
Spatial cognition research suggests that people divide re-
gions of space into categories to enhance interactions with 
the local surrounds. Although this can lead to an increase 
in the precision of spatial memory (Huttenlocher, Hedges, 
Corrigan, & Crawford, 2004; Huttenlocher, Hedges, & 
Duncan, 1991), spatial categories also lead to systematic 
biases in location recall. For example, in one common task, 
people reproduce the location of a dot in a circle following 
a short delay. Results show that recall estimates are biased 
away from the horizontal and vertical axes toward the cen-
ters of the quadrants within the circle. Two different spa-
tial memory models have captured these geometric biases: 
the category adjustment model (CAM; Huttenlocher et al., 
1991) and the dynamic field theory (DFT; Schutte & Spen-
cer, 2009; Simmering, Schutte, & Spencer, 2008).

Several recent studies have investigated whether spa-
tial cognition is also influenced by a second class of cat-
egorical effects: induced category biases. Inductive or 
experience-dependent processes, in which classification 
responses come to reflect the distribution of exemplars 
within a set of items, are an important component of 
category formation in multiple domains (Huttenlocher, 
Hedges, & Vevea, 2000). Although Huttenlocher et al. 
(2004) reported that spatial recall is not influenced by the 
target distribution, this contrasts with other reports. Spen-
cer and Hund (2002), for example, reported that when a 
target 40º to the right of a vertical axis at 0º was paired 
with targets farther from the vertical axis (e.g., 60º), bias 
away from the vertical increased. When the 40º target was 
paired with targets closer to the vertical axis (e.g., 20º), 

however, bias away from the vertical decreased. In both 
cases, then, geometric memory biases were adjusted to-
ward the center of the target distribution. Spatial recall is 
also influenced by the frequency with which participants 
estimate each location (Spencer & Hund, 2003).

These findings indicate that experience-dependent pro-
cesses influence spatial memory performance, contrary 
to the claims of the CAM, which lacks a mechanism to 
account for such effects. The DFT, by contrast, captures 
experience-dependent effects through a long-term mem-
ory (LTM) mechanism. In this theory, the maintenance of 
location information in working memory during short-
term delays leaves a trace in LTM. Such traces can ac-
cumulate and create biases in working memory, including 
attraction toward an average remembered location (Sim-
mering et al., 2008; Spencer, Perone, & Johnson, 2009).

To date, the LTM mechanism of the DFT has only been 
formally probed using data from unsupervised learning 
tasks—that is, tasks in which there is not an explicit teach-
ing signal that specifies the error on each trial. Unsuper-
vised learning is often contrasted with supervised learning, 
in which an explicit teaching signal is present, and different 
learning rules have been proposed to account for findings 
from these two types of tasks (McLeod, Plunkett, & Rolls, 
1998). Here, we examine whether experience-dependent 
effects in spatial recall generalize to supervised learning 
contexts in which a differential teaching signal is present 
and, further, whether the LTM mechanism of the DFT can 
account for participants’ performance. Note that the use of 
precise metric feedback in spatial recall—redisplaying the 
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presented along the vertical midline axis of the table 46 cm from the 
participants, a yellow reference disk (15-mm diameter) located along 
the midline 30 cm away from the participants, and a blue equilateral 
triangle “spaceship” (10-mm base). The stimuli were projected onto 
the table surface from below using a Sony VPL-PX LCD Projector. 
The participants responded by moving a mouse cursor that was pro-
jected onto the surface of the table. The mouse was located on a pad 
to the right of the participants, out of the field of view.

Procedure. Each trial began with the appearance of the yellow 
referent disk, which remained visible throughout the trial (Fig-
ure 1B). Then a randomly chosen number between 100 and 500 ap-
peared, and the participants began counting aloud backward from 
that number by ones until the recall response. This prevented verbal 
encoding of the spaceship position. Next, a blue spaceship target 
appeared for 2 sec. The participants looked up from the table when 
the spaceship disappeared and looked back when the computer said 
“ready–set–go.” Once they heard “go” (10 sec after target presenta-
tion), the participants moved the mouse cursor to the remembered 
location and clicked the button. After responding, a spaceship re
appeared, and the computer said “Here’s where the ship was!” fol-
lowed by a blank screen and the next trial.

