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Abstract
Executive function (EF) is a key cognitive process that emerges in early childhood and 
facilitates children’s ability to control their own behavior. Individual differences in EF 
skills early in life are predictive of quality-of-life outcomes 30 years later (Moffitt et al., 
2011). What changes in the brain give rise to this critical cognitive ability? Traditionally, 
frontal cortex growth is thought to underlie changes in cognitive control (Bunge & 
Zelazo, 2006; Moriguchi & Hiraki, 2009). However, more recent data highlight the 
importance of long-range cortical interactions between frontal and posterior brain re-
gions. Here, we test the hypothesis that developmental changes in EF skills reflect 
changes in how posterior and frontal brain regions work together. Results show that 
children who fail a “hard” version of an EF task and who are thought to have an im-
mature frontal cortex, show robust frontal activity in an “easy” version of the task. We 
show how this effect can arise via posterior brain regions that provide on-the-job 
training for the frontal cortex, effectively teaching the frontal cortex adaptive patterns 
of brain activity on “easy” EF tasks. In this case, frontal cortex activation can be seen 
as both the cause and the consequence of rule switching. Results also show that older 
children have differential posterior cortical activation on “easy” and “hard” tasks that 
reflects continued refinement of brain networks even in skilled children. These data 
set the stage for new training programs to foster the development of EF skills in at-risk 
children.

RESEARCH HIGHLIGHTS

•	 The dimensional change card sort (DCCS) task reveals changes in 
children’s flexible rule-use: 3-year-olds typically fail to switch rules, 
but 4- and 5-year-olds have little difficulty switching rules.

•	 Children who fail to switch rules show weak frontal cortex activa-
tion; children who switch rules show strong frontal cortex 
activation.

•	 We used a dynamic neural field model to explain this brain/behav-
ior relationship and then generated hemodynamic predictions in 
“easy” and “hard” versions of the DCCS task.

•	 Using functional near-infrared spectroscopy, we report that chil-
dren who failed the “hard” version of the task (and showed weak 
frontal cortex activation when doing so) nonetheless showed 

strong frontal cortex activation when correctly switching rules in 
the “easy” version of the task.

•	 Results also show that older children have differential posterior 
cortical activation on “easy” and “hard” tasks that reflects contin-
ued refinement of brain networks even in skilled children. These 
data set the stage for new training programs to foster the develop-
ment of executive function (EF) skills in at-risk children.

1  | INTRODUCTION

Executive function (EF) is a key cognitive process that emerges be-
tween 3 and 5 years and facilitates cognitive control and flexible 
thinking (Carlson, 2005; Zelazo, Muller, Frye, & Marcovitch, 2003). 
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Previous research has shown a strong relationship between individual 
differences in EFs during early childhood and later academic achieve-
ment as well as quality of life outcomes into adulthood (Eakin et al., 
2004; Moffitt et al., 2011), making EF a key target for early interven-
tion efforts (Diamond & Lee, 2011; Heckman, 2011). An initial step 
to designing effective EF interventions is to understand the develop-
mental mechanisms involved in the emergence of cognitive control. 
Getting to this point, however, requires a theoretical framework that 
can specify how neural processes are related to specific cognitive 
processes. In this paper, we present a neural-based theory of EF—a 
dynamic neural field (DNF) model—which can simultaneously explain 
both behavioral and neural mechanisms underlying the development 
of EF (see Buss & Spencer, 2014). We then test this theory using both 
behavioral and functional neural measures with 3-  and 4-year-old 
children.

The present study focuses on a canonical task used to assess EF 
in early development, the Dimensional Change Card Sort (DCCS; see 
Figure 1a) task (Zelazo, 2006; Zelazo et al., 2003). In this task, children 
are first instructed to sort cards by one dimension (e.g., color) and then 
to switch and sort by the other dimension (e.g., shape). Target cards 
(e.g., a blue circle and a red star) are displayed at sorting locations to 
show which features go where for the different sets of rules. Children 
are asked to sort test cards that match either target card along differ-
ent dimensions, creating conflict when making a decision. For instance, 
in Figure 1a, one test card (blue star) matches the left target card along 
the color dimension but matches the right target card along the shape 
dimension. Performance on this task dramatically changes from 3 to 5 
years of age. Typically, the majority of 3-year-olds fail to switch rules, 
but 4- to 5-year-olds have little difficulty switching to the new rules.

To understand the neural dynamics associated with improvements 
in the DCCS task, Moriguchi and Hiraki (2009) measured hemody-
namic changes using functional near-infrared spectroscopy (fNIRS). 
fNIRS uses safe, non-invasive near-infrared light to monitor changes 
in blood oxygenation in the cortical surface (Boas & Franceschini, 
2009). Children who successfully switched rules showed robust fron-
tal activation as indexed by large increases in oxygenated hemoglobin, 
while children who failed this task showed significantly weaker frontal 
activation. This finding is in line with traditional cognitive theories of 
EF development which suggest that frontal cortex growth is the crit-
ical factor driving the early emergence of EF (Bunge & Zelazo, 2006; 
Morton & Munakata, 2002).

The developmental story becomes more complicated, however, 
in light of other behavioral and neural findings. First, young children 
are able to switch rules in some versions of the DCCS task (Buss & 
Spencer, 2014; Zelazo et al., 2003). For instance, in a No-Conflict ver-
sion of the task (see Figure 1b), children sort test cards that match 
the target cards along both dimensions during a pre-switch phase. 
During the post-switch phase, the test cards are changed, introduc-
ing the same type of conflict present in the Standard task; however, 
3-year-olds are now able to switch rules. If it is the case that success-
ful rule switching relies on growth of the frontal cortex, it is not en-
tirely clear how immature 3-year-olds are able to switch rules in these 
“easy” task variants. The story is more complicated at the neural level. 

Research examining the structural and functional development of the 
brain using MRI suggests that the formation of long-range networks is 
as important as region-specific measures of growth for cognitive de-
velopment (Ezekiel, Bosma, & Morton, 2013; Fair et al., 2007, 2008). 
That is, interactions among frontal and posterior brain regions might 
be just as important as local changes within frontal cortex in the early 
emergence of EF. To date, it is unclear what role long-range network 
interactions play in the early emergence of rule switching. Moreover, 
because traditional cognitive theories of EF development have em-
phasized local changes in frontal cortex, they do not provide guidance 
as to what one might expect from emerging changes in long-range 
neural interactions.

