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The ability to dynamically track moving objects in the environment is crucial for e±cient
interaction with the local surrounds. Here, we examined this ability in the context of the
multi-object tracking (MOT) task. Several theories have been proposed to explain how
people track moving objects; however, only one of these previous theories is implemented in
a real-time process model, and there has been no direct contact between theories of object
tracking and the growing neural literature using ERPs and fMRI. Here, we present a neural
process model of object tracking that builds from a Dynamic Field Theory of spatial cog-
nition. Simulations reveal that our dynamic ¯eld model captures recent behavioral data
examining the impact of speed and tracking duration on MOT performance. Moreover, we
show that the same model with the same trajectories and parameters can shed light on
recent ERP results probing how people distribute attentional resources to targets vs. dis-
tractors. We conclude by comparing this new theory of object tracking to other recent
accounts, and discuss how the neural grounding of the theory might be e®ectively explored
in future work.

Keywords: Attention; working memory; object tracking; dynamical systems; neural networks;
electroencephalography.

1. Introduction

We live in a dynamic visual world where objects are routinely moving around us.

Given this, the ability to °exibly track and update object representations is crucial.

For example, when playing basketball, you must tune out the roaring crowd and

other distractions and robustly track where your teammates are on the court. This
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often requires the very fast tracking of individual players to enable the right pass at

the right moment to lead to a score. To examine this ability in the laboratory,

researchers often use the multiple-object tracking (MOT) task developed by Pyly-

shyn & Storm (1988). In this task, participants are shown a collection of dots, a

subset is cued, and participants must track the target objects as they move through

space. After some period of motion ��� typically 2�10 s ��� participants are asked to

locate the target dots. Participants are typically quite good at tracking up to four

items. This task has been used to study di®erent aspects of the visual cognitive

system, including multifocal attention (Pylyshyn & Storm, 1988), capacity limits

(Alvarez & Franconeri, 2007), hemispheric organization (Yantis, 1992; Alvarez &

Cavanagh, 2005; Delvenne, 2005), the coordination of ¯xations and reference frames

(Liu et al., 2005; Howe et al., 2010, 2011; Hu® et al., 2010), and the impact of object

proximity and speed on visual tracking (Shim et al., 2008; Franconeri et al., 2010).

Several theoretical accounts of participants' performance in the MOT task pro-

pose that tracking is carried out by a ¯xed-capacity, parallel system that dynamically

updates the spatial positions of a set of spatial indexes or deictic pointers. These

indexes can be updated in a pre-attentive manner (Pylyshyn & Storm, 1988), using

attention (Kahneman et al., 1992; Cavanagh & Alvarez, 2005), or using a combi-

nation of early visual and attentional processes (Logan, 2002; Bundesen et al., 2005).

Recently, however, Oksama & Hy€onä (2008) proposed a serial model that accounts

for several key ¯ndings from the MOT literature. This model proposes that the

maintenance of pointers to multiple moving objects requires continuous serial (re)

activation and refreshing of identity-location bindings.

Although extant theories of object tracking provide compelling explanations for

adults' performance, there are two key limitations. First, none of these theories are

dynamic theories. These theories account for the probability of selecting the correct

set of target locations at the end of a trial as a function of speed, target load, and so

on. But the theories do not actually track locations dynamically through

time ��� they are not process models of visual cognition. This is related to a second

limitation. There is a growing literature on the neural basis of MOT. This literature is

based on innovative studies using both ERPs (Drew et al., 2009; Doran & Ho®man,

2011; Sternshein et al., 2011) and fMRI techniques (Culham et al., 1998; Jovicich

et al., 2001; Howe et al., 2009). To date, there is only one neurally grounded theory

of MOT.

One common form of neural network modeling is connectionism. Although con-

nectionist models have captured a host of ¯ndings in visual cognition (see Olshausen

et al., 1993; Mozer & Sitton, 1998; Itti & Koch, 2000, 2001), these models are not

well-suited for MOT because they often rely on winner-take-all processing and rely on

modi¯cation of weights for updating. Such models are di±cult to use with moving

objects because there is no intrinsic visual space to work within. An alternative class

of models uses oscillatory neural networks to process visual information (e.g., Ra®one

& Wolters, 2001). Recently, Kazanovich & Borisyuk (2006) proposed an oscillatory

neural model of MOT that maintains target items using separate neural layers, each
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of which is responsible for tracking a single object. This model e®ectively captured

several behavioral ¯ndings from MOT; however, no attempt was made to use this

model to interface with neural data directly.

The goal of the present study, therefore, was to examine whether an existing

neurally-grounded and dynamic theory of spatial cognition ��� the Dynamic Field

Theory (DFT) (Spencer et al., 2007) ��� could do something that no other theory of

MOT has accomplished: (1) to capture behavioral data from MOT using a dynamic,

visual process model, and (2) provide insight into aspects of the emerging neural

literature on MOT. One motivation for pursuing this goal comes from an interesting

thread in the MOT literature which shows that visual working memory capacity (also

referred to as visual short-term memory capacity; see Luck & Vogel, 1997) is related

to MOT performance (see e.g., Delvenne, 2005). These results are interesting because

the DFT was initially proposed to account for ¯ndings from studies of visuo-spatial

working memory (Spencer & Hund, 2002; Schutte & Spencer, 2009), and more recent

extensions of the theory have captured the details of behavioral studies probing

visual working memory (VWM) capacity (Johnson et al., 2009a, 2009b). We were

also motivated by a second key observation: to date, we have applied the DFT to

somewhat static, information-processing inspired tasks. Although these tasks have a

particular time structure, they do not tap the rich, real-time, dynamic processes of

the theoretical model. (For one exception, see the time-dependent \drift" in spatial

working memory (SWM) studied by Schutte & Spencer (2009)). Thus, we were

curious whether a theory benchmarked on more static tasks could be applied to a

highly dynamic task like MOT.

