, M � 3.73,
t(9) � 2.10, p � .07. Responses to the other targets were not
biased significantly. Five-year-olds’ responses to the �20° target
were biased significantly away from midline, t(10) � 6.08, p �
.001, as were their responses to the �30° target, t(10) � 4.57, p �
.001, and the 50° target, t(10) � 3.11, p � .01. Responses to the
other target locations were not biased significantly. These results
are consistent with the predicted effects, although repulsion first
emerged in the model at targets far from midline.

Individual differences. The analyses of directional error gen-
erally support the predictions of the DFT. It is important, however,
to determine whether the results reflect the performance of indi-
vidual participants or are the result of variable performance across
participants. Variability across participants could yield the result
that half of the children are biased toward midline and half are
biased away from midline. The small directional errors (and asso-
ciated nonsignificant t-tests) at some of the close target locations
presented previously might reflect this state of affairs. It is also
possible, however, that children were, in fact, consistently accu-
rate. To evaluate these alternatives, we examined individual dif-
ferences within each age group by classifying each child as being
biased toward midline, away from midline, or unbiased at the inner
targets. We used the inner targets only because responses to these
targets changed the most dramatically across ages.

The classification scheme was based on each child’s directional
error, collapsed across the 5- and 10-s delays. In particular, we
computed the standard error across all of the inner targets for each
age group. This standard error was then used to compute the
critical mean error necessary, based on the t-distribution, for each
target to be significantly biased toward or away from midline for
each age group. The value of each child’s constant error at the
inner target was compared to this critical value. If a child’s error
was greater than the critical value and the error was positive, the
child was classified as being biased away from midline. If a child’s
error was greater than the critical value and the error was negative,
the child was classified as being biased toward midline. If a child’s
error was less than the critical error, the child was classified as
unbiased. Note that we used the standard error across all children
within each age group because it provided the best estimate of the
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variability of performance at each age, that is, this estimate was
based on the largest N possible for each age group.

The proportion of children in each classification group at each
age for each inner target can be seen in Figure 10. In addition, data

from 6-year-olds from Spencer and Hund (2003) were reanalyzed
using the same analysis method. These data are shown for com-
parison. As can be seen in the figure, at �10° more than half of 3-
and 5-year-olds were biased toward midline while about one-third
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of the 4-year-olds were biased toward midline and one-third were
biased away from midline. In contrast, the majority of the 6-year-
olds were biased away from midline. At �20°, the number of
children biased away from midline systematically increased as age
increased. About half of the 3-year-olds were biased toward mid-
line and the other half were unbiased, with just a few children
biased away from midline. In contrast, the majority of the 4-, 5-,
and 6-year-olds were biased away from midline. At �30°, the
majority of children at all ages were biased away from midline,
although there were quite a few 3- and 4-year-olds categorized as
unbiased.

These results are consistent with the mean directional error
t-tests and provide additional information about the nature of the
transition. First, there are individual differences regarding when
children move through the transition. This can be clearly seen in
the 3-year-old data at 20° with the same number of children biased
toward midline as are biased away. Second, these data are consis-
tent with the idea that the transition is not an “all-or-none” tran-
sition. For example, a majority of the 3-year-olds were biased
away from midline at 30° and toward midline at 10°. Similarly,
there are a number of 5-year-olds showing attraction toward mid-
line at �10°, even though repulsion is the dominant pattern for this
age group. Although longitudinal studies are necessary to confirm
a gradual transition, this pattern points toward a gradual develop-
mental transition that depends both on age and the target location
probed.

Variable directional error. Previous research with older chil-
dren found that variability in directional responses increased as
delay increased and that variability decreased as age increased
(Hund & Spencer, 2003; Spencer & Hund, 2003). As can be seen
in Figure 11, this study replicated these findings with younger age
groups. Mean variable directional error was analyzed in a 4-way
ANOVA with Condition (�10°/70°, �20°/60°, �30°/50°) and
Age (3, 4, 5) as between-subjects factors and Target (inner, outer)
and Delay (0 s, 5 s, 10 s) as within-subjects factors. There was a
main effect of Delay, Wilks’ � � .36, F(2, 91) � 81.88, p � .001,

2 � .64 (0 s: M � 4.62, 5 s: M � 8.55, 10 s: M � 10.31). As can
be seen in Figure 11, as delay increased all three age groups
became significantly more variable. There was also a main effect
of Age, F(2, 92) � 29.81, p � .001, 
2 � .39. As age increased,
variability decreased (3-year-olds: M � 11.19, 4-year-olds: M �
6.84, 5-year-olds: M � 5.45).

Perseverative error analyses. Errors that were greater than
50° and in the direction of the incorrect target were classified as
perseverative errors (see Schutte & Spencer, 2002) and analyzed

separately. This resulted in the removal of 184 trials out of 4333
total trials. For the 3-year-olds, the number of trials with perse-
verative errors ranged from 0 to 10 per participant. For the 4-year-
olds the number ranged from 0 to 6 per participant, and for
5-year-olds the number ranged from 0 to 2 trials per participant.
Figure 12 shows the mean proportion of each participant’s trials
that were classified as perseverative errors at each age. As can be
seen in the figure, the proportion of perseverative errors decreased
as age increased. The proportion of perseverative errors to each
target was analyzed in a repeated-measures ANOVA with Target
as a within-subjects factor and Condition and Age as between-
subjects factors. There was a significant Age main effect, F(2,
94) � 28.07, p � .001, 
2 � .37, confirming that perseverative
errors decreased significantly as age increased (see Figure 12).

Discussion

The goal of Experiment 2a was to test a set of predictions of the
DFT about the developmental course of the transition in geometric
biases. Results generally supported the DFT’s predictions and
provide preliminary evidence that the transition in geometric bias
is gradual over development and depends on the target locations
probed, with the bias toward midline decreasing and the repulsion
from midline emerging and spreading. The one difference relative
to the model was that repulsion first emerged at 20° in the data,
while in the model repulsion emerged at targets further from
midline.

The individual differences analyses also pointed toward a grad-
ual transition. At �20°, the majority of 3-year-olds were biased
toward midline while the majority of 4-year-olds were biased away
from midline. This suggests that children’s spatial memory abili-
ties have changed qualitatively by 4 years, 4 months—but only for
this particular location. In particular, the 4- and 5-year-olds were
not biased away from midline at �10°. Rather, the transition in
performance linked to this location occurred between 5 and 6
years.