Novel insights into these questions are offered by a DNF model 
of the development of EF (Buss & Spencer, 2014). The central idea of 

F IGURE  1 Dimensional Change Card Sort Task and Dynamic 
Neural Field Model. Panel (a) shows the sorting trays, test cards 
and target cards typically used in the Standard DCCS task. Panel 
(b) shows the trays, test cards and target cards typically used in the 
No-Conflict version of the DCCS. Panel (c) shows the DNF model 
architecture and mapping to cortical regions (see colors on brain inset 
and vertical colored bars next to the model architecture). The model 
has task inputs corresponding to the spatial locations and visual 
features present on the target cards
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the model is that developmental changes in frontal-posterior neural 
interactions underlie the emergence of EF between 3 and 5 years. The 
model hypothesizes that 3-year-olds have weak neural interactions 
within frontal cortical fields as well as imprecise patterns of connec-
tivity between frontal and posterior cortical fields; 4- to 5-year-olds, 
by contrast, have stronger frontal neural interactions and more pre-
cise frontal-posterior connectivity patterns. When embedded within a 
real-time neural system, this developmental hypothesis has explained 
why both young and old children succeed on “easy” versions of the 
DCCS task, as well as why young children perseverate in most versions 
of this task. Moreover, the model has generated a series of behavioral 
predictions that have been successfully tested (Buss & Spencer, 2014; 
S. Perone, Molitor, Buss, Spencer, & Samuelson, 2015; Sammy Perone, 
Plebanek, Lorenz, Spencer, & Samuelson, 2017).

Here, we build on this work using a combination of computational 
and neuroimaging techniques to probe whether coupling between 
frontal and posterior cortical fields contribute to the emergence of 
cognitive flexibility in the DCCS task. First, we introduce the DNF 
model, explaining how changes in frontal-posterior neural activation 
underlie the development of EF in this model. We then derive hemo-
dynamic predictions from this model in “easy” versus “hard” versions 
of the DCCS task. Next, we measure the functional brain activity of 3- 
and 4-year-olds during “easy” and “hard” DCCS tasks using fNIRS. As 
predicted by the model, we find that early in development in “easy” EF 
tasks, posterior cortices drive frontal activation in a bottom-up man-
ner. As EF skills are refined over development, this pattern switches to 
a more adult-like pattern where frontal cortex exerts a top-down in-
fluence on posterior cortices, facilitating rule switching in both “easy” 
and “hard” tasks.

2  | THE DYNAMIC NEURAL FIELD MODEL

DNF models are composed of neural fields that are tuned to continu-
ous dimensions such as color or space. Lateral interactions within 
each cortical field are governed by a local-excitation/lateral-inhibition 
function that creates localized “peaks” of activation that reflect, for 
instance, decisions about the color or shape of a stimulus. Peaks also 
drive the accumulation of memory traces that increase the baseline 
activation within cortical fields, facilitating the subsequent activation 
of neural units over learning. For example, the formation of an activa-
tion peak encoding the features of a red stimulus will lead to the ac-
cumulation of memory traces for the red feature value that will lead to 
more rapid peak formation for red stimuli in future instances.

Neural fields can be combined together to build neural architec-
tures that are capable of performing cognitive tasks. Figure 1c shows 
the DNF model proposed by Buss and Spencer (2014) to explain the 
development of rule-use in the DCCS task. The model is composed of 
neural fields corresponding to frontal, parietal, and temporal regions 
as illustrated by the color coding on the brain image (see Supplemental 
Materials full model specifications). The parietal and temporal compo-
nents engage in object representation processes that bind shape and 
color features to spatial locations when making decisions in the task. 

These components are reciprocally connected along the spatial dimen-
sion (see x-axis in the cortical fields on the right side of Figure 1c). The 
parietal component (purple; top right panel in Figure 1c) is composed 
of a population of neural units that are tuned to the spatial dimension. 
This field forms representations of the spatial locations where the test 
cards are sorted (i.e., the sorting tray locations). The temporal compo-
nent is composed of two populations of neural units that separately 
encode color-space (yellow) conjunctions or shape-space (green) con-
junctions. That is, these populations bind shape and color features (see 
y-axes) to the spatial dimension (x-axes) of the task.

The frontal component implements a form of dimensional atten-
tion through connections to posterior cortical fields. Specifically, this 
component is composed of units that capture the labels “shape” and 
“color”. These units receive task-specific input based on instructions to 
sort by shape or sort by color and have self-excitatory connections and 
mutual inhibitory connections that create “peaks” of activation. These 
units are reciprocally coupled to the temporal components that en-
code the associated feature dimension. In particular, the “shape” unit 
is connected to the shape field in the temporal component and the 
“color” unit is connected to the color field in the temporal component. 
When instructed to sort by color, the “color” unit becomes activated 
in the frontal component which boosts the processing of colors in the 
temporal component and facilitates color-based sorting decisions.

Neural interactions between the frontal and temporal components 
are reciprocal in nature (see bi-directional arrow in Figure 1c). This 
allows emerging sorting decisions in the temporal cortical fields to 
have a “bottom-up” influence, increasing activation in the frontal sys-
tem and recruiting attentional resources. Without these temporal-to-
frontal connections, the model fails to activate the frontal system and 
is unable to build response peaks. In addition, the “color” and “shape” 
units also impact processing in parietal cortex. Both units homoge-
nously boost activity of the parietal field to facilitate the formation of a 
spatial response peak. Finally, the frontal component also accumulates 
memory traces as the “shape” and “color” units are activated over the 
course of a simulation.

Figure 2 illustrates the moment-to-moment dynamics that unfold 
as the model performs the DCCS task. The top panel shows the ac-
tivation of the dimensional attention units in a “young” model over 
the course of six pre-switch and six post-switch trials. Figure 2a–j in 
the middle panel shows snap-shots of the parietal and temporal com-
ponents of the model at particular moments in this time-course. The 
bottom panel shows the activation of the dimensional attention units 
in an “old” model over the course of six pre-switch and six post-switch 
trials. To highlight how the model works, we step through Figure 2 as 
key events unfold across the pre- and post-switch trials.

Figure 2a shows the model at the start of a simulation with only 
the task inputs presented. The spatial field has inputs at a left and 
right location (note the bumps in activation) corresponding to the 
locations of the sorting trays. The color field has inputs at the left 
and right locations for the blue and red target card features, respec-
tively. Likewise, the shape field has inputs at the left and right loca-
tions for the circle and star target card features, respectively. These 
task inputs “pre-shape” the activation of the parietal and temporal 
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object representation system based on structure available in the 
task space.

The model makes decisions in this task by building peaks of acti-
vation across the parietal and temporal components that are tuned 
to the features on the test card and the location of the response. 