In the sections that follow, we ¯rst provide a brief overview of our theory of spatial

cognition, grounding this overview in one example ��� data showing delay-dependent

\drift" in spatial working memory in simple spatial recall tasks (Schutte & Spencer,

2002; Spencer & Hund, 2002, 2003). Next, we describe the 3-layer variant of the DFT

we used in the present study. This same 3-layer architecture has been used to capture

¯ndings from studies of spatial recall (Schutte & Spencer, 2009) and visual change

detection (Johnson et al., 2009a). We generalize this model to two spatial dimensions

and demonstrate how it can track multiple target objects in parallel while staying

anchored to the visual structure in the display which includes many distractors (for

related ideas, see Zibner et al. (2010)).

We then present two sets of simulation results. The ¯rst captures ¯ndings from a

recent study by Franconeri et al. (2010). This study is useful in the present context

because behavioral results show several canonical ¯ndings from the MOT literature

including e®ects of delay and speed. Critically, however, these ¯ndings were obtained

in an experimental context where object spacing was explicitly controlled. Results

show that object spacing is a key factor that impacts MOT performance, consistent

with results of our model. As we discuss in the conclusion, this creates an interesting

point of contrast between the DFT and the neural oscillatory model of Kazanovich &

Borisyuk (2006) which keeps targets separated in independent bu®ers. The second

set of simulation results captures ERP data from a recent study examining the
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distribution of attentional resources to targets and distractors in the MOT task. We

show how the DFT captures key aspects of the ERP ¯ndings based on how the

strength of locally excitatory and laterally inhibitory neural interactions is modu-

lated as a function of the tracking load.

2. The Dynamic Field Theory of Spatial Cognition

In this section, we provide an overview of the Dynamic Field Theory of spatial

cognition. This theory speci¯es how activation in working memory is sustained by a

network of neurons during short-term delays, how perceptual and memory processes

are linked together from moment-to-moment when individual locations must be held

in memory, and how working memory and long-term spatial memory are integrated.

For illustration, we focus on one of the central tasks we have examined in past

work��� spatial recall. This highlights several properties of the model that are central

to the present study.

In spatial recall tasks, participants are shown a target item, the target is hidden,

there is a short delay (e.g., 5 s), and participants must point to the remembered

target location. When people are asked to remember targets to the left or right of a

reference axis, they reliably exaggerate the distance between the target and the

reference axis (Huttenlocher et al., 1991). Such biases increase in magnitude over

delays (Spencer & Hund, 2002), providing a window into the moment-to-moment

processes that maintain information in SWM. In our view, spatial recall biases

re°ect three central challenges the neural system must overcome. First, the brain

must create an allocentric representation of the target item, a necessity given that

the target is perceived in an egocentric frame (retinal space). This is a challenging

issue because the egocentric-to-allocentric transformation must be maintained

despite, for instance, brief occlusions of the reference frame and movements of the

eye (for discussion, see Byrne et al., 2007). The second challenge is that the neural

system must actively maintain information about the target location during the

delay. We highlight how a basic neural mechanism ��� recurrent local excitation

with lateral inhibition ��� can create this form of active or \working" memory for

delays as long as 10�20 s (for related ideas, see Edin et al. (2009)). Finally, the

neural system must integrate solutions to these two challenges, actively main-

taining a memory of the target while staying in register with an allocentric ref-

erence frame.

Figure 1 shows a simulation of the DFT performing a single spatial recall trial

(Spencer et al., 2007). The panels on the left show the cued target at 220�

(0� ¼ midline; see Fig. 1(a)) which gives input into the top layer of a 7-layer neural

network (Figs. 1(b)�1(h)). Time (in s) is along the x-axis in each layer of the net-

work, while neural activation is along the y-axis (height). The z-axis shows a col-

lection of spatially-tuned neurons that respond maximally when stimuli are presented

at each neuron's \preferred" spatial location. The panels to the right in Fig. 1 show

2D views of three particular layers in the model: the egocentric perceptual ¯eld

342 J. P. SPENCER ET AL.



(PFego; Fig. 1(i)), the allocentric perceptual ¯eld (PFallo; Fig. 1(j)), and two views of

the SWM layer (top view: Fig. 1(k); side view: Fig. 1(l)).

The ¯rst theoretical challenge presented by spatial recall biases is that such biases

are allocentric in nature ��� they are linked to a perceived frame in the world ��� yet

visuo-spatial information is always perceived egocentrically (e.g., in retinal coordi-

nates). The top four layers of the DFT (see Figs. 1(b)�1(e)) do the work of trans-

forming spatial information perceived in egocentric coordinates into an allocentric

frame and reliably maintaining this frame from moment-to-moment and from trial-

to-trial.

Fig. 1. DFT simulation of one spatial recall trial with target at 220� (see dashed circle and arrow
in (a); 180� ¼ midline of task space). (b)�(h) Model architecture consists of seven layers of spatially-
tuned neurons with time shown on the x-axis, activation on the y-axis (see color inset), and space
on the z-axis. Arrows between layers indicate excitatory (solid) and inhibitory (dotted) projections.
Panels in the right column show top view of three ¯elds. The egocentric perceptual ¯eld (PF-ego;
(b)) is shown in (i) with time along the x-axis and space along the y-axis. Input is presented to
this ¯eld in retinal coordinates. Two activation peaks (red activation) are present at the start of
the trial corresponding to the target (T), which disappears, and the reference axis (R), which remains
visible. Dashed lines indicate a brief occlusion of the reference (i.e., no input). After the occlusion,
the reference shifts from 160� to 230� in the retinal frame. The allocentric perceptual ¯eld (PF-allo;
(d)) is shown in (j) (axes as in (i)). Note that the reference peak (R) remains active and centered
at 180�, even though it was occluded and shifted in PF-ego. This is because the shift ¯eld
(c) transforms input from the egocentric to the allocentric frame. The spatial working memory ¯eld
(SWM; (g)) is shown in (k) (axes as in (i)) and (l) (activation along the y-axis). The target peak
(T) sustains after input is removed (* in (l)), and drifts away from midline over delay (** in (k);
see `bending' yellow line).
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Once target-speci¯c spatial information has been transformed into allocentric

coordinates, it must be perceived and then actively maintained in SWM. The ¯ve

layers depicted in Figs. 1(d)�1(h) serve this function. Critically, these \dynamic

neural ¯elds" are not simply feed-forward networks that mimic input patterns.