The model also predicted that as stability increases over develop-
ment there should be a decrease in variable error. We examined two
indexes of stability: variable error and perseverative errors. As age
increased there was a decrease in the variability of children’s re-
sponses, consistent with previous research with older children (Spen-
cer & Hund, 2003; see also Plumert & Hund, 2001). The second index
of stability was the proportion of perseverative errors. As age in-
creased, the proportion of perseverative errors decreased. According
to Thelen, Schöner, Scheier, and Smith, (2001), perseverative errors

Table 1
Mean Error in Experiments 2a and 2b Across 5-s and 10-s Delays for Each Age Group at Each
Location

Location

Age �10° �20° �30° 50° 60° 70°

3 years, 6 months �4.27�� �4.38� 1.34 1.60 �2.44 �1.73
3 years, 8 months �5.68�� .97 .18 2.44 �.73 .33
4 years �.83 4.56�� 3.73� �.19 1.26 1.71
5 years �2.04 5.77�� 5.40�� 4.01�� 1.07 �.09

� p � .07. �� p � .05.
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in infancy occur when target-generated peaks in working memory
decay away during memory delays. If we extend this to older ages, the
proportion of perseverative errors provides an index of how stably
peaks are maintained in SWM. Specifically, destabilization of the
peak state in the DFT (e.g., due to noise fluctuations) can result in
the disappearance of the peak during the delay. When this happens,

the model must re-build a peak at the “go” signal based on long-term
memory traces of previously responded-to locations (for details, see
Spencer et al., 2007). In such cases, the model—and young chil-
dren—will respond to the location that is most active in longer-term
memory. In the case of children in our experiment, the most active
location in longer-term memory on some trials was the other target

Figure 10. Proportion of children classified as biased toward midline (black bars), away from midline (gray bars),
or not biased (striped bars) in Experiment 2a (3 years 6 months; 4 years; 5 years) and Experiment 2b (3 years 8
months) at each of the inner targets (�10°, �20°, �30°). Data from 6-year-olds from Spencer and Hund (2003) are
shown for comparison. Note that the 6-year-olds children responded to targets at 10°, 20°, and 40° from midline (not
30°).
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location yielding a perseverative error. Thus, the data reported here
show that over development, peaks in SWM are more likely to
self-sustain during the delay and less likely to spontaneously de-
stabilize.

Overall, results offer support for the predictions from Simula-
tion Experiment 1. To probe these model predictions further, we
collected data from an intermediate age group to determine
whether the performance of this age group would fall squarely
between the performance of younger and older children as pre-
dicted by the gradual, continuous changes specified by the model
and the spatial precision hypothesis. Thus, in Experiment 2b we
tested children who were between 3 years 6 months and 4 years 4
months. Based on results from the present experiment, we ex-
pected that these children would be biased toward midline at �10°
and not biased at �20°. In addition, the indexes of stability
(variable error and perseverative error) should fall in between the
performance of 3- and 4-year-olds from the present experiment.

Experiment 2b

Methods

Participants. Thirty-six 3-year-olds (M � 3 years 8.8 months,
SD � .56 months, range � 3 years 7.8 months to 3 years 10.1
months) participated in this experiment. Fourteen children also
participated, but their data were not included in the final analyses
for the following reasons: nine children stopped playing the game
early, one child was not included due to experimenter error, two
children were missing data following initial analyses (see below
for details), and two children did not understand the game. All
other participant details were the same as in Experiment 2a.

Apparatus, procedure, and design. The apparatus, procedure,
and design were the same as in the 3-year-old condition of Exper-
iment 2a.

Methods of analysis. The method of analysis was the same as
in Experiment 2a. Trials that did not meet the start or end criteria
were removed from analysis (64 trials; 5.1% of trials), and trials
with errors in the direction of the other target that were greater than
50° were removed from the overall analysis and analyzed sepa-

rately (139 trials; 11.6% of trials). In addition, there was one trial
with an error greater than 50° that was not in the direction of the
other target (cued target: �10°). This trial was removed. Follow-
ing removal of invalid trials and separation of perseverative errors,
two children had at least one cell without any valid trials. Data
from these children were not included in the final analyses. Fol-
lowing removal and sorting of trials, 3-year-olds completed an
average of 31 trials (SD � 5.9).

Results

Directional error. The mean directional error for the inner
targets (�10°, �20°, and �30°) at each delay are shown in
Figure 9b, and data for the outer targets (50°, 60°, 70°) at each
delay are shown in Figure 9f. As can be seen in the figure,
responses to the �10° target were biased toward midline while
responses to �20° and �30° were accurate. Responses to the outer
targets were near zero with the exception of responses to the 60°
target which were biased toward midline at the long delay. Mean
directional error was analyzed in a three-way ANOVA with Con-
dition (�10°/70°, �20°/60°, �30°/50°) as a between-subjects
factor and Target (inner, outer) and Delay (0 s, 5 s, 10 s) as
within-subjects factors. There was a significant Delay � Target �
Condition interaction, Wilks’ � � .73, F(4, 64) � 2.68, p � .05,

2 � .14. Tests of simple effects revealed a significant Delay �
Condition interaction for the inner targets, F(4, 66) � 2.84, p �
.05, 
2 � .15, but not for the outer targets, F(4, 66) � 1.63, n.s.,

2 � .09. Additional analyses of delay at each of the inner targets
revealed a significant delay effect to the �10° target, F(2, 24) �
6.69, p � .005, 
2 � .36, but not to the �20°, F(2, 24) � .43, n.s.,

2 � .03, or �30° target, F(2, 18) � 2.62, n.s., 
2 � .23.
Therefore, over delay the �10° target was biased toward midline,
while the other targets were not biased.

As in Experiment 2a, planned comparisons were conducted
comparing directional error collapsed across 5 and 10 s delays to
zero error (see Table 1). Responses to the �10° target were biased
significantly toward midline, M � �5.68, t(12) � �4.70, p �
.001. Responses to the other targets were not significantly biased
(�20°: M � .97, �30°: M � .18, 50°: M � 2.44, 60°: M � �.73,
70°: M � .34). This differs from the younger 3-year-olds in

Figure 11. Mean variable error over delay in Experiment 2a (3 years 6
months; 4 years; 5 years) and 2b (3 years 8 months) for the four age groups.

Figure 12. Mean proportion of perseverative errors per participant for
Experiment 2a (3 years 6 months; 4 years 5 years) and Experiment 2b (3
year, 8-month-olds).
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Experiment 2a who were biased toward midline at both �10° and
�20°. It also differs from the 4-year-olds who were accurate at
�10° and significantly biased away from midline at �20°.

To examine age differences across experiments directly, the
older 3-year-olds in Experiment 2b were compared to the younger
3-year-olds and 4-year-olds in Experiment 2a by conducting two
repeated-measures ANOVAs with Target and Delay as within-
subjects factors and Age and Condition as between-subjects fac-
tors. Only significant Age effects (i.e., Experiment effects) are
reported. There were no significant Age effects in the ANOVA
comparing the younger and older 3-year-olds. There was a signif-
icant Age � Delay interaction in the ANOVA comparing the older
3-year-olds and the 4-year-olds, F(2, 126) � 3.51, p � .05, 
2 �
.05. Over delay the older 3-year-olds were biased slightly toward
midline (0 s: M � 1.56, 5 s: M � .03, 10 s: M � �1.22), while the
4-year-olds were biased slightly away from midline (0 s: M � .99,
5 s: M � 1.93, 10 s: M � 1.42).

Individual differences. Using the same methods as in Experi-
ment 2a, we classified each child as being biased toward midline,
away from midline, or unbiased. The proportion of children in
each classification group for the �10° target can be seen in
Figure 10, upper panel. The majority of 3 years, 8-month-olds
were biased toward midline at �10°. There were also a number of
children who were unbiased. This is comparable to the perfor-
mance of 3 years 6 months in Experiment 2a. The proportion of
children in each classification group for the �20° target can be
seen in Figure 10, center panel. About one third of older 3-year-
olds were biased toward midline, one third were biased away from
midline, and one third were unbiased. Considered in the context of
data from Experiment 2a, this resulted in a linear decrease in the
proportion of children biased toward midline as age increased, and
a linear increase in the proportion of children biased away from
midline as age increased. Finally, the proportion of children in
each classification group for the �30° target can be seen in
Figure 10, lower panel. Here, about half of the older 3-year-olds
were biased toward midline and half were biased away from
midline. Therefore, at both �20° and �30°, the 3-year 8-month-
olds showed transitional behavior.