Figure 2b shows the model just after a red-circle test card has been 
presented. These test card inputs activate the color and shape fea-
tures across all spatial locations (see horizontal “ridge” of input at the 
red value and the circle value)—the test card does not contain any 
spatial information regarding where it is to be sorted. The decision 

F IGURE  2 Model performing the DCCS task. The top and bottom panels show the activation of the attention units in the frontal component 
over the course of the pre- and post-switch phases. Panels a–j show images of the parietal and temporal components at different time points. 
Panel (a) shows the model with the inputs for the target cards and sorting trays. Panel (b) shows the model just after the first test card has been 
presented to the model. Panel (c) shows the model making a sorting decision on the first trial. Panel (d) shows the model with the memory traces 
accumulated during the first trial. Panel (e) shows the model just after the third pre-switch test card has been presented. Panel (f) shows the 
model making a sorting decision during the third pre-switch trial. Panel (g) highlights the configuration of test inputs and memory traces just 
before the start of the post-switch phase. Panel (h) shows the model just after the first post-switch test card has been presented. Panel (i) shows 
the “young” model perseverating during the first post-switch trial. Panel (j) shows the “old” model correctly switching rules during the first post-
switch trial
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about where to sort the card emerges through the spatial coupling 
among the parietal and temporal cortical fields. Figure 2c shows 
the sorting behavior on this trial which occurs at time-step 1100. 
At this point in time, the attention unit for “color” (black line) in the 
top plot is near the activation threshold whereas the attentional unit 
for “shape” (gray line) is further below the activation threshold. This 
boosts the color-space field slightly and activation at rightward lo-
cation wins the competition because of the presence of a red target 
card at the right location. This yields a pattern of peaks at the right-
ward location in the parietal and temporal components (see red dot 
within the shape and color fields).

Figure 2d highlights the memory traces that form as a result of 
this decision. In this panel, the target inputs are outlined in a black 
oval and the memory traces are outlined in a white circle. In the color-
space field, there is cooperation: neurons tuned to the red feature at 
the rightward sorting location are boosted because the memory trace 
overlaps with the target input. In the shape-space field, however, there 
is competition: neurons tuned to the circle feature at the rightward 
location are boosted because of the memory trace but neurons tuned 
to the circle feature at the leftward location are boosted by the target 
input. Figure 2e–f shows a similar pattern of events unfolding as the 
model sorts the blue-star test card during the third pre-switch trial. By 
the end of the six pre-switch trials, displayed in Figure 2g, the model 
will have a pattern of cooperation within the color-space field and a 
pattern of competition within the shape-space field.

In Figure 2h, the model is shown a red-circle to sort on the first 
post-switch trial. The model has been told to play the “shape” game and 
the “shape” unit has been activated (see gray line in the top panel). Even 
though the “shape” unit is more active, Figure 2i shows a perseverative 
response—the model sorts the red-circle to the right. This reflects the 
cooperation in the color-space field that boosts sorting red things to 
the right relative to the competition in the shape-space field which fails 
to specify where the circle should be sorted. In this situation, decisions 
are made based on the parietal and temporal fields even though the 
correct dimensional unit is being activated (see top panel).

To implement development and create an “old” model, parameters 
are changed to increase the strength of neural interactions within the 
frontal component and increase the strength and precision of connec-
tivity between the frontal and posterior components of the model. 
Specifically, we made an “old” model that has stronger local-excitation/
lateral-inhibition between the “shape” and “color” nodes. In addition, 
this model was also given stronger reciprocal connectivity between 
the “color” node and color-space and spatial fields and between the 
“shape” node and shape-space and spatial fields.

The bottom panel in Figure 2 shows the activation of the di-
mensional units for the “old” model. With stronger self-excitation 
and mutual inhibition, the dimensional units undergo larger changes 
of activation in the “old” model. This creates more rapid and selec-
tive activation of the relevant dimensional unit. In addition, this “old” 
model has stronger reciprocal coupling with the feature-space fields 
in the temporal component. As a result of this coupling, the shape-
space field is boosted more strongly and more quickly during the post-
switch phase. Figure 2j shows the “old” model on a trial during the 

post-switch phase. Here, the model is able to overcome the competi-
tion in the shape-space field and makes a correct decision to sort the 
red-circle test card to the left.

Buss and Spencer (2014) demonstrated that simulations of 
the “young” and “old” models explained the performance of 3-  to 
5-year-olds across 14 different versions of the DCCS based on these 
principles of local-tuning in frontal cortex, frontal-posterior coupling, 
and the configuration of memory traces relative to the structure of the 
task. Importantly, performance of the young model can be facilitated 
if memory traces are supportive of the task structure during the post-
switch phase. In one example, the model explains both why young 
children fail in the Standard version of the DCCS task (Figure 1a), 
and why they succeed in a No-Conflict version (Figure 1b: sorting 
no-conflict cards during the pre-switch phase creates memory traces 
that support correct sorting during the post-switch phase; see Buss 
& Spencer, 2014). Repeatedly sorting the blue-circle to the left using 
color rules during the pre-switch phase would support sorting red-cir-
cle to left when using shape rules in the post-switch phase, because 
in both cases, circles go to the left (see Figure 1b). The “young” DNF 
model is able to switch rules in the No-Conflict version at a rate similar 
to 3-year-olds. This constitutes an important theoretical advance. For 
instance, although the connectionist model of Morton and Munakata 
(2002) quantitatively captures rates of switching between 3-  and 
5-year-olds in the Standard version, this model does not explain the 
success of 3-year-olds in the No-Conflict version.

3  | USING THE DNF MODEL TO SIMULATE 
HEMODYNAMIC RESPONSES

We use a model-based approach to neuroimaging (Buss, Wifall, 
Hazeltine, & Spencer, 2014; Wijeakumar, Ambrose, Spencer, & Curtu, 
2017) to simultaneously generate behavioral and hemodynamic data 
from the DNF model to explain and predict brain–behavior relation-
ships as EF develops. Typically, in task-based functional neuroimag-
ing, researchers examine how neural activity varies across conditions. 
Because they do not have a quantitative assessment of the neural 
activity predicted from a theory or model, a common approach is to 
use a place holder that reflects the timing of stimulation (Anderson, 
Qin, Jung, & Carter, 2007) or a proxy of some expected hemodynamic 
activity (Herd, Banich, & O’Reilly, 2006). The data are then analyzed 
using this basic information and neural processes are inferred in a 
data-driven, post-hoc manner.