Rather, neural interactions within these ¯elds can stabilize \peaks" of activation that

represent, for instance, decisions about the spatial information to remember and the

information to ignore. In particular, neurons within PFallo (Fig. 1(d)) and SWM

(Fig. 1(g)) have locally excitatory interactions where activated neurons boost the

activity of their local neighbors. In addition, neurons in PFallo and SWM have re-

ciprocal connections to a shared layer of inhibitory interneurons (see Inhib; Fig. 1(f)).

When activated, these interneurons project broad inhibition back to PFallo and

SWM. These combined interactions lead to the formation of stabilized activation

peaks.

For instance, Figs. 1(k) and 1(l) show top and side views of the SWM layer. As can

be seen in these ¯gures, the presence of the target in the task space builds up strong

activation in SWM when the target is visible. Critically, when the target is hidden,

the activation peak in SWM sustains itself through the delay period (activation

in SWM stays above 0 throughout the trial; see \single asterisk" in Fig. 1(l)). Thus,

SWM remembers the target location even in the absence of input. We refer to this as

a \working" memory state because the activation peak is stable against perturba-

tions (e.g., neural noise). Such stability is a pre-requisite to use the contents of

working memory in the service of another task ��� a central component of Baddeley's

classic de¯nition of the working memory construct (Baddeley, 1986).

The simulation in Fig. 1 provides a good illustration of the sense in which the

working memory peak is stable. Note that the SWM peak in Fig. 1(l) remains above

threshold during the delay even though there is a peak of activation in PFallo at

midline during the delay. The midline input is prevented from entering SWM by the

strong lateral inhibition generated by the SWM peak which actively suppresses input

from PFallo. Importantly, this does more than just protect SWM from intru-

sion ��� it allows PFallo to \hold on" to midline and keep the allocentric frame

aligned. Although PFallo and SWM achieve this balancing act, there is a cost: the

SWM peak is repelled from the midline peak in PFallo, that is, the model shows a

delay-dependent bias away from the reference frame. This is evident in Fig. 1(k)

(see \double asterisks") ��� there is a systematic, time-dependent \drift" of the

SWM peak away from midline during the delay.

Why does this occur? Recall that PFallo and SWM share a layer of interneurons.

Thus, the midline peak in PFallo activates inhibitory neurons around 180�, while the
target peak in SWM activates inhibitory neurons around 220�. Given that inhibitory

interactions are relatively broad (to achieve e®ective surround inhibition), these two

patterns of activation overlap in the inhibitory layer, creating strong inhibition be-

tween 180� and 220�. As a consequence, the SWM peak is pushed away from midline

during the delay because there is stronger inhibition on the midline-side of the SWM

peak. Note that the activation peak in PFallo does not move because it is anchored to
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perceptual input. This leads to one sense in which this arrangement between PFallo and

SWM can be a very good thing: if the PFallo and SWM peaks happen to align (e.g., the

target is presented at midline) then the model responds very robustly ��� the SWM

peak remains locked-on to midline throughout the delay and the model shows no bias

and low variability (for evidence, see Spencer & Hund, 2002).

The DFT provides a framework for thinking about reference-related biases in

SWM, and this theory has captured empirical data from spatial recall tasks in

quantitative detail (Schutte & Spencer, 2009). More generally, we have extended this

theory to capture developmental change in spatial recall performance, including a

qualitative shift in recall biases in early development (Schutte & Spencer, 2009,

2010). We have also generalized the theory to test novel predictions about children's

and adult's biases in position discrimination tasks (Simmering et al., 2006a;

Simmering & Spencer, 2008), and we have examined how SWM and spatial long-

term memory interact to form experience-dependent categories that build up

over learning (Lipinski et al., 2010a, 2010b). More recently, we have extended the

basic concepts of the DFT to capture how people use spatial prepositions to describe

simple object layouts (Lipinski et al., 2011). The goal of the present study is to ask

whether our dynamical systems model can e®ectively capture both behavioral

and neural data from a task that taxes the real-time dynamical properties of the

model ��� can the DFT track the motions of objects as they move through time

and space?

2.1. Can the DFT track multiple objects?

The ¯rst step in our explorations of the MOT task was to simplify the 7-layer model.

Many studies of MOT hold ¯xation constant. This eliminates the need for updating

the spatial reference frame; consequently, MOT can be captured within a retinal

frame. This was the case in the Franconeri et al. (2010) study we modeled; thus, we

dropped the top two layers in our model and presented inputs in a retinal frame of

reference directly into the PF and SWM layers.

Next, although some studies suggest that familiarity impacts MOT performance

(see e.g., Oksama & Hy€onä, 2008), the majority of studies use novel trajectories and

simple dots to eliminate any in°uence of longer-term spatial memory. Consequently,

we eliminated the two long-term memory layers in the model. This simpli¯ed the 7-

layer model down to three critical layers ��� PF, Inhib, and SWM. Note that this is

the same 3-layer model we have used in previous work to quantitatively model the

details of children's and adults' spatial recall performance (Schutte & Spencer, 2009),

position discrimination (Simmering et al., 2006a; Simmering & Spencer, 2008), and

visual change detection (Johnson et al., 2009a, 2009b).

The ¯nal step was to generalize the 3-layer model to two spatial dimensions. This

is mathematically straightforward. An activation value is assigned to every point in a

two-dimensional cortical ¯eld, resulting in a two-dimensional activation distribution.

An example is shown in Fig. 2(a). The ¯eld equation (see appendix) speci¯es the rate
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of change of activation within this two-dimensional ¯eld through time. Changes in

activation are governed, in part, by an interaction function which speci¯es how local

and far-away neighbors in°uence one another, but now the interactions are extended

to two dimensions. Figure 2(b) shows the two-dimensional Gaussian shape that

speci¯es the local excitatory interactions within the SWM layer of our model. Fig-

ure 2(d) shows the two-dimensional Gaussian kernel that speci¯es the laterally

inhibitory projection from the layer of inhibitory interneurons shown in Fig. 2(c) to

the excitatory SWM layer. To compute the e®ect of these interactions, the inter-

action kernel is convolved along both dimensions with the gated output of each layer

(see Appendix). Note only neural sites that are su±ciently close to the neural output

threshold (an activation value of 0) contribute to excitatory and inhibitory inter-

actions. The convolved output is then added to the resting level, stimulus inputs,

and the current pattern of activation to determine the evolution of activation

through time.