Variable directional error. Variable error is shown in Fig-
ure 11 (gray, dot-dash line). As can be seen in the figure, variable
error increased as delay increased. In addition, the magnitude of
3-year 8-month-olds’ variable error was in between the 3-year
6-month-olds and 4-year-olds from Experiment 2a. Variable error
was analyzed in a repeated measures ANOVA with Condition
(�10°/70°, �20°/60°, �30°/50°) and as a between-subjects factor
and Target (inner, outer) and Delay (0 s, 5 s, 10 s) as within-
subjects factors. The only significant effect was a Delay main
effect, Wilks’ � � .42, F(2, 30) � 20.84, p � .001, 
2 � .58.

Older 3-year-olds’ variable error was compared directly to the
younger 3-year-olds’ and 4-year-olds’ variable error by conducting
two repeated measures ANOVAs with Target and Delay as within-
subjects factors and Age and Condition as between-subjects fac-
tors. Only significant Age effects are reported. There was a sig-
nificant Age main effect in the ANOVA comparing the younger
and older 3-year-olds, F(1, 64) � 9.13, p � .01, 
2 � .13. There
was also a significant Age main effect in the ANOVA comparing
the older 3-year-olds and 4-year-olds, F(1, 60) � 6.22, p � .05,

2 � .09. Thus, the systematic decrease in variable error over
development evident in Figure 11 was statistically reliable.

Perseverative error analyses. Three years, 8-month-olds made
86 perseverative errors out of a total of 1201 trials. The number of
perseverative error trials ranged from 0 to 14 per participant. The
mean proportion of perseverative errors per participant can be seen
in Figure 12. As can be seen in the figure, the mean proportion of
perseverative errors for the older 3-year-olds was in between the
mean proportion of perseverative errors for the younger 3-year-
olds and 4-year-olds from Experiment 2a. The mean proportion of
3 years, 8-month-olds’ perseverative errors to each target was
analyzed in a repeated measures ANOVA with Target as a within-
subjects factor and Condition as a between-subjects factor. There
were no significant effects.

Discussion

Experiment 2b further tested the gradual, continuous nature of
the predictions of the DFT and the spatial precision hypothesis.
Specifically, we tested whether an age in between 3 years, 6
months and 4 years, 4 months would show an intermediate pattern
of error relative to Experiment 2a. Results supported this predic-
tion. Children 3 years, 8 months of age were biased toward midline
at �10° and not biased at �20° or �30°. This pattern is more
advanced than the younger 3-year-olds who were biased toward
midline at �10° and �20°, and less advanced than the 4-year-olds
who were biased away from midline at �20° and not biased
at �10°.

Individual differences at �20° provided particularly dramatic
evidence of the gradual nature of the developmental transition
predicted by the DFT. Recall that in the previous experiment, the
majority of the 3 years, 6-month-olds were biased toward midline
or unbiased while the majority of the 4-year-olds were biased away
from midline at �20°. In the present experiment, a third of the
older 3-year-olds were biased toward midline, a third were biased
away from midline, and a third were unbiased. Thus, across
experiments there was a linear increase in the number of children
biased away from midline at �20° as age increased.

Beyond the change in geometric effects, results of this experi-
ment also provide further support for the prediction of increased
stability in SWM over development (see also Thelen et al., 2001;
Spencer & Hund, 2003). Across Experiments 2a and 2b there was
a linear decrease in the number of perseverative errors as age
increased. There was also a systematic decrease in variable error
over development.

Although data from Experiments 2a and 2b are generally con-
sistent with the predictions of our model, the exact pattern of
attraction and repulsion across ages did not match the simulations.
Specifically, in the simulations, the 60° target was the first target
to show significant repulsion from midline, and then repulsion
gradually spread inward to the targets closer to midline. In chil-
dren’s responses, however, repulsion first emerged at 20° and then
spread outward to the other targets. The goal of Experiment 3 was
to examine whether the DFT can capture this specific pattern of
biases across targets and ages.

Simulation Experiment 3

The goal of Simulation Experiment 3 was to determine whether
the DFT and the spatial precision hypothesis can quantitatively
match the pattern of errors observed in Experiment 2. Results of
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Experiment 2 were in general agreement with predictions of the
DFT, but the emerging bias away from midline over development
did not fit the exact pattern the model exhibited. There were two
primary differences. First, the model was initially biased away
from midline at the 50° and 60° targets and then spread to the
targets that were closer to midline. Children, however, were ini-
tially biased away from midline at 20° and then the bias spread to
the other targets. The second difference is that the model showed
significant bias toward midline at targets close to this axis when
repulsion first emerged at 50° and 60°. This is not the case with
children: children whose responses were biased away from midline
at 20° were not significantly biased toward midline at any location.

The pattern of error in children’s responses suggests a modifi-
cation in how the SPH is implemented: the fact that repulsion first
emerged at 20°—the same target location where adults show
maximal repulsion (see Spencer & Hund, 2002)—suggests that the
width of inhibition is not changing over development. Increasing
the strength of inhibition without manipulating the width over
development should result in repulsion that first emerges near the
reference axis and then spreads to the outer targets as the strength
of inhibition increases.

In Simulation Experiment 3 we tested the DFT and SPH by
trying to match the pattern of errors from Experiment 2. We did
this by manipulating the same developmental parameters as in
Experiment 1 with the exception of leaving the width of the
inhibitory projections the same across development.

Method and Results for Simulations of Developmental
End Points

The methods for the simulations were the same as in Simulation
Experiment 1 except that the number of simulations was increased
to 200 trials to each target location for each parameter set to ensure
that the subtle effects we were attempting to capture were robust
effects in the model. As in Experiment 1, we began by quantita-
tively modeling the adult data from Spencer and Hund (2002). In
our effort to quantitatively fit data from Experiment 2 with con-
sistent changes in the direction of parameters across development,
we had to slightly modify the adult parameters used previously.
Although the parameter values used for the adult model were
slightly different than in Experiment 1 (see Table A2), the results
were similar (see Figure 5h and 5i).

Next, we fit the 3-year-old data from Schutte and Spencer
(2002) using the implementation of the SPH from Experiment 1,
with the exception that we did not scale the widths of the connec-
tions between fields. Thus, we scaled the width of the reference
input as well as the strength of this input into the perceptual and
working memory fields; the strength of local excitation in the
perceptual and working memory fields; and the strength of the
connections from the inhibitory field to the perceptual and working
memory fields. We increased the width of the reference input and
decreased the various strength parameters until the model showed
biases toward midline for all targets to the left and right of this axis
(see Figure 5g). The parameter values are given in Table A2. As
Figure 5 shows, we were able to capture the performance of
3-year-olds with the simplified version of the SPH.

Implementation of the SPH During the
Developmental Transition

To examine the behavior of the model during the transition, we
scaled the parameters between the 3-year-old and adult parameter
values. Our goal was to produce a total of six parameter sets each
of which fit one of the age groups. The parameter values for each
set are given in Table A2. In addition to fitting the pattern of error
in the data, each parameter set needed to meet the same criteria that
were used in Experiment 1: (a) successfully build a peak in SWM
when the target turned on; (b) maintain this peak in SWM during
the 10-s delay; and (c) hold on to the peak in SWM without
forming a second peak associated with the midline reference
frame.