Here, we take an alternative approach, generating neural activity 
in real time from the model and constructing a priori hemodynamic 
predictions that can then be directly compared to actual brain mea-
sures. In particular, we record simulated neural activity from the model 
across different conditions and then convolve this neural activity with 
a blood flow response. We then test whether the brain’s blood flow 
response varies across conditions in the manner predicted by neural 
activity generated from the model.

As a first step toward this goal, we examined the hemodynamic 
responses in the Standard DCCS task from the “young” model that 
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fails to switch rules and the “old” model that correctly switches rules. 
The goal was to assess whether the model shows neural patterns sim-
ilar to results reported by Moriguchi and Hiraki (2009). In particular, 
does the “young” model that perseverates in the Standard DCCS task 
show weaker hemodynamic signals from the frontal component of the 
model compared to the “old” model that switches rules in this version 
of the task? In a second step, we generated predictions regarding the 
pattern of hemodynamics associated with frontal, parietal, and tem-
poral cortical fields in the Standard and No-Conflict version of the 
DCCS. We then tested these predictions in an fNIRS study with 3- and 
4-year-olds.

4  | SIMULATION METHODS

Simulations were conducted in Matlab 7.5.0 (Mathworks, Inc.) on a 
PC with an Intel® i7™ 3.33 GHz quad-core processor. The “young” and 
“old” models were given the Standard and No-Conflict versions of the 
DCCS task. The full set of parameters for the model is shown in Tables 
S1–S3. The equations were the same as reported by Buss and Spencer 
(2014).

As in Buss and Spencer (2014), the model was given six trials 
during each of the pre-  and post-switch phases. Throughout each 
simulation, target inputs were presented at specific feature and spa-
tial values to capture the relevant details of the target cards for the 
pre-switch and post-switch phases. At the start of each trial, the 
model was presented with ridges of input for the features displayed 
on the test cards. Each trial was simulated for 1500 time-steps, with 
the test card stimulus presented for 1000 time-steps. The models 
always generated an active response by the end of this 1000 time-
step interval. For the purpose of mapping the real-time simulated 
neural dynamics to fNIRS data, 1 time-step is equivalent to 2 ms. 
The old and young models were iterated for 20 runs (corresponding 
to 20 participants) for each condition (Standard and No-Conflict). 
Data reported below were averaged over the 20 runs (i.e., 20 indi-
viduals). Typically, variations in parameters are used to reflect vari-
ations across children. However, the DNF model is stochastic and 
generates variations in performance across repeated iterations that, 
in previous work, has mimicked differences in performance across 
children. Thus, the model was iterated with the same parameters 
across runs.

To simulate real-time hemodynamics using the DNF model, we 
adapted an approach from the literature. Logothetis, Pauls, Augath, 
Trinath, and Oeltermann (2001) recorded single- and multi-unit data 
along with local field potentials (LFP) and the BOLD signal in visual 
cortex of macaques. An LFP is a measure of dendritic activity over a 
localized population of neurons, accounting for changes in both inhib-
itory and excitatory ion flow. The LFP provides a measure of the input 
to, and local processing within, a region of cortex. Logothetis et al. 
(2001) reported that the LFP was most strongly correlated with the 
BOLD response compared to single- and multi-unit activity. The au-
thors were able to reconstruct the BOLD signal by convolving the LFP 
with an impulse response function (specifying blood flow response to 

neural activity), suggesting that the LFP is a strong contributor to the 
neural signal driving the BOLD response.

DNF models simulate cognitive and behavioral processes using 
neural population dynamics, uniquely situating such models as 
bridges between behavioral and neural data (Buss, Wifall et al., 2014; 
Wijeakumar et al., 2017). Following the approach above, we created 
a DNF-LFP measure by summing the absolute value of all terms con-
tributing to the rate of change in activation within each component 
of the model, excluding the stability term and the two factors that 
impact the neuronal resting level—a resting-level parameter and the 
memory traces. The included terms reflect excitatory and inhibitory 
interactions within each component of the model, the excitation that 
passes between components of the model, and noise. This measure of 
real-time neural activity was then convolved with a general impulse 
response function. The hemodynamic response calculated from each 
component of the model was normalized by dividing by the maximum 
signal from that component across runs of the model. The average 
response on each trial was then calculated as a change relative to the 
pre-trial baseline by setting each trial to begin at a value of 0. The 
hemodynamic responses for each condition of the “young” and “old” 
models were then calculated as the average across trials.

5  | RESULTS

Both the “young” and “old” models sorted correctly on all trials dur-
ing the pre-switch phases of the Standard and No-Conflict conditions. 
The “old” model sorted correctly on all trials during the post-switch 
phase of both tasks. The “young” model, however, sorted correctly 
during all trials of the No-Conflict condition but sorted incorrectly on 
all trials during the post-switch phase of the Standard task. Thus, the 
model produced a pattern of behavior that is similar to the behavior 
of 3-  and 4-year-olds, allowing us to examine the neural responses 
underlying the key trials of interest.

Figure 3 shows multiple novel model-based hemodynamic predic-
tions from the Standard and No-Conflict conditions using the “young” 
and “old” models. First, we note that the model replicates the pattern 
reported by Moriguchi and Hiraki (2009) in the Standard condition: 
The “young” model shows weaker frontal activation when persever-
ating on post-switch trials compared to the “old” model when switch-
ing on post-switch trials. The latter effect reflects the combination of 
stronger recurrent interactions in frontal cortex and stronger frontal-
posterior connectivity for the “old” model. Critically, these findings 
in the No-Conflict condition set the stage for a novel prediction—the 
“young” model shows a robust frontal response when correctly switching in 
the No-Conflict condition even with an “immature” frontal cortex. In this 
No-Conflict condition, memory traces in the posterior cortical fields 
support correct responding, resulting in a stronger bottom-up signal 
being sent from temporal to frontal cortical fields in the No-Conflict con-
dition relative to the Standard condition.

Figure 4 illustrates this influence by plotting the average strength 
of activation projected from the post-switch feature field to its dimen-
sional unit (red lines) and from the dimensional units to the feature 
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fields (blue lines). In the “young” model plotted on the left, the ac-
tivation from the temporal component is engaged sooner than the 
feedback activation from the frontal component to the feature field 
(see activation highlighted in the box on the left). Moreover, the input 
from the feature fields builds more quickly in the No-Conflict condi-
tion (dashed lines) relative to the Standard condition (solid lines). This 
difference leads to more robust engagement of the frontal units in the 
No-Conflict condition.