Multi-dimensional cortical ¯elds support the same stable states and instabilities

described above. In particular, su±ciently strong input combined with neural

interactions can result in the formation of localized peaks of activation in the

Fig. 2. Spatial working memory (SWM; 2(a)) and inhibitory (Inhib; 2(c)) layers of the MOTmodel. At
the top is a display with multiple targets distributed in a two-dimensional space. Circled objects show
cued targets. (a) Activation along horizontal and vertical dimensions in SWM. (b) Within-layer local
excitatory interactions in SWM. (d) Lateral inhibitory projection from (d) the inhibitory layer. To-
gether these interactions create the \Mexican hat" activation pro¯le.
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2D space (see Fig. 2(a)). With su±ciently strong interactions, peaks can become self-

sustained, forming a working memory for particular spatial locations. Moreover,

strong long-range inhibition can suppress nearby inputs, e®ectively separating

\targets" in SWM from \distractors" in PF. And with localized excitatory and

inhibitory interactions such as the kernels shown in Figs. 2(b) and 2(d), multiple

peaks can form and be self-sustained in the absence of input.

Figure 3 shows how these properties of the neural dynamics in the 2D 3-layer

model give rise to real-time, dynamic tracking of object locations in the MOT task.

Note that this sample simulation uses one of the actual trajectories used in the study

by Franconeri et al. (2010). We discuss these simulations details in Sec. 3. Note also

that we only show PF and SWM in this ¯gure��� the inhibitory layer is not shown for

simplicity. As a reminder of the full model architecture (see Fig. 1 and Appendix),

however, we highlight the e®ective coupling among the ¯elds to the left of Fig. 3: (1)

the display feeds into both PF and SWM (which is a proxy for input to these layers

from early visual cortical areas; see Fig. 1), (2) PF has an excitatory in°uence on

SWM, and (3) both ¯elds have a reciprocal inhibitory in°uence via the shared layer of

inhibitory interneurons.

At the start of the trial, 12 locations were input to PF (Fig. 3(a)) and SWM

(Fig. 3(b)). Critically, six of these locations were cued by using stronger inputs.

Consequently, these six targets formed peaks in the SWM layer by the end of the 2-s

cuing period (Fig. 3(b)). Next, the strengths of the objects were equalized, and all

of the items began to move along rotational \orbit" trajectories (see Franconeri et al.

(2010)). Figure 3 shows a sampling of the object motions across the ¯rst 2 s after the

cuing event. As can be seen in the lower panels of the ¯gure, the peaks in SWM

tracked the motion of the six target items for the ¯rst 500ms (see red \hot" spots of

activation), but lost one target peak by 1000ms (see circle in Fig. 3(f)). The ¯ve

Fig. 3. Dynamic tracking of multiple objects in a two-dimensional 3-layer model across 2000 ms. The
top row shows the behavior of the perceptual ¯eld (PF) and bottom row shows the behavior of the SWM
¯eld. (a, b) Cuing of six targets in SWM (see blue inhibitory troughs in PF and red activation peaks in
SWM). Across panels (c)�(j), SWM updates the horizontal and vertical position of the cued targets,
while PF tracks the positions of the distractors. In panel (f ), the model loses one of the target peaks in
SWM. Consequently, a distractor peak appears in PF (see (e)).
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remaining targets are tracked through the remainder of the 2-s interval.Note that there

are sub-threshold \bumps" of activation shown in cyan in each SWMpanel. These sub-

threshold activations re°ect the input from the display into the SWM layer. By con-

trast, the opposite pattern of peaks appears in PF. Here, the model forms peaks for the

non-target items in the display (see red \hot" spots) and tracks these items as they

move. Left on its own, PF would form peaks for all items in the display. This does not

occur for the targets, however, due to the inhibition from SWM to PF.

Why do peaks in PF and SWM track the inputs? This occurs through the same

mechanism that underlies peak drift in the model: peaks are attracted toward inputs

that fall within the range of locally-excitatory interactions. Consequently, as the

inputs move, the peaks follow. Essentially, movement of the inputs recruits new

neurons into the locally-excitatory interactions, shifting the peak in the direction of

the input. At the same time, neurons on the back edge of a peak fall into the range of

surround inhibition. As this process plays out through time, peaks in PF and SWM

shift with the inputs.

Critically, this dynamic process of recruiting new neurons into excitatory inter-

actions and inhibiting previously active neurons is sensitive to a host of factors and

sometimes SWM peaks are lost. An example is shown in Fig. 4 across ¯ner-grained

samples through time (50ms per panel vs. 500ms per panel in Fig. 3). As in the

previous example, six target peaks form in SWM by the end of the target cuing event.

But as the targets start to move, the circled peak to the lower right begins to lag

behind the input (which, in this case, is moving at a fast speed). Consequently,

excitation begins to build on the front edge of the inhibitory trough in PF. This

excitation builds to su±ciently strong levels in PF such that a peak forms which

inhibits the associated sites in SWM. Consequently, the model loses its tracking of

the lower right target and begins to treat this item as a distractor, that is, it begins to

track the item in PF.

Fig. 4. Fine-grained view of the loss of a SWM peak during tracking. (a, b) Cuing of six targets
maintained in SWM (see blue inhibitory troughs in PF and red activation peaks in SWM). Across
(c)�(f ), SWM updates the location of all six targets. However, after 100ms of tracking the circled item
in (f ) has weakened. (h) By 150ms, the circled SWM peak spontaneously decays. Consequently, the
previously tracked item becomes a distractor, which, in turn, leads to an error at the end of the trial.
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Figure 4 shows one example where a SWM peak dies out as it lags behind a moving

input. This highlights how speed can impact tracking in the DFT. Below we discuss

several other factors that play a role in tracking accuracy in the model.

3. Method and Results: Behavioral Simulations

In our ¯rst set of simulations, we quantitatively ¯t data from Franconeri et al. (2010).