We examined several parameter sets en route to the final values.
In fact, we ran simulations for over 80 different parameter sets in
order to fully explore the parameter space (note that each set took
approximately 18 hr to simulate for a total of over 1,440 hr of
simulation time). Of the parameter sets tested, some did not meet
the criteria listed above. For example, increasing the strength of
inhibitory connections too much, dev_cv, resulted in working
memory peaks that would not sustain during the delay for some
target locations. Some parameter sets met the above criteria and
displayed the basic qualitative pattern—decreasing bias toward
midline over development and the emergence of repulsion from
midline that increased over development—but had errors that were
either too large or too small. For example, increasing the strength
of the excitatory connections, dev_cww, within the working mem-
ory field, SWMobj, often resulted in errors that were too large. In
summary, although it is likely that the final parameter set described
below is not the only parameter set that would offer a good fit to
the empirical data, we are confident that only a very limited
number of parameter sets will reach the level of fit we obtained. In
our experience, there are simply too many constraints to think
otherwise, including constraints in (a) the DFT and how collec-
tions of parameters constrain one another (effectively limiting the
number of “free” parameters), (b) how the model must operate on
each trial to perform the spatial recall task, and (c) the empirical
data that includes estimates of both mean directional error and
response variability at each target location and each age.

The parameter values that met the above criteria and provided
the best fit are in Table A2 and are graphed in Figure 13a and b.
Note that because we were matching the behavioral data we did
not attempt to scale the parameters smoothly, but many of the
parameters ended up falling on relatively smooth curves. A pri-
mary question is whether the resultant effect on the self-sustaining
peaks would show the properties proposed by the SPH—broad,
weaker peaks early in development with little inhibition and stron-
ger, more precise peaks later in development with stronger inhi-
bition. This was indeed the case. As can be seen in Figure 13c, a
WM peak in the 3-year-old model is broader and weaker (see black
bold line) than the peak in the adult model (see light gray, bold
line). As the parameters are scaled, the peak becomes narrower and
stronger (see black to light gray lines). Thus, the scaling replicated
the central aspects of the SPH, that is, peaks in SWM become
stronger and more precise over development.

As in Experiment 1, the target peaks still died out on a few trials
so these trials were removed from analysis. Overall, 0.3% of trials
(23 trials out of a total of 8,400 trials) were removed (parameter set
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1: 0%, parameter set 2: 0%, parameter set 3: 0%, parameter set 4:
0.6%, parameter set 5: 0.001%, parameter set 6: 1.0%).

Results of Developmental Simulations

The constant error at each target location at the end of the delay
for parameter sets 2 to 5 is shown in Figure 14, dashed lines. The
data from Experiment 2 are shown for comparison (Figure 14,
solid lines). As can be seen in the figure, the data from the model
match the data from Experiment 2 quite closely, that is, the pattern
of attraction/repulsion from midline over development fits the
empirical data. Most critically, repulsion first emerges for the
4-year-old model at the 20° and 30° targets—the precise loca-
tions where repulsion first emerged in the empirical data. Due
to the relatively limited number of neurons we used in the
model, fits to the 10° target are the least accurate, but even the
10° target in these simulations behaves similarly to results from
Experiment 2.

Why did repulsion first emerge at 20° in the model? This was
due to how inhibition changed over development. Initially
inhibition was only strong enough to cause peaks in working
memory to be repelled near 20°—the place where inhibition
from the reference peak substantially overlapped inhibition
from the working memory peak. When targets were farther from
midline, inhibition overlapped, but it was too weak to cause
peaks in working memory to drift systematically over delays.
As inhibition strengthened over development, the spatial range
across which inhibitory overlap could cause delay-dependent
drift increased and working memory peaks farther from midline
showed this effect.

As in Experiment 1, we examined response variability by com-
puting the standard deviation of responses to each target location
for each parameter set. We then averaged the standard deviations
across the 10° to 60° targets for each parameter set (see Figure 15).
As can be seen in Figure 15, there was a reduction in variability
over development in the model which is consistent with the results
from Experiment 2 and Spencer and Hund (2003). Additionally,
variability at the 0° target was lower than at the other target
locations for all parameter sets (see Figure 15) which is consistent
with results of Spencer and Hund (2003).

Overall, the standard deviations are much lower than the em-
pirical values from Experiment 2. This is not surprising, given that
we did not change the level of noise from the level used for the
adult simulations. It is reasonable to assume that the level of
noise would be higher for younger children. We attempted to
reach the 3-year-olds’ level of variability by scaling the strength
of the noise. Although this did increase response variability in
the model, there was an upper limit: we could not obtain the
level of variability observed in 3-year-olds’ responses because
at high levels of noise, the model could no longer maintain a
peak in the SWM field. It is likely that the high variability seen
in young children’s responses reflects multiple noise sources.
For instance, children must maintain their ego position relative
to the table in order to correctly map the required motor
response onto a location in the task space. Three-year-olds tend
to be rather antsy in laboratory tasks; thus, it is likely that some
of the variance in their responses reflects mis-estimation of ego
position that accumulates during each trial. Similarly, 3-year-
olds are easily distracted and may temporarily lose their focus
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Figure 13. Panels (a) and (b) show the developmental scaling parameters used in Experiment 3 for each age
group modeled. Note that dev_�ref was set to 70 for the youngest 3-year-old model (3,0). Panel (c) shows
developmental changes in the activation profile of self-sustaining peaks in the SWM field as a result of changes
in spatial precision parameters from early in development (black bold line) to later in development (light gray
bold line).
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on task-relevant details. None of these extraneous factors are
included in our model. Although variability in the model was
not at a 3-year-old level, the model did show a decrease in
variability over development. This establishes that changes in
the precision of neural interactions in the model contribute to
the stability of peaks as well as the size and direction of
response errors.

One advantage of quantitatively modeling a developmental
change is using the model to generate hypotheses for future work.
We were able to capture the developmental change by changing
the precision of neural interaction in the model, but can we learn
anything from the specific parameter changes? Examination of the
parameter changes in Figure 13 reveals that some parameter
changes were relatively gradual, while others changed more dra-
matically over development. For the parameters related to the
reference axis input, the largest changes occurred between the 3
years and 3 years 6 months parameter sets (see Figure 13a). In
contrast, for the parameters related to neural interaction in the
perceptual and spatial working memory fields, the largest changes
occurred between the 3 years 8 months and 4 years 4 months
models (see Figure 13b). This suggests that changes in the per-
ception of the midline symmetry axis may precede dramatic
changes in how the target is remembered and actively anchored to
perception of the reference frame during the memory delay. There-
fore, future work should examine the connection between percep-
tion of reference axes and the precision of spatial memory, using,
for instance, tasks that probe perception of the midline symmetry
axis directly.

In summary, the model did a good job quantitatively modeling
a complex pattern of results over development. Importantly, these
fits were obtained without any changes in the width of projections
between the fields. Only changes in the reference input and the
strength of local excitation and lateral inhibition were required. As
we discuss below, these changes in neural interactions are consis-
tent with known changes that occur during brain development,
effectively grounding the transition in geometric biases in well-
documented neural mechanisms.