The second novel prediction is that posterior cortical activation 
will be larger for children who switch rules compared to children who 
perseverate. As can be seen in Figure 3, the “old” model also shows 
stronger activation in parietal and temporal cortical fields compared to 
the “young” model. Thus, developmental changes in neural activation 
in the DCCS task are not isolated to the frontal cortex. Specifically, 
stronger coupling between frontal and posterior cortical fields over 
development results in a stronger top-down signal from frontal to pos-
terior cortical fields on post-switch trials. This finding is consistent with 
data showing robust posterior cortical activation during rule switching 
in the DCCS with adults (Morton, Bosma, & Ansari, 2009). Figure 4 
illustrates this influence by plotting the average strength of activation 
projected from the dimensional units to their feature fields and vice 
versa. In contrast to the “young” model, the “old” model engages ac-
tivation from the dimensional units to the feature fields sooner than 
it engages activation from the feature fields to the dimensional units. 

Thus, the frontal component in the “old” model provides an initial “top-
down” influence on emerging posterior cortical activation.

The final novel prediction of the model is that children who 
switch rules in the Standard DCCS condition will show stronger ac-
tivation in posterior cortical areas in the No-Conflict condition (see 
Figure 3). Even though older children are able to switch rules, the 
model predicts that there are critical developmental changes still 
emerging in the brain. This prediction results from greater stability 
in the activation of the frontal system in the No-Conflict condition. 
Figure 4 illustrates this influence by plotting the time-course of acti-
vation passed between the feature fields and dimensional units. The 
input from the dimensional units to the feature fields is stronger in 
the No-Conflict condition relative to the Standard condition. In the 
“old” model, this difference drives a boost in the parietal and tem-
poral hemodynamics in the No-Conflict condition. Note that there is 
also a greater frontal-to-temporal input in the No-Conflict condition 
in the “young” model; however, this input is much weaker (note the 
difference in scale) and, consequently, has little impact on posterior 
hemodynamic activity.

Considered together, predictions 1 and 3 generate a developmen-
tal crossover in the locus of condition-specific effects. The model pre-
dicts a difference in neural activation between conditions in frontal 
cortex in early development and a difference in neural activation be-
tween conditions in posterior cortices later in development.

6  | TESTING PREDICTIONS OF THE DNF 
MODEL WITH FNIRS

We tested these predictions with young children using functional 
near-infrared spectroscopy (fNIRS) with sensors over frontal, tempo-
ral, and parietal cortex. Children completed an innovative version of 
the DCCS task with a continuous, event-related design. Importantly, 
this design yielded neural data from multiple switch trials across dif-
ferent conditions. Thus, this task provides the first paradigm that 
allows for comparison of behavioral and neural measures across mul-
tiple switch types within the same group of children. Note that the 
continuous event-related design necessitates the inclusion of blocks 
of trials that are not of interest to the current study, but instead pro-
vide the pre-switch condition for the target post-switch trial blocks.

In the analyses below, we examine whether our data replicate the 
findings of Moriguchi and Hiraki (2009): do children who perseverate in 
the Standard task show weaker frontal activation compared to children 
who switch rules in the Standard task? Next, we examined whether chil-
dren’s hemodynamic responses reflected the three predictions of the 
DNF model described above. First, for children who perseverate in the 
Standard task, do we observe stronger frontal activation when correctly 
switching rules in the No-Conflict version compared to when persever-
ating in the Standard version? Second, for children who switch rules in 
the Standard task, do we observe activation in temporal and parietal 
regions? Third, for children who switch in the Standard task, do we ob-
serve stronger activation in the No-Conflict version compared to the 
Standard version in parietal and temporal regions?

F IGURE  3 Hemodynamic predictions from the DNF models. The 
model makes a pattern of hemodynamic predictions from the frontal 
(top), parietal (middle) and temporal (bottom) components of the DNF 
model. Asterisks mark components that show a significant difference 
in activation between conditions
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6.1 | Participants

A sample of 40 children between 40- and 56-months (M age = 48.3 
months, SD age = 6.1 months; 19 males, 21 females) participated. 
They were recruited from the Iowa City community. Parents were 
compensated with $10 per hour in the lab and children were given 
a toy valued at $5 for each visit. Children completed two 1.5 hour 
sessions which were separated by no more than one week. To be able 
to identify the neural correlates of behavior in our task, we grouped 
participants based on their performance. Children who sorted fewer 
than 50% correct in the Standard condition were categorized as 
Perseverators (M age = 44.4 months) and children who sorted bet-
ter than 50% correct in the Standard condition were categorized as 
Switchers (M age = 50.4 months).

6.2 | Behavioral task

Before starting the experiment, children were familiarized with the 
DCCS task with physical cards and trays. Children were first shown the 
trays and target cards and were told that they were going to play a set of 
matching games. In this familiarization phase, children were instructed 
for either the shape or color game (whichever dimension they would 
start with in the computerized task). For instance, children who had the 
color task in the initial phase of the computerized task were told, “You’re 
going to play a matching game. This is called the color game. In the color 
game, you are going to match by color. All of the blue ones go here and 
all of the red ones go there.” The child was then shown a demonstration 
of how to sort each test card. The experimenter then gave the child five 
cards to sort, one at a time, prompting the child by saying “Where does 
this one go in the color/shape game?” For all trials, the experimenter 
repeated the rules if the child sorted incorrectly.

After the familiarization trials, the experimenter initiated the com-
puterized version. Children completed the experimental task on a 46″ 

LCD television monitor that was connected to a computer running 
E-Prime 2.0 software (Psychology Software Tools, Pittsburgh, PA). 
Stimuli consisted of 13 different sets of colored shapes.

The behavioral task was constructed to allow for comparison of 
performance and hemodynamic responses during the Standard and 
No-Conflict conditions. To achieve this, the pre-switch and a post-
switch phase of these conditions were administered in a continuous 
design that would create multiple iterations of both conditions as il-
lustrated in Figure 5. Each phase contained three trials. We used the 
same Standard and No-Conflict conditions as used in previous exper-
iments (Buss & Spencer, 2014; Zelazo et al., 2003). Specifically, in the 
Standard condition, the test dimension changed between the pre- and 
post-switch phases (sort by color or shape) and the test cards matched 
either target card in both the pre- and post-switch phases (e.g., a red 
book and blue circle served as the target cards and a blue book and 
red circle served as the test cards). In the No-Conflict condition, the 
test dimension changed, test cards during the pre-switch phase only 
matched one target card, and the test cards during the post-switch 
phase were changed to match either target card along different di-
mensions (e.g., a pink bug and an orange guitar served as both the 
target and test cards during the pre-switch phase, and the test cards 
were changed to a pink guitar and an orange bug during the post-
switch phase).