As discussed previously, we selected this study because it highlights several canonical

factors known to impact MOT such as speed and duration, but this study also

controlled for object spacing. In particular, trajectories in this study consisted of

orbiting sets of points ��� multiple sets of points, each of which had two \moons"

orbiting around an invisible center point. This controlled for object spacing because

each object (i.e., each moon) was always 180� away from the other item in the set,

and the center points of the sets were placed relatively far apart. Note each set of

objects could rotate clockwise or counterclockwise and they changed direction ran-

domly. The goal of the study was to probe whether spacing could account for many of

the errors people make in MOT. The logic was that if object spacing is controlled,

errors should be solely dictated by the cumulative distance travelled: the more dis-

tance travelled, the more likely participants should be to \lose" a target. Critically,

distance travelled can be manipulated by the duration of motion; it can also be

manipulated by object speed. Results showed that cumulative distance travelled was

the key factor that impacted performance.

To explore whether the DFT could capture data from this innovative study, we

selected three conditions from the wider array of conditions explored: a fast speed

(1.2 rps) and a long duration (6 s), a fast speed (1.2 rps) and a short duration (2 s),

and a slow speed (0.167 rps) and a long duration (6 s). As can be seen in Fig. 5,

Fig. 5. Behavioral results and model simulations showing MOT performance at a fast speed (1.2 rps)
and long duration (6 s), a fast speed (1.2 rps) and short duration (2 s), and a slow speed (0.167 rps) and
long duration (6 s) for participants in Franconeri et al. (2010; blue bars) and the DFT (red bars).
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participants showed graded performance, with poorer performance at the fast speed,

and better performance at the slow speed. Interestingly, speed was not the sole factor

impacting performance: participants performed better at the fast speed provided the

trajectories only moved for 2 s.

To examine whether the DFT could capture these ¯ndings, we obtained the tra-

jectory ¯les used by Franconeri et al. and input these trajectories directly into our

model. This required scaling the trajectories to our ¯eld size. The original trajectories

were displayed on a 640� 480 resolution monitor, and the points were contained

within a 410� 410 pixel region. Preliminary simulations determined that a 301� 301

¯eld size was su±cient to successfully track peaks. Note that we scaled the trajec-

tories down to 85% of the ¯eld size, leaving 15% of the ¯eld at the edges without

direct input to allow peaks to spread into these non-stimulated regions. Thus, the

stimulated ¯eld size was 255� 255, roughly a third smaller than the number of pixels

used in the experiment. In addition to this spatial scaling, we also scaled the tra-

jectories temporally. In particular, the trajectories were presented at 120Hz, while

our neural dynamics operate at a faster timescale. Thus, we interpolated between

video frames and sampled the neural dynamics such that 1.8 time steps in the model

was equal to 1ms.

We conducted 24 simulations of each condition (which was equal to the number of

participants in each condition), using a di®erent trajectory ¯le for each simulation.

At the end of each simulation, we recorded the number of peaks in the SWM ¯eld and

the number that matched the actual locations of the targets. This determined the

model's accuracy on each trial. We then computed the mean accuracy of the model

(and SD) across simulations and compared this to the experimental results. As can be

seen in Fig. 5, the model ¯ts the empirical data relatively well. In particular, the

model had a harder time tracking the items at the fast speed than at the slow speed.

Moreover, the model showed quantitatively better performance for the fast, short

duration condition than for the fast, long duration condition. Inspection of the

model's tracking performance in the short duration condition revealed that it gen-

erally tracked four of six items for at least 1 s; however, between 1 s and 2 s, the model

sometimes lost one of the peaks in SWM.

Why does the model replicate the behavioral ¯ndings? The speed result re°ects the

observations made in Fig. 4. At slow speeds, the model is able to keep up with the

input, successfully recruiting new neurons into the locally-excitatory interactions as

the inputs move. At fast speeds, however, this sometimes breaks down and the SWM

peaks \lose" the input. When this occurs, activation grows in PF and the model

treats the target as a distractor.

What about the short duration condition? Here, the model does slightly better

because the likelihood of losing a fast-moving input is a stochastic process ��� noise

has an in°uence on the recruitment of new neurons into the locally-excitatory

interactions. For instance, consider the case when a fast-moving input moves into a

region of the ¯eld that currently has a lower level of activation due to a noise

°uctuation. In this case, the SWM peak might have a hard time getting new neurons

350 J. P. SPENCER ET AL.



on the front edge of the peak above the zero threshold. Consequently, the likelihood

of losing the peak will be higher. The longer the trajectories move around, the greater

the chance that this will happen, and the greater the likelihood that the model will

lose a SWM peak. Conversely, short durations favor better performance.

In summary, the DFT does a solid job capturing a sampling of conditions from

Franconeri et al. (2010). We will return to these behavioral simulations in Sec. 5 as

we compare the DFT to other theories. But ¯rst, we examine the second key question

of this study: can the DFT shed light on data from recent studies probing the neural

mechanisms that underlie MOT?

4. Method and Results: ERP Simulations

There has been a growing interest in understanding the neural basis of MOT using

both electrophysiology and fMRI. Here, we focus on the former approach. Given that

we have a real-time neural system, the question is whether neural activation in the

model accurately captures ¯ndings from studies using ERPs.

We focused on one particular study for illustration. We picked this study because

the type of neural interactions reported are complex and not transparently connected

to our theory. In particular, Sternshein et al. (2011) used ERPs to examine how

people allocate attentional resources to targets and distractors in MOT. Thus far in

this paper, we have focused on SWM within a ¯xed-capacity neural system. Thus, at

face value, it is not clear how our model might relate to ¯ndings from a study of

attentional resources. To the extent that our theory does capture aspects of the ERP

¯ndings, this would suggest that the model provides a useful tool for understanding

the neural processes that underlie MOT.

Sternshein et al. (2011) asked adults to track two, three, or four items (among 10

total) in a variant of the MOT task with a fast speed. During the tracking interval,

one of the targets or one of the distractors °ashed for 100ms. The °ashes were task-

irrelevant, but they produced an evoked response over occipital and parietal areas.

The question was how these evoked responses would di®er as a function of whether a

target or a distractor was probed and the number of items tracked (two, three, or

four). Results are shown in Fig. 6(a). ERP amplitudes (max�min) were higher for

targets than for distractors. In addition, ERP amplitudes decreased with increasing

tracking load. Sternshein et al. (2011) concluded that attention plays an important

role in distinguishing targets and distractors. Targets are allocated more attentional

resources than distractors, but this di®erence in the allocation of resources diminishes

with increasing tracking load, causing the task to become more di±cult. These

researchers also noted that the response to °ashed targets in the highest load con-

dition elicited smaller responses than °ashed distractors in the lowest load condition.