General Discussion

The purpose of this study was to test a set of predictions of the
DFT about the developmental course of the transition in geometric
effects. Simulations of the DFT in Experiment 1 were used to
generate a set of hypotheses about the transition that were tested
empirically in Experiment 2. Results from the empirical study
found that the age range during which the transition in geometric
effects occurred was protracted, and depended on the target loca-
tion probed. Figure 16 shows the direction of bias for each target
at each age. As can be seen in the table, results supported the
prediction that over development the range of attraction toward
midline narrows. In addition, data from the experiments supported
the prediction that over development inhibition emerges and be-
comes stronger; however, the location at which inhibitory biases
first emerged at 4 years, 4 months of age was not consistent with
model simulations. Thus, in Simulation Experiment 3 we at-
tempted to quantitatively fit results from Experiment 2 with a

Figure 14. Mean constant error from Experiment 3 simulations (dashed lines) and mean constant error from
Experiment 2 (solid lines) for each age group. Error bars are standard error of the mean for the data from
Experiment 2.
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simpler implementation of the spatial precision hypothesis. Simu-
lation results showed a good match to the empirical findings.
Specifically Experiment 3 was able to capture the data by changing
the strength of connections between the fields and not changing the
widths of neural interaction.

Results from Experiment 2 also supported the predicted increase
in stability over development. This was evident in analyses of
variable error and perseverative errors. DFT simulations predicted
a decrease in the variability of responses over development. The
model also demonstrated that early in development peaks may not
always sustain at the target location. Specifically, the target peaks
did not sustain in every simulation, even though we chose scaling
parameters that would sustain target peaks in a maximum number
of trials. Results of Experiment 2 suggest that in some instances
young children had difficulty sustaining a peak in working mem-
ory, and when the peak did not sustain, responses were dominated
by longer-term memory.

Thus, overall results from Experiment 2 provide preliminary
support for the prediction that the transition in geometric effects is
gradual, protracted, and depends on the specific target location
probed. It is important to emphasize that this work is only a first
step and needs to be followed by longitudinal studies that seek
stronger evidence that the developmental transition is gradual
within individual subjects. We note, however, that this presents
some real challenges. In the present study, each child responded to
only two targets on either side of midline. This ensured that results
were not caused by known developmental changes in recall biases
toward items in long-term memory built up across trials (see
Schutte et al., 2003). In a longitudinal study, one would have to
factor such long-term memory processes into the design and con-
trol for the practice effects that arise by asking children to repeat-
edly respond to the same targets. In this context, the cross-
sectional design used here has some merit because it precisely
controlled for known influences on spatial working memory. That
said, it is only through the combined strengths of cross-sectional
and longitudinal designs that we can get a full picture of the nature
of the developmental transition in geometric biases.

Implications for Dynamic Systems Theory

The results of these experiments supported two key insights of
dynamic systems theory: qualitative developmental transitions can
arise from quantitative changes in underlying parameters and
behavior is the result of soft assembly in a multiply determined
system (for discussion, see Spencer & Perone, 2008). One of the
central insights of dynamic systems theory is that bifurcations (i.e.,
transitions) from one stable attractor state to another over devel-
opment can be due to quantitative changes in an underlying vari-
able (see, e.g., Elman et al., 1996; Thelen & Smith, 1994; van der
Maas & Molenaar, 1992; van Geert, 1998). According to the
spatial precision hypothesis, the developmental transition in geo-
metric effects is such a case: seemingly qualitative changes result
from quantitative changes in neural interactions.

A central question, however, is whether the transition in geo-
metric effects is a qualitative or quantitative developmental tran-
sition. The dominant explanation of this transition provided by the
CA model, characterized the transition as a qualitative change—
children transition from using one category to a re-
conceptualization of space and the use of two categories. Although
previous research supported this proposal (Huttenlocher et al.,
1994; Schutte & Spencer, 2002; Spencer & Hund, 2003), this
research only tested children prior to the transition and children
post transition. Several researchers (e.g., Adolph, Robinson,
Young, & Gill-Alvarez,, in press; Newcombe & Learmonth, 1999;
Thelen & Smith, 1994) have argued that qualitative transitions
only appear qualitative because of the resolution of the data (see
also, Fischer & Paré-Blagoev, 2000). When age samples are
widely separated, as they were in the previous studies, transitions
can appear qualitative. When viewed at a finer scale, qualitative
transitions can appear more quantitative. This study has shown that
the transition in geometric effects is not an all-or-none qualitative
change as previous research suggested. Rather, the transition is
more quantitative in nature with the region attracted toward mid-
line narrowing and the region repelled from midline expanding
(see Figure 16).

There is, however, a clear qualitative component to the transi-
tion in geometric effects. Rather than just the region of attraction
toward midline narrowing, repulsion emerges over development.
Before 4 years, 4 months of age there is not enough inhibition to
bias targets away from midline. Strong inhibition first emerges at
�20° at around 4 years of age. This causes a qualitative change in
behavior—a bias away from midline. After that, inhibition contin-
ues to change quantitatively, and, as the strength of inhibition
increases, targets further out are also repelled from midline. Thus,
both attractive and repulsive effects emerge from a quantitative
change in the precision of neural interactions. Future work using a
longitudinal design will be needed to track individual children

Figure 15. Variable error (standard deviation) for parameter sets 1 (3-
year-old model) to 6 (adult model) for the 0° target (light gray, dotted line)
and the 10°�60° targets (dark gray, dashed line).

Figure 16. Pattern of memory biases across target locations for 3 years 6
months through 6 years of age.
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during the time of the transition to determine the detailed time
course of changes in neural precision as children move step-by-
step from attraction to repulsion.

Implications for the CA Model

According to the CA model, the transition in geometric effects
is a transition in children’s ability to subdivide space into two
categories (Huttenlocher et al., 1994). What are the implications of
our findings for the CA model? Can the CA model account for the
details of the pattern of error we observed?

If there is a prototype at midline—as is suggested by the biases
toward midline early in development—biases should be smaller
near midline and larger further out (Huttenlocher & Lourenco,
2007). Although data from 3-year-olds are generally consistent
with this proposal (see Schutte & Spencer, 2002), data from
children closer to the developmental transition are not. For in-
stance, 3 years, 6-month-olds’ biases toward midline were larger at
locations near midline and not significantly biased further out (see
Experiment 2). It is not clear how the CA model would explain this
pattern of error. Similarly, it is not clear how this model would
explain the initial emergence of biases away from midline at �20°
followed by the expansion of the repulsion effect across a range of
target locations over development.

These empirical details highlight a primary limitation of the CA
model in the context of the present report: this model does not
explain how development occurs. According to the CA model,
children’s ability to impose categories increases with age (Hutten-
locher & Lourenco, 2007), but the model does not tell us anything
about the processes that give rise to subdivision or how they
change over development. Thus, in our view, the present study
presents a major challenge to the dominant theory of geometric
biases. We see no clear way that this model can account for the
pattern of error predicted a priori by the DFT.

In this context, we think it is time to reconsider the concepts
introduced by the CA model nearly two decades ago. There are
now a growing number of ways in which data from spatial recall
tasks are not consistent with the details of the CA model, but are
consistent with the DFT. For instance, we highlighted in Simula-
tion Experiment 1 that children and adults show lower variability
when responding to targets aligned with a midline symmetry axis
(see also, Engebretson & Huttenlocher, 1996)—a pattern consis-
tent with the DFT but not the CA model (for extensive discussion,
see Baud-Bovy, 2008). Similarly, spatial recall responses are sys-
tematically biased relative to longer-term memories built-up from
trial-to-trial (see, e.g., Schutte et al., 2003; Spencer & Hund, 2002,
2003), yet there is no concept in the CA model to account for such
effects (Huttenlocher, Hedges, Corrigan, & Crawford, 2004). Fi-
nally, the CA model does not provide an adequate account of the
complex pattern of developmental changes predicted by the DFT
and tested in the present report.