Our design differed from previous studies such that these con-
ditions were administered sequentially over many iterations in order 
to produce many switch trials which could be included in the neural 
analyses. Thus, each child was given both conditions repeatedly in 
alteration. To enable this, we conducted sequences of phases where 
each phase of three trials both served as the pre-switch phase for the 
next condition and as a post-switch phase relative to the just-previous 
block of trials. Figure 5 shows an exemplary sequence. In Figure 5a, 
the child sorts by color with standard cards that have conflict along 
both shape and color dimensions. In Figure 5b, the rule is changed and 

F IGURE  4 Frontal-temporal interactions. Activation strengths between the frontal and temporal components are plotted for the “young” and 
“old” model in post-switch trials during the Standard and No-Conflict conditions. For the “young” model, activation along the temporal-to-frontal 
connection begins before the activation along the frontal-to-temporal connection. Additionally, activation in the No-Conflict condition peaks 
before activation in the Standard condition. For the “old” model, activation along the frontal-to-temporal connection begins before activation 
along the temporal-to-frontal connection. In addition, activation along the frontal-to-temporal connection is stronger in the No-Conflict 
condition than in the Standard condition
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the child is asked to sort the cards by shape. Thus, the trials across 
panels A and B implement the Standard DCCS condition. In Figure 5c, 
the target cards are changed completely, they match along both di-
mensions so there is no dimensional conflict, and the child sorts by 
shape. This phase serves as the pre-switch to the No-Conflict condi-
tion. The post-switch phase is shown in Figure 5d. Here, children sort 
by color, and conflict is introduced between the target cards and the 
test cards. In Figure 5e, the target and test cards are completely new 
and children are asked to sort by shape. This replicates a Total Change 
condition previously administered by Zelazo et al. (2003). Finally, in 
Figure 5f, the rule is changed—children are asked to sort by color—
which constitutes the second phase of the Standard DCCS task.

Note that the design was constructed so that the relevant dimen-
sion for each condition alternated between shape and color each 
time it was presented. For example, in Figure 5, the first Standard 
phase (Figure 5b) uses shape as the test dimension, while the second 
Standard phase (Figure 5f) uses color as the test dimension. Similarly, 
the No-Conflict phase in Figure 5d uses color as the test dimension 
and the subsequent No-Conflict phase would use shape as the rele-
vant dimension.

During each visit, participants completed two runs through the full 
design. During each run, they completed each of the four conditions 
(Standard, No-Switch, No-Conflict, and Total Change) three times in 
addition to one Start phase that initialized each run and served as the 
pre-switch phase of the first Standard condition phase, resulting in a 
total of 13 phases. As mentioned above, each phase contained three 
trials. Thus, across the two visits, participants completed a total of 156 
trials (3 trials per phase × 13 phases × 2 runs × 2 visits).

Trial onsets were synchronized with the fNIRS data collection 
computer. Each trial began with the presentation of the target cards 

and sorting trays. At this time, on the first trial of each phase, the ex-
perimenter told the child the rules for the game (e.g., “We’re going 
to play the color game. In the color game we sort by color. All of the 
red ones go here, but all of the blue ones go there.”). The rules were 
also repeated after a card was sorted incorrectly. The experimenter 
then pressed a button to initiate the trial with an auditory dimensional 
cue saying, “Let’s play the color/shape game!” (see bottom panels of 
Figure 5). This dimensional cue lasted 1500 ms after which a test card 
appeared above the center of the screen. The test card remained on 
the screen until the child responded by pointing to the location where 
it should be sorted. The experimenter then recorded this response by 
pushing a left or right response key. After the response was recorded, 
the screen was blanked for an inter-trial interval (ITI) of either 1, 3, or 5 
seconds. Once the child was oriented toward the screen and prepared 
for the next trial, the experimenter initiated the next trial by pressing a 
button to display the next set of target cards on the monitor.

6.3 | fNIRS method

NIRS data were collected at 25 Hz using a 36-channel TechEn CW6 
system with wavelengths of 830 nm and 690 nm. Light was de-
livered via fiber optic cables that terminated in a customized cap 
(Figure 6c) placed on the head with sources and detectors secured 
within six flexible plastic arrays. The NIRS data were split into 12 re-
gions composed of the 3-channel sets depicted in Figure 6b and dif-
ferent participants were allowed to contribute data for each region 
(Buss, Fox, Boas, & Spencer, 2014). We refer to these 3-channel 
sets using the 10–20 sites they were placed over and the channel 
number. For instance, the 3-channel array near F5 is referred to 
as F5-1, F5-2, and F5-3 (see Figure 6b). fNIRS measures changes 

F IGURE  5 Behavioral task. Top panel shows example sequence of sorting phases. Each phase contained three trials. Panel (b) shows the 
switch phase for the Standard condition. Here, the relevant dimension has changed from the previous phase in Panel (a) and the features have 
all remained the same so that the test cards need to be sorted to different locations between (a) and (b). Panel (d) shows the No-Conflict switch 
condition. As with the Standard condition, the relevant dimension has changed. The just previous phase in Panel (c) contained no conflict cards. 
Thus, the transition from Panel (c) to Panel (d) characterizes the No-Conflict condition as illustrated in Figure 1b. Panel (c) shows the No-Switch 
condition (which serves as the pre-switch phase for the No-Conflict condition. The bottom panel shows the sequence of events on each trial
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in oxygenated hemoglobin (HbO) and deoxygenated hemoglobin 
(HbR) separately. If a region is activated, then the HbO and HbR 
signals would be significantly different from each other with HbO 
at higher levels of concentration than HbR (Buss, Fox et al., 2014). 
Thus, in the analyses below, we determine which channels are ac-
tivated across the different conditions of the task by examining 
whether HbO is greater than HbR.

An initial behavioral criterion was set to include trials in the NIRS 
analyses. Specifically, each phase of three trials was categorized as 
“correct” if at least 2/3 were sorted correctly; phases were catego-
rized as “incorrect” if at least 2/3 were sorted incorrectly. Only NIRS 
data from incorrect trials were included from “incorrect” phases, and 
only NIRS data from correct trials were included from “correct” phases. 
This was to yield a cleaner estimate of the hemodynamic profile asso-
ciated with different trial types. Importantly, we only included data 
from “valid-switch” phases, that is, only if children sorted 2/3 of the 
cards correctly on the previous phase. This was done to ensure that we 
measured neural dynamics associated with the need to switch atten-
tion between dimensions.