The participants completed several demonstration trials (with ac-
curate feedback) at the start of the session, followed by three blocks 
of test trials. Blocks consisted of three responses to each of the 
following 19 targets in randomized order at a fixed 15-cm radius 
from the yellow reference disk: 0º (vertical), 610º, 620º, 630º, 
640º, 650º, 660º, 670º, 690º, and 6110º (Figure 1A). In Block 1, 
the participants received accurate feedback for all the targets. In 
Blocks 2 and 3, feedback was biased either 4º toward the vertical 
axis or 4º away from the vertical axis for the 610º to 670º targets 
(Figure 1C). Given that memory for locations along cardinal axes is 
quite accurate (see Spencer & Hund, 2002), targets at 0º, 690º, and 
6110º were presented with accurate feedback in order to reduce the 
possibility that the participants would detect the feedback manipula-
tion. All the participants were debriefed after the session. There was 
no indication that the participants had detected the manipulation.

Methods of analysis. Directional errors (in degrees) on each trial 
were computed such that errors away from the vertical axis were 
positive (see Figure 1D for an example). Responses to targets at mir-
ror image locations on either side of the vertical axis (e.g., 130º and 
230º) within the same experimental block were grouped together. 
Outlier trials—directional errors greater than 40º or exceeding the 
mean by three SDs for a specific target—were removed. There were 
few outliers (0.5%); responses generally clustered around the actual 
target locations (see Figure 1D for an example). Only responses to 
the biased feedback locations (610º to 670º) were analyzed.

Results and Discussion
We first compared directional errors in Block  1 to 

determine whether performance was comparable across 
conditions before the introduction of biased feedback. A 
two-way ANOVA with condition as a between-subjects 
factor and target as a within-subjects factor revealed a 
main effect of target [Wilk’s Λ 5 .21; F(6,25) 5 15.6, 
p , .001, η2

p 5 .79] but no significant effect of condi-
tion or interaction ( ps . .14). Thus, performance across 
conditions was comparable in Block 1. Block 1 responses 
(Figure 2A) were generally biased away from the vertical 
axis, consistent with previous findings (e.g., Huttenlocher 
et al., 1991; Spencer & Hund, 2002).

To obtain a within-subjects measure of performance 
change with the introduction of biased feedback, we com-
puted difference scores by subtracting each participant’s 
mean error for each target in Block 1 from the mean error 
for each target in Blocks 2 and 3. A three-way ANOVA 
on these scores, with condition as a between-subjects fac-

target location after the participant has responded—opens 
the door to a new probe of supervised learning because 
previous studies have used categorical or forced choice 
responses (Herzog & Fahle, 1997; Pashler, Cepeda, Wix-
ted, & Rohrer, 2005) and discrete feedback. Precise metric 
feedback allows for a finer-grained analysis of supervised 
learning mechanisms, which are not yet fully understood 
(Pashler et al., 2005; Tsodyks & Gilbert, 2004).

Experiment

In this experiment, we tested whether experience-
dependent location memory processes would generalize 
to supervised learning scenarios involving differential 
metric feedback. Although accurate feedback commonly 
increases response accuracy over time (e.g., Herzog & 
Fahle, 1997), systematically biased feedback can also de-
crease response accuracy (Herzog & Fahle, 1999). The 
present experiment built on this idea to test whether sys-
tematically biased response feedback would produce met-
ric distortions in spatial recall.

In our task, participants saw a target, there was a 10-sec 
delay, and then they indicated the remembered target lo-
cation by moving a cursor to the remembered location. 
Visual feedback indicating the “correct” target location 
was then given while the participants’ response was still 
visible, enabling the participants to determine the error on 
each trial. To probe supervised learning processes, we bi-
ased the feedback the participants received. In the toward 
condition, feedback was biased 4º toward the vertical axis 
(e.g., feedback at 26º for a target 30º to the right of the 
vertical axis at 0º). In the away condition, feedback was 
biased 4º farther away from the vertical axis (e.g., feed-
back at 34º for a 30º target).