Some of these differences in specificity arise because the DFT
and CA model live at different levels: the CA model lives at the
level of computational theory, while the DFT lives at the level of
process, grounded in neural principles. Although we have some-
times described these two theories as complementary in nature (see
Spencer & Hund, 2002), real differences between the theories have
emerged over time that can be directly tied to the fact that the DFT
moves concepts to the level of process. The DFT specifies changes

in recall responses over delay (both constant and variable error); it
specifies how patterns of responses should change from trial-to-
trial; and it specifies what is changing over development to yield
predictable and empirically robust changes in how perceived ref-
erence axes affect SWM. Although there can certainly be concep-
tual coherence when theories live at different levels, we contend
that the DFT and CA model are much less coherent than they once
appeared.

The DFT, for example, presents a conceptually related, but
different view of “category boundaries.” In our theory, “bound-
aries” are always anchored to visible structure (see Simmering,
Peterson, et al., 2008), for instance, the edges of a table and the
symmetry axes they specify (for similar ideas, see Schiano &
Tversky, 1992). Consequently, there are real constraints regarding
when geometric biases should arise, and how variations in percep-
tual cues should systematically alter—and in some cases, de-
stroy—geometric biases. We demonstrated this recently by show-
ing that adults are unable to mentally impose a category boundary
in otherwise empty space (Simmering & Spencer, 2007). Is this
view of “boundaries” fundamentally different than the view pro-
posed by Huttenlocher et al. (1991)? At one level, the answer is no:
both theories have been used to model geometric biases near
visible edges and symmetry axes, and perceptual cues that divide
space into regions have played a fundamental role in the concepts
used by Huttenlocher, Newcombe, and colleagues for decades (for
a general review, see Newcombe & Huttenlocher, 2000). At an-
other level, the answer is yes because the DFT specifies the origin
of boundary effects (for further discussion, see Spencer et al.,
2007), this theory can capture—in detail—the pattern of constant
and variable errors near boundaries, and this theory places con-
straints on when boundary effects should and should not occur in
both early and later development.

Given that the time-dependent interaction between perceptual
and working memory processes in the DFT produces both stability
along an axis and geometric biases to the left and right of an axis,
there is no need for spatial prototypes. Thus, a second point of
contrast between models is that the CA model posits represented
prototypes, and the DFT does not. That said, the longer-term
memory mechanism in the DFT (a form of Hebbian learning; see
Spencer et al., 2007; Spencer, Dineva, & Schöner, in press) can
create a prototype-like pull toward the center of a spatial region if
participants are asked to remember targets in that region of space.
Critically, however, this mechanism differs fundamentally from a
spatial prototype because non–prototype-like behaviors can also
emerge: biases away from the center of a spatial region can arise
if targets are asymmetrically distributed near an axis (see Spencer
& Hund, 2002), responses are sensitive to trial-to-trial variations in
target placement (e.g., Schutte et al., 2003), and responses vary
with the frequency of occurrence of each target (Spencer & Hund,
2003). Note that recent extensions of the category adjustment ideas
move in a related direction, but the concepts remain at the level of
computational theory (see Cheng, Shettleworth, Huttenlocher, &
Rieser, 2007; Huttenlocher, Hedges, & Vevea, 2000).

The points of contrast above raise an important question: does
the CA model account for phenomena that the DFT does not? This
question is difficult to evaluate at present. The concepts of bound-
aries and spatial prototypes have been applied to many phenom-
ena. For instance, Sandberg, Huttenlocher, and Newcombe (1996)
showed a complex pattern of developmental change when chil-
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dren’s performance was probed in single vs. two-dimensional
spatial recall tasks. In our view, these data are consistent with a
two-dimensional implementation of the DFT, but it is our task to
show how. Similarly, CA model concepts have been applied to
tasks that ask children to learn both about the spatial locations of
objects as well as which objects go where (see, Plumert, Hund &
Recker, 2007). Although we have extended the DFT to address
working memory for nonspatial features and how objects might be
actively maintained in working memory (Johnson, Spencer, &
Schöner, 2008), we have yet to explore the application of dynamic
neural fields to these specific examples in development. Thus, our
overall evaluation is that there are similarities between the DFT
and CA model, but the DFT provides a more detailed, accurate,
and complete account of spatial recall and the development of this
cognitive ability.

Development in the Dynamic Field Theory

By implementing a central developmental hypothesis, the spatial
precision hypothesis, in a dynamic neural field model, we were
able to capture the predicted pattern of bias during the transition in
geometric effects. This is now the second paper that uses the DFT
and SPH to quantitatively model a developmental change in spatial
memory. Schutte et al. (2003) used the DFT and SPH to quanti-
tatively model developmental changes in experience-dependent
biases in spatial memory. The fact that the same theory and the
same developmental hypothesis have now quantitatively captured
two different classes of spatial memory biases is impressive and
lends strong support for both the DFT and the SPH.

There are differences between the architectures used in Schutte
et al. (2003) and the present paper. In the present paper, we used
a new architecture which takes neural grounding to a deeper level.
Although both models represent locations in space using a popu-
lation of spatially tuned neurons consistent with cortical neuro-
physiology (e.g., in motor cortex: Georgopoulos, Kettner, &
Schwartz, 1988; Georgopoulos, Taira, & Lukashin, 1993; in pre-
motor cortex: di Pellegrino & Wise, 1993; in prefrontal cortex: di
Pellegrino & Wise, 1993; Wilson, Scalaidhe, & Goldman-Rakic,
1993), the model in Schutte et al. (2003) combined inhibitory and
excitatory connections in one field. By contrast, the multilayered
model used here is more consistent with the multilayered structure
of visual cortex (see Douglas & Martin, 1998; for related network
models, see Tanaka, 2000; Compte et al., 2000). Such ties to
neurophysiology are exciting, because they raise the possibility of
testing the model using neurophysiological techniques. Indeed,
several studies have demonstrated that dynamic fields can be
directly estimated through single-cell recording studies (e.g., Bas-
tian, Riehle, Erlhagen, & Schöner, 1998; Erlhagen, Bastian,
Jancke, Riehle, & Schöner, 1999). Several reaction time predic-
tions of a dynamic field model of motor planning have been tested
in this way (Bastian et al., 1998; Erlhagen et al., 1999).

Although ties to neurophysiology provide important grounding,
we emphasize that the DFT is a functional model of behavior. We
highlighted this aspect in the present report, showing how the
multilayered architecture used here opens the door to study new
behaviors not previously addressed within our framework. In par-
ticular, the three-layer architecture is needed to specify how
perceptual-like processes and working memory processes come

together in real time—an issue that was not addressed in Schutte et
al. (2003).

The different architectures used across studies raises the ques-
tion of whether the current architecture can capture the experience-
dependent biases modeled in Schutte et al. (2003). Schutte et al.
showed that biases toward a longer-term memory (LTM) of an “A”
location when children remembered a nearby “B” location de-
creased as age increased and as the distance between A and B
increased. The simulations in Experiments 1 and 3 did not include
any inputs from a longer-term memory process. Therefore, to
confirm that the current version of the model can capture the
effects from Schutte et al., we ran a set of simulations with a target
at 40° and a Gaussian LTM input centered at 20°, 30°, 50°, or 60°.
The same LTM input in was used in all simulations.