Using HomER2 software (Huppert, Diamond, Franceschini, & Boas, 
2009), the mean baseline was subtracted and data were converted 
into an optical density measure. Data were then band-pass filtered to 
remove frequencies slower than .016 Hz and faster than 2 Hz. Two Hz 
was used as the low pass filter in this initial step to preserve high fre-
quency fluctuations that could be due to motion. In the next step, mo-
tion artifacts were removed from each region by eliminating trials with 
a change in optical density larger than 0.3 absorbance units within the 
time-window between 2 seconds before to 12 seconds after the onset 
of the dimensional cue. Data were then band-pass filtered again to 
retain only frequencies between .016 and .5 Hz. Concentration data 

were computed using the modified Beer-Lambert Law and the known 
extinction coefficients of oxygenated and deoxygenated hemoglobin 
(Boas et al., 2001). Finally, outlier trials were removed on a region-by-
region basis. Outliers were identified as trials that contained ampli-
tudes of oxy-Hb that were more than 2.5 standard deviations above 
or below a participant’s mean in each condition for nine consecutive 
time-samples (a duration of 360 ms). Table 1 shows the number of 
included participants and average trial counts included in the fNIRS 
analyses for each condition and each channel.

The average of the hemodynamic response (HbO, HbR) was 
weighted by the number of trials (Buss, Fox et al., 2014) to reduce the 
possibility that statistically significant effects are driven primarily by 
participants with few trials. For statistical analyses, the mean weighted 
average was computed within an 8 second time-window spanning 2 
seconds after the dimensional cue to 10 seconds after dimensional 
cue. The average time between trials was 13.7 seconds (SD = 3.9 s) for 
Perseverators and 10.3 seconds (SD = 2.6 s) for Switchers. Importantly 
this time-window captures the peak response on each trial, which 
typically occurs 7–8 seconds post stimulus onset (Schroeter, Zysset, 
Wahl, & von Cramon, 2004). Hemodynamic responses were analyzed 
in a 2 (Oxy: HbO and HbR) × 2 (Cond: Standard and No-Conflict) 
ANOVA separately for Switchers and Perseverators. Note that data 
from Switchers only included correct trials, but data from Perseverators 
included correct No-Conflict trials and incorrect Standard trials.

7  | RESULTS

This event-related task elicited the expected pattern of performance 
(see Figure 7): Switchers performed well across both conditions (t(26) 

F IGURE  6  fNIRS probe. (a) shows 
a digital projection of the fNIRS probe 
onto a standard brain atlas. (b) Shows the 
numbering scheme for the channels at each 
region (see Table 1). (c) Shows a photo of a 
participant wearing the fNIRS probe

(a)

(b) (c)
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= 1.60, ns), but Perseverators sorted significantly better in the No-
Conflict condition compared to the Standard condition (t(14) = 6.00, p 
< .001). Interestingly, Perseverators also performed poorly in the Total 
Change condition. This condition has only been reported one other 
time, and 3-year-olds performed better in the Total Change condition 
compared to the Standard condition (Zelazo et al., 2003). Children 
may have performed more poorly in our task due to the additional 
task demands of repeatedly switching between sets of rules. From 
the perspective of the model, the Total Change task lacks bottom-up 
support from memory that is present in the No-Conflict condition; this 
may explain Perseverator’s poorer performance.

Channels were defined as showing task-related activation if a sig-
nificant Oxy effect or Oxy*Cond interaction was present (see Buss, Fox 
et al., 2014). Table 2 shows the ANOVA results. Perseverators showed 
diffuse Oxy effects across bilateral frontal cortex. Examination of 
these channels revealed larger HbR signals relative to HbO on all chan-
nels except the F5 cluster which showed a pattern indicating activa-
tion of this cortical region (i.e., HbO > HbR). Switchers showed an Oxy 
effect focused on a single channel in the F5 cluster. Examination of the 
data showed that HbO was larger than HbR, suggesting that Switchers 
activated this region of cortex when switching rules. Follow-up anal-
yses on data from the single frontal channel common to both groups 
revealed that Switchers showed a significantly stronger HbO response 
compared to Perseverators during the time-window from 1 to 5 s post 
trial onset (t(37) = 2.06, p < .05). That is, Switchers activated left fron-
tal cortex more strongly than Perseverators, replicating results from 
Moriguchi and Hiraki (2009).

The same frontal channel that replicated effects from Moriguchi 
and Hiraki also showed a significant Oxy*Cond interaction for 
Perseverators. Follow-up analyses showed a significantly stronger 
frontal HbO response in the No-Conflict condition compared to the 
Standard condition (t(13) = 2.41, p < .05), consistent with the first 
model prediction that Perseverators would more strongly activate 
frontal cortex when switching in the No-Conflict condition compared 
to when perseverating in the Standard condition (see Figure 8b, top 
left panel). Next, Switchers showed robust task-related activation in 
both temporal and parietal channels (see Figure 8b, middle right and 

bottom right panels); no significant task-related activation was ob-
served in temporal or parietal cortex for Pereverators (see Figure 8b, 
middle left and bottom left panels). This is consistent with the second 
model prediction that developmental improvements in the Standard 
condition would be associated with activation of posterior cortical 
regions. Finally, follow-up analyses on the Oxy*Cond interactions in 
temporal (t(15) = 2.18, p < .05 for T31; t(15) = 2.40, p < .05 for T32; 
t(15) = 1.79, ns for T33) and parietal (t(16) = 2.37, p < .05 for P62) 
channels for Switchers showed a stronger HbO response in the No-
Conflict condition (see dashed red lines in Figure 8b) compared to the 
Standard condition (see solid red line in Figure 8b). This is consistent 
with model predictions that Switchers would show stronger activation 
in posterior cortical regions in the No-Conflict condition compared to 
the Standard condition.

8  | DISCUSSION

In our study, we classified children as Switchers or Perseverators based 
on their performance in the Standard condition. Switchers performed 
equally well in the Standard and No-Conflict conditions whereas 
Perseverators performed significantly better in the No-Conflict condi-
tion compared to the Standard condition. In the Standard condition, 
Switchers showed significantly stronger activation in left frontal cor-
tex compared to the Perseverators. As predicted by the DNF model, 
Perseverators showed stronger activation in left frontal cortex when 
correctly switching in the No-Conflict condition compared to when 
perseverating in the Standard condition. Results were also consistent 
with two additional predictions of the model: Switchers showed acti-
vation in parietal and temporal cortex and activation in these regions 
was stronger in the No-Conflict condition compared to the Standard 
condition.