This suggests that both targets and distractors are processed to some extent; reduced

attention to targets alone cannot explain the full pattern of performance.

To examine whether the DFT might shed light on these ¯ndings, we used the fast

trajectories (i.e., 1.2 rps) from the behavioral simulations above and created a variant
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of the ERP paradigm. In particular, we cued the targets for 1 s and then asked the

model to track two, three, or four objects across a 2-s interval. One second into the

tracking interval, we added a 100-ms boost ��� the same duration used by Sternshein

et al. (2011) ��� to either one of the target inputs or one of the distractor inputs. We

then recorded all ¯eld activities in SWM during the boost that exceeded a conser-

vative threshold (�2 units) and integrated the resultant neural activation across

both spatial dimensions. This gave us a measure of the intensity of neural activation

in SWM during the \°ash" or boosting event. Given the subtlety of this neural

activation measure which aggregates over the entire ¯eld, we opted to run simula-

tions of the ERP paradigm with a lower noise strength (see Table A1). We conducted

10 simulations of the ERP paradigm for each load and for each type of °ash (i.e.,

boosting a target vs. boosting a distractor).

We then processed these data in a manner comparable to the ERP analysis used

by Sternshein et al. (2011). First, each neural activation time series was set to a

baseline level using the value of this measure at the start of each °ash period. Next,

we normalized all of the time series to the maximum across all observations. Third,

we averaged the time series across the runs from each condition, and computed the

amplitude of the neural activation signal for each condition by subtracting the

maximum activation value from the minimum value.

Results of the simulations are shown in Fig. 6(b). The model qualitatively captures

the pattern reported by Sternshein et al. (2011). Speci¯cally, the neural response to a

target °ash was generally stronger than the neural response to a distractor °ash, and

both responses decreased in magnitude as the tracking load increased. Notably, the

model shows a stronger neural response to the distractor °ash at load 2 than the

neural response to the target °ash at load 4, consistent with empirical observations.

(a) (b)

Fig. 6. ERP amplitude across tracking load and probe type (target¼ blue lines vs. distractor¼ red
lines) for (a) participants in Sternshein et al. (2011) and (b) normalized activation amplitude in the
dynamic ¯eld model.
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The one deviation of the model relative to the ERP data is that the model shows a

steeper decline in the neural response across loads 2 and 3 and a shallower decline

between loads 3 and 4. There could be multiple reasons for this di®erence given that

we used trajectories from Franconeri et al. (2010) and tuned the model parameters to

that behavioral paradigm. In light of this, we ¯nd the results shown in Fig. 6 quite

compelling.

Given that our model does not have \attentional resources" per se, what drives the

neural activation pattern shown in Fig. 6(b)? The stronger neural response to the

target °ash relative to the distractor °ash is readily explained in the model. When a

target input is boosted, the boost hits already active neural sites in the ¯eld and raises

their activity with no resistance. When a distractor is boosted, by contrast, the boost

hits a sub-threshold bump of activation and there is only a slight rise in neural

activation which is suppressed by the global inhibition in the SWM ¯eld. What about

the tracking load e®ect? The critical factor here is that each peak in SWM con-

tributes a small amount of global inhibition to the cortical ¯eld. Consequently, as

tracking load increases, the overall amount of inhibition in SWM increases. This has

the e®ect of reducing the overall strength of peaks in SWM. Thus, when a target

input is boosted, the boost grown from a less excited state and the overall amplitude

of the neural response decreases. Similarly, when a distractor is boosted, the boost

grows from a more inhibited state and the neural response is weaker. In summary,

then, the DFT explains the full pattern of results as a function of whether a peak is

boosted vs. a sub-threshold bump, and how the strength of excitation and global

inhibition change as tracking load increases.

5. Discussion

The ability to dynamically track moving objects in the environment is crucial to

e±cient interaction with the local surrounds. Here, we examined this ability in the

context of the MOT task. Several recent theories have been proposed to explain how

people track moving objects (e.g., Kazanovich & Borisyuk, 2006; Oksama & Hy€onä,
2008), but these previous theories have two key limitations. First, most of these

theories are not process models. Second, to our knowledge, there has been no direct

contact between theories of object tracking and the growing neural literature using

ERPs and fMRI.

The goal of the present paper was to examine whether the DFT could overcome

these previous limitations. This goal was motivated by previous work using the DFT

to examine performance in di®erent SWM tasks (Simmering et al., 2006b; Schutte &

Spencer, 2009), and the reported relationship between SWM and MOT performance

(Delvenne, 2005). We were also motivated by a simple question: could we take a

theory developed in the context of more \static" tasks and have it shed light on a task

that probes real-time neural dynamics? Thus, we generalized a 3-layer model used in

prior work to two spatial dimensions, and asked whether we could quantitatively

capture behavioral data from the MOT task. We also asked whether we could extend
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the model further and provide ��� for the ¯rst time ��� a theory that directly inter-

faces with neural data from the MOT literature.

Simulations of behavioral results from the study byFranconeri et al. (2010) provided

an interesting ¯rst step. The model ¯ts the behavioral data well, reproducing depen-

dencies on speed and duration. These simulations were also innovative in that we used

the exact trajectories from the behavioral experiment.This is an exciting step that could

open up avenues for more direct theory�experiment relationships. Although our sim-

ulation results are promising, it is important to emphasize that this is only a ¯rst

step ��� many questions remain. For instance, we used a simple form of response gen-

eration, e®ectively \reading out" the peak locations at the end of each trial and using

this to infer the response the model would make. But there are interesting response

demands in the MOT literature that have prompted researchers to query responses in

di®erent ways. For instance, Franconeri et al. (2010) did not ask participants for a full

report of all six items cued; rather, participants selected the three targets in either the

upper or lower half of the display (the half selected was randomly determined on each

trial). The intuition here is that the generation of a response for all six items might

destabilize SWMpeaks. This points toward the need to have a more fully implemented

process model of response generation in this task. More generally, we are currently

probing whether the DFT can capture ¯ndings from a range of MOT studies, including

studies that use more standard trajectories. We have already con¯rmed that the model

can track other types of trajectories (such as the trajectories used by Franconeri et al.