Figure 17 shows the difference between mean directional error
from 50 simulations with LTM input and 50 simulations without
LTM input for each parameter set. Even though the LTM input
was identical across parameter sets, the influence of this input
varied depending on the parameter set and the distance of the LTM
input from the target location. Specifically, as the “age” of the
model (i.e., parameter set) increased, bias toward the LTM input
decreased. In addition, this change over age depended on the
separation between the LTM input and the target location. The
three younger parameter sets (1–3) showed robust biases toward
the LTM input across all separations, while the three older param-
eter sets (4–6) only showed robust biases with a 10° separation
(i.e., when LTM was centered at either 30° or 50°). Overall, these
results demonstrate that the current model behaves in a manner
consistent with results from Schutte et al. (2003).

Despite changes in the architecture, the basic assumptions of the
model used here and in Schutte et al. and the developmental
hypothesis implemented remain the same. In both papers, devel-
opmental changes in spatial memory were captured by quantitative
changes in the precision of neural interaction. Thus, the DFT has
successfully captured two developmental changes in SWM—in
quantitative detail—in addition to qualitative aspects of perfor-
mance in other spatial memory and spatial discrimination tasks
(Schutte & Spencer, 2002; Simmering, Schutte, & Spencer, 2008;
Spencer et al., 2007), as well as developmental changes in novel
noun generalization in early childhood (Samuelson, Schutte, &
Horst, 2009).

Although this degree of generalization is impressive, there are,
of course, several other aspects of children’s spatial recall perfor-
mance that remain to be explained. One result that appears con-
sistent with our theory comes from Huttenlocher and colleagues
(1994). These researchers found that even young children show
biases away from a midline axis when spatial recall is measured in
a small geometric space (a small rectangle on a piece of paper; see
also, Spencer et al., 2006). A smaller scale geometric space should
have more salient and precise symmetry cues. Implementing this in
our model using a stronger and more precise reference input
produces stronger reference-related inhibition and narrower
reference-related excitation. These changes produce reliable biases
away from midline in our model with parameter values that pro-
duced attraction toward midline in the present study (see Schutte &
Spencer, 2009). Therefore, the DFT is able to explain why the age
at which children show reference-related repulsion depends on the
size of the geometric space.
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This result highlights that developmental changes in perfor-
mance in our model emerge from a complex interplay between the
system’s “intrinsic” dynamics and the details of the task. This
raises a fundamental question: does our model actually provide a
mechanism for how developmental changes occur? The spatial
precision hypothesis offers an explanation for what is changing
over development and, further, that changes in neural interaction
should arise from continuous processes over a developmental time
scale. But how do these changes in neural interaction occur?

Given that the DFT has strong ties to neurophysiology (for
further discussion, see Spencer et al., in press), we can look for
answers to how changes in neural interaction occur by examining
neurophysiological changes in the brain over development (for a
more extensive discussion, see Simmering et al., 2008). Prefrontal
cortex (PFC) is still developing during the time of the transition in
geometric effects (Gogtay et al., 2004; Rakic, 1995; Sowell,
Thompson, Tessner & Toga, 2001), and pruning of synapses and
myelination are still occurring (Huttenlocher, 1990; Sampaio &
Truwit, 2001). It is possible that these neurophysiological changes
underlie changes in spatial precision over development. For ex-
ample, Edin and colleagues (2007) examined neurophysiological
changes related to the development of working memory by imple-
menting changes related to synaptic pruning, synaptic strengthen-
ing, and myelination in a neural network model of visuospatial
working memory. These researchers then used the model to
generate five developmental predictions about BOLD signals.
They compared predictions the network made to BOLD signals
measured with fMRI in 13-year-olds and adults, and found that
neural interactions with “higher contrast” over development
effectively captured developmental changes in BOLD signals.
Higher contrast in their model consisted of strengthening con-
nections both within and between regions which yielded more
precise patterns of neural activation. Thus, the most effective

developmental hypothesis in their simulation and functional
magnetic resonance imaging study mirrored the changes cap-
tured by our implementation of the spatial precision hypothesis
in Experiment 3.

An example of a similar proposal is the representation acuity
hypothesis proposed by Westerman and Mareschal (2004) to ex-
plain the development of visual object processing. According to
the representation acuity hypothesis, the transition from processing
object parts to processing objects as wholes is the result of the
narrowing of receptive fields in visual cortex. This narrowing of
receptive fields is conceptually similar to the increase in the
precision of neural interactions in the DFT. The present paper
shows, however, that such narrowing can be an emergent result of
strengthening excitatory and inhibitory interactions among layers
of neurons in cortical fields.

Although these explanations of what is changing at the level of
the brain are exciting, this simply shifts the developmental ques-
tion to another level of description, leaving the question open as to
what motivates the change in cortex. It is likely that these cortical
changes are regulated by complex interactions among a host of
factors from the genetic level to the level of large-scale interac-
tions among populations of neurons in different cortical areas. It is
also likely that these changes are massively experience-dependent
(see Johnson, 1999, for a review). Given that the changes we made
to the model in Simulation Experiment 3 involved only changes in
the strength of excitatory and inhibitory interactions among layers,
it is easy to imagine that such changes could arise from a simple
Hebbian process that strengthens cortical connections as a function
of experience. Future research will need to probe whether such a
process can indeed give rise to the types of parameter changes we
implemented in Experiment 3 as the network is given experience
in different spatial tasks.
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Figure 17. Difference in mean directional error to a 40° location when the model responded with no LTM input
and LTM input centered at 20°, 30°, 50°, or 60° for parameter sets 1�6 from Experiment 3. Negative difference
scores reflect relatively more counterclockwise error (toward 20° and 30°), while positive difference scores
reflect relatively more clockwise error (toward 50° and 60°).

1721DEVELOPMENTAL TRANSITION IN SPATIAL WORKING MEMORY



Conclusion

The DFT predicted that the transition in geometric biases would
be gradual with the area that is biased toward midline narrowing
and the repulsion from midline emerging and expanding. The
predictions were supported by behavioral evidence from an initial
cross-sectional study. Taken together, the simulation and behavior
experiments presented here bring us closer toward understanding
the processes underlying the development of spatial working mem-
ory. Although detailing the processes that underlie development is
clearly a daunting challenge, the empirical and theoretical work
reported here provides a critical first step as we move toward a
more mechanistic understanding of how developmental transitions
arise within the domain of spatial cognition.
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Appendix

Model Equations

Activation in the perceptual field, PF (u), was governed by the
following equation:


u̇�x, t� � �u�x, t� � hu � � cuu�x � x���uu�u�x�, t��dx�

� � cuv�x � x���uv�v�x�, t��dx� � Sref �x, t� � Star�x, t�

� q�dx�gnoise�x � x����x�, t� (1)

where u̇�x, t� is the rate of change of the activation level for each
neuron across the spatial dimension, x, as a function of time, t. The
constant 
 sets the time scale of the dynamics (Erlhagen & Schöner,
2002). The current activation in the field is u�x, t�. This component is
negative so that activation changes in the direction of the resting level
hu. The excitation/lateral inhibition interaction profile is defined
by self-excitatory projections, �cuu(x � x�)�uu�u�x�, t��dx�, and
inhibitory projections from the Inhibitory layer (Inhib; v),

�cuv�xx���uv�v�x�, t��dx�. These projections are defined by the convo-
lution of a Gaussian kernel with a sigmoidal threshold function. The
Gaussian kernel was specified by:

c�x � x�� � c exp�� �x � x��2

2�2 � � k, (2)

with strength, c, width, �, and resting level, k. The level of
activation required to enter into the interaction was determined by
the following sigmoid function:

��u� �
1

1 � exp�� �u�
, (3)

where � is the slope of the sigmoid. The slope determines whether
neurons close to threshold (i.e., 0) contribute to the activation dynam-
ics with lower slope values permitting graded activation near thresh-
old to influence performance, and higher slope values ensuring that
only above-threshold activation contributes to the activation dynam-
ics. This field also receives reference input, Sref�x, t� and target input,
Star�x, t�. These inputs are gaussian inputs with associated widths, �ref

and �tar, and strengths, cref and ctar. The final input to the field is
spatially correlated noise, q�dx�gnoise�x � x����x�, t�, (see Schutte et
al., 2003, for a discussion of spatially correlated noise).