These results provide the first task-based, functional neuro-
imaging perspective on cortical-cortical interactions as EF devel-
ops. Previous data from Moriguchi and Hiraki (2009) suggest that 
children who fail the standard DCCS task have an immature fron-
tal cortex that is the cause of their inflexibility. Our novel design 
enabled comparison across multiple conditions within the same 
group of participants, revealing that frontal cortex is reliably en-
gaged when children correctly switch rules, even in early childhood. 

TABLE  1 Number of included participants and average number of 
trials per condition across regions. Regions required at least six 
participants to be analyzed

Perseverators Switchers

Region n Avg tr n Avg tr

F5 14 9.7 25 14.3

F6 14 8.4 24 14.0

F7 6 7.5 15 8.5

F8 8 6.9 18 9.8

P3 10 5.1 18 8.3

P5 8 6.4 12 9.8

P6 6 8.3 17 8.4

T3 6 6.9 16 10.7

F IGURE  7 Behavioral results. Average percent correct across 
conditions for valid switch trials. Error bars represent standard error 
of the mean
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Three-year-olds, who showed weak frontal activation when perse-
verating in the Standard DCCS task, nonetheless showed robust 
frontal activation when correctly switching rules in an “easy” version 

(i.e., the No-Conflict version) of the same task. These data demon-
strate that cognitive theories of EF focusing solely on frontal cor-
tex growth are incomplete. According to these theories, activation 

Omnibus 
ANOVA channel

Perseverators Switchers

Effect F(df-effect,df-error) Effect F(df-effect,df-error)

Frontal

F5-1 HbX*Cond F(1, 13)=4.69 HbX F(1, 24)=10.83

F5-2 HbX*Cond F(1, 13)=14.79

F5-3 HbX*Cond F(1, 13)=8.26

F6-1 HbX F(1, 13)=7.94

F6-3 HbX*Cond F(1, 13)=4.90

F7-2 HbX*Cond F(1, 5)=8.54

F7-3 HbX*Cond F(1, 5)=9.75

F8-1 HbX F(1, 7)=6.46

Parietal

P6-2 HbX 
Cond

F(1, 16)=5.01 
F(1, 16)=4.84

Temporal

T3-1 HbX*Cond F(1, 15)=4.43

T3-2 HbX*Cond F(1, 15)=8.03

T3-3 HbX*Cond F(1, 15)=4.61

TABLE  2 Results of the omnibus 
ANOVAs. Results shown for p < .05

F IGURE  8  fNIRS results. (a) Reproduction of the hemodynamic predictions of the DNF model from Figure 3. (b) Group average 
hemodynamic response for the time-window from 1 second before the onset of a trial up to 12 s post onset of a trial. Oxy-Hb data are plotted 
in red and Deoxy-Hb data are plotted in gray. Oxy- and Deoxy-Hb data were averaged from a time-window spanning 2 s post stimulus to 10 s 
post stimulus for ANOVA analyses. Asterisks mark regions that showed significant Oxy × Condition interactions in the ANOVA
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within frontal cortex is determined by the developmental state of 
this brain region. By contrast, the DNF model implements cortical-
cortical neural interactions, providing a formal framework for think-
ing about how changes in frontal-posterior coupling can give rise to 
3-year-olds’ fragile EF skills. Specifically, bottom-up influences from 
posterior cortical areas can drive frontal cortex activation in the No-
Conflict condition, reflecting the lack of cortical competition in this 
“easy” task. Critically, this lack of neural conflict was also evident in 
Switchers, but as a top-down effect from frontal cortex to posterior 
cortices.

A key question raised by our findings is how these effects emerge 
in development? We created development in the model by giving the 
“young” and “old” models different parameters. But how do these pa-
rameters change in a real brain? The literature is currently dominated 
by theories that make little contact with experience-dependent pro-
cesses (Bunge & Zelazo, 2006; Morton, 2010). We argue that our 
findings point toward an exciting alternative explanation grounded in 
learning labels for visual features and dimensions. Specifically, a label 
learning process could provide structure for the long-range connec-
tions between frontal and posterior regions as label representations 
in frontal cortex are connected to feature representations in tempo-
ral cortex. For example, as frontal representations are consistently 
co-activated with posterior representations (e.g., the consistent ac-
tivation of a label for “blue” and the activation of neural units tuned 
to the blue hue), these connections between labels and features be-
come stronger. Over time, this could build a semantic network that 
can guide attention toward task-relevant features based on the ac-
tivation of labels.

The results in the “easy” version of the DCCS task suggest that 
posterior cortical regions can provide on-the-job training for fron-
tal cortex, sending a strong bottom-up signal to frontal. This process 
creates an optimal situation for Hebbian learning that could serve to 
strengthen patterns of frontal-posterior connectivity. For example, 
associating a label representation with a visual feature requires the 
co-activation of a label and feature. Due to the “young” model having 
a weakly engaged frontal system, learning can be more challenging 
when the frontal system is only weakly activated and does not pro-
vide a clear signal isolating specific synaptic connections that should 
be strengthened. By getting an extra boost of activity from the pos-
terior system, the frontal system can be put into an activated state 
which may provide a basis for more robust learning to occur.

Additional work using the DNF model reported here illustrates 
how pre-exposure to features can lead to stronger activation of the di-
mensional units. In this example, children played a memory game with 
the post-switch features before beginning the Standard DCCS task. In 
the model, this memory game built a distributed set of memory traces 
within the feature field that would be relevant for the post-switch 
phase. Three-year-olds with extra pre-exposure to features show im-
proved switching during the post-switch phase of the Standard DCCS 
task (S. Perone et al., 2015). It is an open question whether this prior 
experience with the memory game changes frontal cortex activation in 
the context of the DCCS task. This could be tested directly with fNIRS 
using the methods described here.

The data presented in the present report provide a hopeful path 
forward for intervention work. The fNIRS data revealed different 
conditions in the DCCS task that resulted in differences in frontal 
cortex activation for children who were classified as Perseverators, 
suggesting that cortical activation is open to task-specific experi-
ence. Thus, neural assessments might help identify experiences that 
can be used to tune posterior and frontal systems in the brain. For 
example, do children who engage frontal cortex repeatedly in the 
context of the “easy” version of the DCCS show more rapid develop-
mental improvements in the “hard” version of the task? The model 
predicts that such a situation repeated over many iterations would 
lead to developmental improvements that should extend beyond 
the DCCS task. In this way, DNF models can be used to generate 
effective training regimes for EF skills that could have a positive im-
pact for at-risk children.
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