(2012)), but more systematic work on this front is needed.

Next, we asked whether the DFT ��� with the same parameters and the same

trajectories ��� could shed light on ERP data from a recent study by Sternshein et al.

(2011). Note that previous work has used dynamic ¯eld models to capture aspects of

ERP data in the domain of motor planning (McDowell et al., 2002). The approach we

used here was similar to that work, focusing on modulations in the strength of neural

activation across di®erent conditions. In the present study, we examined how neural

activation in SWM was modulated by the presentation of a target °ash vs. a dis-

tractor °ash as the tracking load was varied from two to four items. Although our

model did not capture the pattern from Sternshein and co-workers in detail, there

were several remarkable correspondences. The model showed a stronger modulation

of neural activity with the target °ash vs. the distractor °ash. Moreover, the model

accurately captured a key ¯nding from Sternshein et al. (2011)��� that the amplitude

of the distractor response at load 2 was greater than the amplitude of the target

response at load 4. Perhaps most importantly, we were able to use the model to help

understand why the ERP amplitudes varied systematically across °ash type and

tracking load. This points toward the utility of this type of model ��� the model can

not only mimic aspects of neural data; it can also help explain why these neural

patterns arise. And this can feed back on the concepts used to explain performance.

For instance, the DFT has no attentional resources per se, yet it captured ¯ndings

from a study purported to manipulate attentional resources. This opens important

questions regarding what researchers mean by terms like \attention" and \working
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memory". In our view, formal neural process models can play an important role in

clarifying these psychological constructs.

5.1. How does the DFT compare to other theories of MOT?

In the present report, we presented a new theoretical approach to the MOT task using

an existing theory of spatial cognition. Thus, it is useful to evaluate how this theory

compares to other accounts of MOT. The most expansive model of MOT to date is the

serialmodel byOksama&Hy€onä (2008). Thismodel captures a broad range of ¯ndings

from MOT, including extensions that address the binding of \what" and \where".

With regard to MOT, Oksama & Hy€onä (2008) captured a number of key ¯ndings

from the literature that have not been explained e®ectively by ¯xed-capacity, parallel

theories. Thus, in the conclusion of their paper, they posed a list of challenges that

¯xed-capacity, parallel theories must overcome. First, such theories need to explain

why MOT performance varies as a function of tracking speed. As we showed here, the

DFT captures this ¯nding. Second, ¯xed-capacity, parallel theories need to explain

why performance varies as a function of tracking load, and why speed and tracking

load interact. With regard to tracking load, our ERP simulations demonstrate that

the DFT captures key modulations of performance across variations in load. With

regard to the second issue, there is currently debate in the literature about whether

there is, in fact, an interaction between speed and load. Oksama & Hy€onä (2008)

reported evidence consistent with such e®ects; however, Franconeri and co-workers

(Franconeri et al., 2008; Franconeri & Simons, 2010) have argued that such inter-

actions re°ect an uncontrolled source of in°uence ��� object spacing. On this front,

object spacing plays a key role in the DFT because the basic neural mechanisms that

underlie peak maintenance and the updating of peak position as inputs move are all

sensitive to the spacing between targets and distractors.

The ¯nal challenge put forth by Oksama & Hy€onä (2008) is that ¯xed-capacity,

parallel models must explain why object familiarity in°uences tracking. This brings

in the more general issue of how \what" and \where" information are bound and how

such bindings are updated as objects move. Although it is beyond the scope of the

current paper, we note that we have developed a dynamic ¯eld theory of \what" and

\where" binding. We are currently exploring whether that theory might shed light on

the familiarity e®ects reported by Oksama & Hy€onä (2008). Note that integrating the
current work on MOT into our binding model is an important next step. This will

facilitate deeper comparisons between the DFT and the serial model of Oksama &

Hy€onä.
It is also useful to ask how the DFT compares to the only other neural model

of MOT by Kazanovich & Borisyuk (2006). These researchers used a di®erent

neural mechanism ��� synchronizing and desynchronizing neural oscillations across

multiple layers ��� to capture behavioral ¯ndings from the MOT literature. One key

di®erence between the DFT and this model is that the targets are maintained in

independent layers. Thus, it is not clear how this model would capture e®ects of object
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spacing (see, e.g., Franconeri et al., 2010). By contrast, target peaks can share metric

interactions in our SWM ¯eld, and target and distractor peaks can share metric

interactions across layers. In light of our ERP simulations, a second key challenge for

the neural oscillation model moving forward will be to more directly interface with

neural data. Such e®orts will help clarify the points of contrast with the DFT.

5.2. The neural basis of the DFT and future prospects

Although our ERP simulations are promising, there are many questions about the

neural grounding of our theory. Consider, for instance, a recent fMRI study by Howe

et al. (2009). These researchers identi¯ed a network of ¯ve cortical regions critically

involved in MOT: the frontal eye ¯elds (FEF), the anterior intraparietal sulcus

(AIPS), the superior parietal lobule (SPL), the posterior intraparietal sulcus (PIPS),

and the human motion area (MTþÞ. Do the layers in our model map onto any of

these cortical regions?

Based on the analysis of Howe et al., we propose that our SWM ¯eld re°ects the

properties of cortical ¯elds in either AIPS or PIPS. This is consistent with studies of

VWM and change detection that have implicated the intraparietal sulcus as a key

player in the maintenance of items in SWM (Pessoa & Ungerleider, 2004; Todd &

Marois, 2004), and the link between the 3-layer model used here and our work

examining the neural and behavioral mechanisms of change detection (Johnson et al.,

2009a, 2009b). What about the perceptual ¯eld? It is possible that this layer re°ects

the properties of cortical ¯elds in area MTþ, which faithfully respond to object

motion, including the motion of distractor items. The question is, however, how we

might test these hypotheses. On this front, we are currently developing a linking

hypothesis based on the work of Deco et al. (2004) that allows us to directly generate

hemodynamics from dynamic ¯eld models. Initial work in this direction appears

promising. Thus, it might be possible in the near future to directly test hemodynamic

predictions of the dynamic ¯eld model presented here.