A common mechanism in models of supervised learn-
ing is the delta rule (McLeod et al., 1998). According 
to the delta rule, connection weights are adjusted on the 
basis of differences between an external teaching signal 
(i.e., explicit feedback) and the current output (i.e., the 
response). Small differences lead to small weight changes, 
and big differences lead to big weight changes and more 
dramatic learning. Because spatial recall responses are 
strongly biased away from the vertical axis, differences 
between the memory response (current output) and the 
feedback location (desired output) should be larger in 
the toward condition, in which feedback is biased toward 
the vertical axis. According to the delta rule, large differ-
ences in the toward condition should yield greater changes 
over learning relative to the away condition.

Method
Participants. Thirty-two students (20 of them male, 12  fe-

male) participated in exchange for course credit or payment. All 
were native speakers of English with normal hearing and normal 
or corrected-to-normal vision. A participant who moved the cursor 
along L-shaped trajectories was replaced.

Materials and Apparatus. The participants sat at a large table 
(79 cm [h] 3 117 cm [w] 3 127 cm [l]) with a homogeneous surface 
and no explicit landmarks (Figure 1A). Sessions were conducted in a 
dimly lit room with black curtains covering all external landmarks. 
The stimuli consisted of three images: a yellow three-digit number 
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Figure 1. (A) Target distribution (left panel) and apparatus (right panel) used for the spaceship task. The black disk at the 
origin of the target distribution corresponds to the yellow reference disk used in the experiment. Targets were projected onto the 
table from beneath. Lights were dimmed during the experiment, and the table appeared black. (B) Time line of the experimental 
procedure. (C) Sample target location (30º) along with feedback biased either 4º toward the vertical axis (toward condition) 
or 4º away from the vertical axis (away condition). (D) Mean error calculation method, demonstrated here using the response 
distribution for the 630º target in the away condition in Block 2 (all participants) as an example.
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The ANOVA also revealed a significant target effect 
[Wilk’s Λ 5 .40, F(6,25) 5 2.79, p 5 .03, η2

p 5 .60]. 
Difference scores in the toward and away conditions com-
bined to produce means close to 0 at 10º (M 5 20.4º), 20º 
(M 5 20.83º), 30º (M 5 0.31º), and 40º (M 5 20.23º). 
Targets at 50º (M 5 1.36º), 60º (M 5 1.07º), and 70º (M 5 
1.98º), however, had higher average difference scores be-
cause the away condition effects generally outstripped 
those of the toward condition (see Figure 2A). All other 
effects were nonsignificant ( ps . .11).

The larger effects for the away condition appear to run 
counter to delta rule learning, because the size of the teach-
ing signal (i.e., the delta) should, on average, be smaller in 
the away condition. To explore this, we conducted post hoc 
analyses on the difference between each location memory 
response and the subsequent feedback location. This pro-
vided an index of the teaching signal magnitude. In Block 1 
(where accurate feedback was given), the mean teaching 
signal for both the away [M 5 2.7; t(15) 5 5.5, p , .001] 

tor and target and block comparison (Block 2–Block 1 or 
Block 3–Block 1) as within-subjects factors, revealed a 
significant main effect of condition [F(1,30) 5 18.9, p , 
.001, η2

p 5 .39]: Difference scores for the toward condition 
(textured region, Figure 2A) were significantly smaller than 
those for the away condition (gray region, Figure 2A).