(Appendixes continue)

Table A1
Parameter Values for Experiment 1 Simulations

Layer 
 h Self-excitation
Excitatory

projection(s)
Inhibitory

projection(s) Reference input Target input

u (PF) 80 �7 cuu � 1.645 cuv � 1.21 cref � 13.31 ctar � 45
�uu � 3.0 �uv � 4.7 �ref � 1.0 �tar � 3

kuv � 0.05
v (Inhib) 10 �12 cvu � 4.55

�vu � 5.0
cvw � 2.2
�vw � 6.0

w (SWM) 80 �5 cww � 2.793 cwu � 1.75 cwv � 0.759 [all inputs scaled by
cs � 0.2]�ww � 5 �wu � 3 �wv � 43.32

kwv � 0.05
Developmental scaling parameters (from

“youngest” to “oldest” parameter setting)
dev_cuu � 0.57 dev_cv � 0.046 dev_cref � 0.475

dev_cww � 0.505 dev_�v � 3.51 dev_�ref � 46.0
dev_cuu � 0.5855 dev_cv � 0.224 dev_cref � 0.54
dev_cww � 0.614 dev_�v � 3.37 dev_�ref � 26.65
dev_cuu � 0.6165 dev_cv � 0.386 dev_cref � 0.61
dev_cww � 0.724 dev_�v � 3.18 dev_�ref � 15.42
dev_cuu � 0.663 dev_cv � 0.534 dev_�ref � 0.69
dev_cww � 0.824 dev_�v � 2.94 dev_�ref � 8.92
dev_cuu � 0.725 dev_cv � 0.667 dev_�ref � 0.76
dev_cww � 0.9 dev_�v � 2.62 dev_�ref � 5.16
dev_cuu � 0.8025 dev_cv � 0.789 dev_�ref � 0.84
dev_cww � 0.952 dev_�v � 2.21 dev_�ref � 2.99
dev_cuu � 0.8955 dev_cv � 0.9 dev_�ref � 0.92
dev_cww � 0.981 dev_�v � 1.68 dev_�ref � 1.73
dev_cuu � 1.0 dev_cv � 1.0 dev_�ref � 1.0
dev_cww � 1.0 dev_�v � 1.0 dev_�ref � 1.0
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The second layer of the model, Inhib (v), is specified by the
following equation:


v̇�x, t� � �v̇�x, t� � hv � � cvu�x � x���vu�u�x�, t��dx�

� � cvw�x � x���vw�w�x�, t��dx� � q�dx�gnoise�x � x����x�, t�.

(4)

As with PF (u), v̇�x, t� is the rate of change of the activation level
for each neuron across the spatial dimension x, as a function of time,
t. The constant 
 sets the time scale, v̇�x, t� is the current activation
in the field, and hv set the resting level of the field. Inhib (v) receives
activation from both PF (u), �cvu�x � x���vu�u�x�, t��dx�, and
SWM(w),�cvw�x � x���vw�w�x�, t��dx�. These projections are defined
by the convolution of a Gaussian kernel with a sigmoidal threshold
function using the same equations as the interaction in PF (u). As in
PF (u), the final input to the field is spatially correlated noise,
q�dx�gnoise�x � x����x�, t�.

The SWM layer (w) is governed by the following equation:


ẇ�x, t� � �w�x, t� � hw � � cww�x � x���ww�w�x�, t��dx�

� � cwv�x � x���wv�v�x�, t��dx� � � cwu�x � x���wu�u�x�, t��dx�

� csSref�x, t� � csStar�x, t� � q�dx�gnoise�x � x����x�, t�, (5)

where w�x, t� is the current activation in the field, and hw is the resting
level. SWM receives self excitation, �cww�x � x���ww�w�x�, t��dx�,
lateral inhibition from Inhib, �cwv�x � x���wv�v�x�, t��dx�, and input
from PF, �cwu�x � x���wu�u�x�, t��dx�. SWM also receives direct
reference input, Sref�x, t� and target input, Star�x, t�, scaled by cs.
The final input to the field is spatially correlated noise,
q�dx�gnoise�x � x����x�, t�.

Model Parameters

The size of the fields used in all simulations was 397 units with
1.2 units equal to 1 degree. For all simulations, noise strength was
set to .135, and noise width—the spatial spread of noise—was set
to 1. Additionally, for all simulations the strength and width of the
target input were set to 45 and 3 respectively. The remaining
parameters used in Experiment 1 are given in Table A1, and the
parameters used for the simulations in Experiment 3 are given in
Table A2.
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Table A2
Parameter Values for Experiment 3 Simulations

Layer 
 h Self-excitation
Excitatory

projection(s)
Inhibitory

projection(s) Reference input Target input

u (PF) 80 �7 cuu � 1.90 cuv � 1.206 cref � 16.638 ctar � 45
�uu � 3.0 �uv � 5.7 �ref � 0.8 �tar � 3

kuv � 0.05
v (Inhib) 10 �12 cvu � 4.7

�vu � 5.0
cvw � 2.2
�vw � 6.0

w (SWM) 80 �6.5 cww � 3.296 cwu � 1.75 cwv � 0.757 [all inputs scaled by
cs � 0.2]�ww � 5 �wu � 3 �wv � 35

kwv � 0.05
Developmental scaling parameters (from

“youngest” to “oldest” parameter setting)
dev_cuu � 0.0866 dev_cv � 0.1003 dev_cref � 0.32

dev_cww � 0.4237 dev_�ref � 75.0
dev_cs � 2.0

dev_cuu � 0.1732 dev_cv � 0.3008 dev_cref � 0.32
dev_cww � 0.6356 dev_�ref � 6.875

dev_cs � 1.2
dev_cuu � 0.1732 dev_cv � 0.3008 dev_cref � 0.32
dev_cww � 0.6356 dev_�ref � 3.75

dev_cs � 1.15
dev_cuu � 0.8225 dev_cv � 0.5985 dev_�ref � 0.72
dev_cww � 0.8051 dev_�ref � 1.25

dev_cs � 1.15
dev_cuu � 0.9524 dev_cv � 0.7719 dev_�ref � 0.76
dev_cww � 0.9322 dev_�ref � 1.25

dev_cs � 1.15
dev_cuu � 1.0 dev_cv � 1.0 dev_�ref � 1.0
dev_cww � 1.0 dev_�ref � 1.0

dev_cs � 1.0
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