In summary, the current study presented a new theory of how people track

multiple moving objects, building on a dynamic ¯eld theory of spatial cognition

(Spencer et al., 2007). We were able to generalize the model to the MOT task, and

capture a set of behavioral data from a recent study of how speed, duration, and

object spacing impact performance in this canonical laboratory task. Moreover, we

did something no other theory has done to date ��� we used a neural process model of

MOT to help understand recent ¯ndings using ERPs. It will be important for future

work in this direction to examine the neural grounding of the theory more critically,

possibly using other neuroimaging techniques such as fMRI.

Appendix A.

Perceptual Field (PF). The PF ¯eld consists of reciprocally coupled excitatory,

PF(u), and inhibitory, Inhib(v), layers. The excitatory layer of PF is given by the
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following equation:

� exciteu
:ðx; y; tÞ ¼ � uðx; y; tÞ þ hu þ Sðx; y; tÞ

þ
ZZ

cuuðx � x 0; y � y 0Þ�ðuðx 0; y 0; tÞÞdx 0dy 0

�
ZZ

cuvðx � x 0; y � y 0Þ�ðvðx 0; y 0; tÞÞdx 0dy 0

� uvconst

ZZ
�ðvðx 0; y 0; tÞÞdx 0dy 0 þ Nðx; y; tÞ ðA:1Þ

where u
:ðx; y; tÞ is the rate of change of activation across the continuous spatial

dimensions, x and y, as a function of time, t. �excite is the time constant along

which excitatory activation evolves. Activation within PF is in°uenced by its current

state, �uðx; y; tÞ, its negative neuronal resting level, hu, and input, Sðx; y; tÞ. The
stimulus input takes the form of a Gaussian distributed over the spatial dimensions,

x and y:

Sðx; y; tÞ ¼ c exp � ðx � xÞ2
2�2

� �
xðtÞ þ c exp � ðy � yÞ2

2�2

� �
yðtÞ ðA:2Þ

with positions centered at x and y and strength c, set to 30, and width �, set

to 10.

PF dynamics are in°uenced by local excitatory within-layer interactions,RR
cuuðx � x 0; y � y 0Þ�ðuðx 0; y 0; tÞÞdx 0dy 0. These interactions are speci¯ed by the

convolution of a Gaussian pro¯le, cuuðx � x 0; y � y 0Þ, which determines the neigh-

borhood across which excitatory interactions propagate and a nonlinear sigmoidal

threshold function, �ðuðx 0; y 0; tÞÞ, which dictates that only neurons with above

threshold activation (> 0) participate in the interactions. The sigmoidal function is

speci¯ed by:

�ðuÞ ¼ 1

1þ exp½��u� ; ðA:3Þ

where � is the slope of the sigmoid.

PF dynamics are also in°uenced by an inhibitory projection from the inhibitory

layer, �RR
cuvðx � x 0; y � y 0Þ�ðvðx 0; y 0; tÞÞdx 0dy 0. Inhibitory interactions are pro-

jected across a neural neighborhood speci¯ed by a Gaussian, cuvðx � x 0; y � y 0Þ, and
only above-threshold activity in the inhibitory layer contribute to interactions. In-

hibition also has a global component,
RR

�ðvðx 0; y 0; tÞÞdx 0dy 0, which is weighted by

strength, uvconst.

The last contribution to PF dynamics is spatially correlated noise:

Nðx; y; tÞ ¼ q

Z
gnðx � x 0; y � y 0Þ�ðx 0; y 0; tÞdx 0: ðA:4Þ

Noise is presented to the excitatory layer by convolving a ¯eld of white noise with a

Gaussian kernel, gnðx � x 0; y � y 0Þ, with strength, q.
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Inhibitory Field (Inhib). The excitatory layers PF(u) and WM(w) are recipro-

cally coupled to an inhibitory layer, Inhib(v). The equation for Inhib is:

� inhibv
:ðx; y; tÞ ¼ � vðx; y; tÞ þ hv

þ
ZZ

cvuðx � x 0; y � y 0Þ�ðuðx 0; y 0; tÞÞdx 0dy 0

þ
ZZ

cvwðx � x 0; y � y 0Þ�ðwðx 0; y 0; tÞÞdx 0dy 0 þ Nðx; y; tÞ ðA:5Þ

where v
:ðx; y; tÞ speci¯es the rate of change of activation for each neuron, xy, as a

function of time, t. � inhib is the time constant alongwhich inhibitory activation evolves.

Activation in Inhib is in°uencedby its current state,�vðx; y; tÞ, and its resting level, hv.
Inhib receives excitatory inputs from PF,

RR
cvuðx � x 0; y � y 0Þ�ðuðx 0; y 0; tÞÞdx 0dy 0,

andWM,
RR

cvwðx � x 0; y � y 0Þ�ðwðx 0; y 0; tÞÞdx 0dy 0. These inputs are projected across

a neural neighborhood each speci¯ed by a Gaussian projection, cðx � x 0; y � y 0Þ, to
which only above-threshold neurons in PF and WM contribute as determined by the

sigmoidal function,�. An independent source of spatially correlated noise is also added

to the inhibitory layer, Nðx; y; tÞ.
Working Memory Field (WM). The WM(w) ¯eld is given by the following

equation:

� excitew
: ðx; y; tÞ ¼ �wðx; y; tÞ þ hw þ cSðx; y; tÞ

þ
ZZ

cwwðx � x 0; y � y 0Þ�ðwðx 0; y 0; tÞÞdx 0dy 0

þ
ZZ

cwuðx � x 0; y � y 0Þ�ðuðx 0; y 0; tÞÞdx 0dy 0

�
ZZ

cwvðx � x 0; y � y 0Þ�ðvðx 0; y 0; tÞÞdx 0dy 0

� wvconst

ZZ
�ðvðx 0; y 0; tÞÞdx 0dy 0 þ Nðx; y; tÞ ðA:6Þ

The equation for WM is identical to the equation for PF with two exceptions. First,

the input into WM, Sðx; y; tÞ, is weighted by a strength parameter, c. Second, WM

receives an excitatory input from PF,
RR

cwuðx � x 0; y � y 0Þ�ðuðx 0; y 0; tÞÞdx 0dy 0.
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of activation dynamics; all other values are in neural activation units.
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