Subsequent analysis revealed that the mean toward 
difference score (collapsed across targets) did not dif-
fer significantly from zero [t(15) 5 1.68, p 5 .11]. The 
biased feedback in the toward condition did not, there-
fore, alter spatial recall performance (Figure 2B). The 
away condition difference scores, however, showed a 
significant overall mean increase in response bias away 
from the vertical axis [see Figure 2B; t(15) 5 5.17, p , 
.001]. Moreover, follow-up analyses of difference scores 
(Block 3–Block 1) showed that the absolute magnitude of 
performance change for the away condition was greater 
than that for the toward condition [Mdiff 5 1.3, SE 5 0.61; 
t(30) 5 2.14, p 5 .04, two-tailed].
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Figure 2. (A) Location memory performance. Positive errors indicate 
drift away from the vertical axis. Negative errors indicate drift toward 
the vertical axis. Block 1 performance is averaged across the toward and 
away conditions. The gray region reflects the change in memory perfor-
mance from Block 1 to the average of Blocks 2 and 3 for those in the away 
condition. The textured region reflects memory performance change 
from Block 1 to the average of Blocks 2 and 3 for those in the toward 
condition. (B) Memory performance difference scores (collapsed across 
targets) for the toward and away conditions. Positive difference scores in-
dicate an increase in drift away from the vertical axis over blocks. Nega-
tive difference scores indicate a decrease in drift away from the vertical. 
Error bars represent standard errors.
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a stronger experience-dependent location memory effect. 
This violates delta rule learning. In the following sections, 
we examine whether this learning asymmetry can be cap-
tured by the DFT.

The Dynamic Field Theory

The DFT (Schutte & Spencer, 2009; Simmering et al., 
2008) is a formal theory of spatial cognition grounded in 
the principles of neural population dynamics (Erlhagen, 
Bastian, Jancke, Riehle, & Schöner, 1999) that captures 
experience-dependent changes in spatial memory per-
formance (Simmering et al., 2008; Spencer et al., 2009). 
Here, we probe whether this theory generalizes to a super-
vised learning scenario and captures the reported learning 
asymmetry.

We first address how the model accounts for geometric 
spatial memory biases. Each of the four layers in the DFT 
(Figure 3) represents location (in degrees) along the x-axis, 
which is composed of aligned nodes, each preferentially 
tuned to a given spatial location. The z-axis of each layer 

and toward [M 5 3.1; t(15) 5 5.2, p , .001] conditions 
were significantly greater than zero but did not differ 
across conditions [t(30) 5 0.53, p 5 .58]. By contrast, the 
introduction of biased feedback in Blocks 2 and 3 for the 
toward condition significantly increased [t(15) 5 7.3, p , 
.001] the mean teaching signal from 3.1 in Block 1 to 6.4 
in Blocks 2 and 3. In contrast, the biased feedback for the 
away condition in Blocks 2 and 3 significantly decreased 
[t(15) 5 6.96, p , .001] the mean teaching signal from 2.7 
in Block 1 to 0.43 in Blocks 2 and 3. Critically, the teaching 
signal was not only significantly smaller in the away condi-
tion than in the toward condition [t(30) 5 8.6, p , .001], 
but also did not differ significantly from zero [t(15) 5 1.2, 
p 5 .24]. Thus, the participants showed the largest change 
over blocks in the condition in which the teaching signal 
had a magnitude near zero.

We draw two conclusions from these results. First, 
experience-dependent changes in spatial recall general-
ize to supervised learning contexts. Second, the weaker 
teaching signal of the away condition, whose average 
value was not statistically different from zero, produced 
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2008; Spencer et al., 2009). The question was whether we 
could qualitatively capture the present findings with this 
model, including the asymmetry in learning.

Three blocks of trials were presented in each simula-
tion set. Block 1 feedback was presented at the true tar-
get location in both conditions. In Blocks 2 and 3, how-
ever, the feedback location was biased either 4º toward or 
4º away from the vertical axis. Each target was presented 
three times in a randomized order within each of the three 
blocks. As in Schutte and Spencer (2009), we simulated 
only the five targets from 20º to 60º. Each complete sim-
ulation run, therefore, consisted of 45 individual trials 
(5 targets 3 3 trials per block 3 3 blocks). We ran 100 
complete simulation runs for each of the two feedback 
conditions to evaluate model performance in the presence 
of simulated neural noise. Note that a second set of 100 
simulations replicated all the findings reported below.

Block 1 simulations (averaged across conditions) ex-
hibited a memory profile similar to that in the present ex-
periment, with strong biases away from the vertical axis 
for targets near this axis (20º target 5 8.25º bias) followed 
by weaker biases (30º target 5 3.99º bias; 40º target 5 
2.56º bias; 50º target 5 0.17º bias) and an eventual re-
versal (60º target 5 25.25º bias). A two-way ANOVA 
with condition as a between-subjects factor and target as 
a within-subjects factor for Block 1 revealed a main effect 
of target [Wilk’s Λ 5 .02; F(4,195) 5 2,137.3, p , .001, 
η2

p 5 .98] but no significant effect of condition or interac-
tion ( ps . .47).

Difference scores were calculated to compare within-
simulation performance change from Block 1 to Blocks 2 
and 3 (see Figure 4). Difference scores collapsed across 
targets for the toward condition were significantly smaller 
than those for the away condition. The absolute magnitude 
of the bias effect was also stronger in the away condition 
than in the toward condition [t(198) 5 4.8, p , .001). 
These simulations thus capture the asymmetric feedback 
effect observed in the experiment.

To determine whether the stronger away condition ef-
fect was accompanied by a weaker teaching signal, we 
computed the magnitude of the teaching signal on each 

represents the activation level of the nodes, and the y-axis 
represents time (1 timestep 5 2 msec). Input enters the 
perceptual field (Figure 3A) strongly (with weak projec-
tions to working memory) and activates sites tuned to the 
input location. Perceptual field activation then propagates 
to the shared inhibitory field (Figure 3B) and the spatial 
working memory (SWM) field (Figure 3C). Importantly, 
the nodes within the perceptual and SWM fields interact 
such that above-threshold nodes coding for similar spatial 
locations excite one another, whereas nodes coding for 
strongly differing locations inhibit one another (via the 
shared inhibitory field). With sufficient activation input, 
local excitation and lateral inhibition can lead to a self-
sustaining “peak” in SWM that is maintained over a delay 
even after stimulus removal.

The SWM field is continuously coupled to the percep-
tual field. Consequently, perceptual structure in the task 
space such as the vertical symmetry axis (Wenderoth, 
1994) aligned with the reference disk can contribute to 
SWM dynamics. This can help keep spatial information 
anchored to perceived reference frames under some condi-
tions (Simmering et al., 2008), but it can also systematically 
bias spatial recall under others. In particular, activation in 
the perceptual field associated with perceived reference 
frames (see Figure 3A) and its associated inhibition (see 
Figure 3B) can create a boost of inhibition in SWM near 
the vertical axis. Consequently, memory peaks near the 
vertical axis are “repelled” away from the axis over delay.

In addition to representing remembered locations, 
SWM peaks also leave activation traces in the LTM layer 
(see “LTM,” Figure 3D; see also the Appendix). Because 
the LTM field is reciprocally linked to SWM, experience-
dependent traces can, in turn, bias SWM dynamics. Over 
time, LTM traces build up through this simple form of 
unsupervised Hebbian learning (Simmering et al., 2008).

How might this same system use feedback to alter spatial 
recall in a supervised learning task? One possibility is that 
feedback input, like target input, builds a second, localized 
peak in SWM that leaves traces at the corresponding sites 
in LTM. Given that location memories tend to drift away 
from the vertical axis over time, traces from these drifting 
memory peaks should overlap more with feedback traces 
biased away from the vertical axis than with feedback 
traces biased toward the vertical axis. As a result, feedback 
in the away condition should lead to a greater change in 
spatial recall, because two influences conspire to impact 
LTM. By contrast, feedback in the toward condition should 
lead to modest learning, because two influences compete. 
Note that by this scenario, unsupervised and supervised 
learning occur within the same framework.

Simulation Method and Results
Our model exploration began with parameters from a 

recent article by Schutte and Spencer (2009), who quan-
titatively modeled geometric biases in spatial recall from 
both children and adults. Critically, Schutte and Spencer 
did not include an LTM mechanism, because their task 
limited possible LTM contributions. Thus, we took their 
parameters for the perceptual, inhibitory, and SWM fields 
and added an LTM mechanism (see Simmering et al., 
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a maximum activation near 30º. Critically, at the end of 
Block 3, the center of mass of LTM in the away condition 
(Figure 5A) shifted substantially outward to 47.8º, with 
a maximum activation near 60º. This major shift in LTM 
activation occurred because traces from memory peaks 
during the delay and traces built from feedback were bi-
ased in the same direction—away from the vertical axis. 
By contrast, the distribution of LTM in the toward condi-
tion (Figure 5B) showed only a small shift in the center 
of mass to 41.2º, with a maximum near 25º. This modest 
change occurred due to competition between LTM traces 
from memory peaks that were biased away from the verti-
cal axis and traces built from feedback that were biased 
toward the vertical axis. In summary, these simulations 
show how the DFT generalizes to a supervised learning 
scenario to capture experience-dependent changes in spa-
tial recall that violate delta rule learning.

General Discussion

The experimental results show that inductive, 
experience-dependent influences on spatial recall (Spen-
cer & Hund, 2002, 2003) generalize to supervised learning 
scenarios with differential feedback and can be formally 

simulation trial. Block 1 (accurate feedback) mean teach-
ing signals for the away [M 5 1.88; t(99) 5 23.92, p , 
.001] and toward [M 5 1.93; t(99) 5 18.42, p , .001] 
conditions were both significantly greater than zero but 
did not differ across conditions [t(198) 5 0.41, p 5 .67]. 
For the toward condition, however, the introduction of bi-
ased feedback significantly increased [t(15) 5 7.3, p , 
.001] the mean teaching signal from 1.93 in Block 1 to 
5.8 in Blocks 2 and 3. In contrast, the biased feedback 
for the away condition significantly decreased [t(99) 5 
37.97, p , .001] the mean teaching signal from 1.88 in 
Block 1 to 21.62 in Blocks 2 and 3. Although this away 
teaching signal differed significantly from zero [t(99) 5 
38.96, p , .001], the absolute size of the teaching signal 
in the biased feedback trials was nonetheless significantly 
smaller than that in the toward condition [t(198) 5 71.6, 
p , .001]. Thus, the weaker teaching signal for the away 
condition produced a stronger learning effect, consistent 
with the reported empirical results.

Figure 5 shows LTM activation in the model at differ-
ent points in learning, which explains the origin of the 
asymmetric learning across conditions. Both simulation 
sets show a comparable distribution of activation in LTM 
after the first block, with a center of mass at 43.2º and 
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captured by the DFT. This further delineates between two 
competing models of geometric spatial memory biases: 
the CAM and the DFT. Whereas the CAM has no mecha-
nism to account for these effects, the DFT incorporates an 
LTM mechanism that can capture key qualitative signa-
tures of experience-dependent changes in spatial recall.

In this context, it is important to highlight the novelty 
of the proposed mechanism for the present results. Con-
nectionist models of supervised learning typically use ex-
plicit error correction processes based on the delta rule. 
Instead, our dynamically integrated system, built using 
the same model and parameters from Schutte and Spen-
cer (2009), processes feedback in the same manner as tar-
get input. This parsimonious account demonstrates how 
the fine-grained metric details of memory and feedback 
can account for the counterintuitive finding that a weaker 
teaching signal produces a larger change in memory per-
formance. Thus, our work presents a novel empirical re-
sult in spatial cognition, and it provides a new theoretical 
mechanism to explore behavioral changes in both super-
vised and unsupervised learning paradigms.
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Appendix

LTM field activation is governed by
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where  lw(x, t) is the rate of change of the activation for each node in the LTM field lw across the spatial dimen-
sion, x, at time t. The constants tdecay and tbuild (with tdecay . tbuild) set the time scale of the dynamics for the 
decay and building of memory traces in LTM, respectively. Input is determined by the activation in the SWM 
field w at location x and time t.

The sigmoid
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,w

w
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where b is the slope, determines the extent to which the activation w of the given node contributes to the network 
dynamics.

The parameters were set as follows: tbuild 5 3,000, tdecay 5 100,000, β 5 5.
The contribution of LTM field activation to location x in the SWM field is determined by the convolution 

∫cwl(x 2 x ′)lw(x ′, t) dx ′, where c is a Gaussian kernel with an amplitude of 0.2 and a width of 6.4.
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