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a b s t r a c t

A fundamental challenge in cognitive neuroscience is to develop theoretical frameworks that effectively
span the gap between brain and behavior, between neuroscience and psychology. Here, we attempt to
bridge this divide by formalizing an integrative cognitive neuroscience approach using dynamic field
theory (DFT). We begin by providing an overview of how DFT seeks to understand the neural population
dynamics that underlie cognitive processes through previous applications and comparisons to other
modeling approaches. We then use previously published behavioral and neural data from a response
selection Go/Nogo task as a case study for model simulations. Results from this study served as the
‘standard’ for comparisons with a model-based fMRI approach using dynamic neural fields (DNF). The
tutorial explains the rationale and hypotheses involved in the process of creating the DNF architecture
and fitting model parameters. Two DNF models, with similar structure and parameter sets, are then
compared. Both models effectively simulated reaction times from the task as we varied the number of
stimulus–response mappings and the proportion of Go trials. Next, we directly simulated hemodynamic
predictions from the neural activation patterns from each model. These predictions were tested using
general linear models (GLMs). Results showed that the DNFmodel that was created by tuning parameters
to capture simultaneously trends in neural activation and behavioral data quantitatively outperformed a
Standard GLM analysis of the same dataset. Further, by using the GLM results to assign functional roles to
particular clusters in the brain, we illustrate how DNF models shed new light on the neural populations’
dynamics within particular brain regions. Thus, the present study illustrates how an interactive cognitive
neuroscience model can be used in practice to bridge the gap between brain and behavior.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Although great strides have been made in understanding the
brain using data-driven methods (Smith, Fox, Miller, Glahn, Fox,
& Mackay, 2009), human neuroscience will need sophisticated
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theories (Gerstner, Sprekeler, & Deco, 2012). But what would a
good theory of brain function look like? Addressing this question
requires theories that bridge the disparate scientific languages of
neuroscience and psychology.

Turner, Forstmann, Love, Palmeri, and Van Maanen (2016)
described three categories of approaches to this issue usingmodel-
based cognitive neuroscience that bridge the gap between brain
and behavior by bringing together fMRI data and cognitive models
(Turner et al., 2016). The first approach uses neural data to guide
and inform a behavioral model, that is, a model that mimics
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features of responses such as reaction times and accuracy. One
example of this approach is the Leaky Competing Accumulator
model by Usher and McClelland (Usher & McClelland, 2001).
This is a mechanistic model for evidence accumulation, which
incorporates well-known properties of neuronal ensembles such
as leakage and lateral inhibition. The model provides a good fit
for a range of behavioral data, for example, time–accuracy curves
and the effects of the number of alternatives on choice response
times. Unfortunately, as remarked by Turner et al., thismechanistic
approach stops short of establishing any direct connection to the
dynamics of particular neural circuits or brain areas.

The second type of approach uses a behavioral model and
applies it to the prediction of neural data. One example of this
approach is Rescorla and Wagner’s (1972) model of learning
conditioned responses. In this model, the value of a conditioned
stimulus is updated over successive trials according to a learning
rate parameter. The model produces trial-by-trial estimates of the
error between the conditioned and unconditioned stimuli. This
measure can then be used in general linear models to detect
patterns matching the model predictions within fMRI data. The
method potentially allows one to identify neural processes that are
not directly measurable through behavioral results (Davis, Love,
& Preston, 2012; Mack, Preston, & Love, 2013; Palmeri, Schall,
& Logan, 2015). However, a drawback of this model-based fMRI
approach is that it does not explain cognitive states encoded by
patterns of activation distributed over multiple voxels in the brain.

The last, and most difficult approach is an integrative cognitive
neuroscience approach where a model simultaneously predicts
behavioral and neural data. That is, the model explains what
the brain is doing in real-time to generate specific patterns of
fMRI and behavioral data. Turner et al. acknowledge that there
are relatively few examples in this category. For instance, they
highlight recent papers that use cognitive architectures such
as ACT-R (‘Adaptive Control of Thought-Rational’) to capture
simultaneously fMRI and behavioral data (Anderson, Matessa, &
Lebiere, 1997; Borst & Anderson, 2013; Borst, Nijboer, Taatgen,
Van Rijn, & Anderson, 2015). Althoughwe agree that this approach
has immense potential, this is a relatively limited example of
an integrative cognitive neuroscience approach because ACT-R is
not a neural process model. Thus, ACT-R does not capitalize on
constraints regarding how real brains actually work.

An alternative approach that does capitalize on neural con-
straints was proposed by Deco, Rolls, and Horwitz (2004). These
researchers used integrate-and-fire attractor networks to simulate
neural activity from a ‘where-and-what’ task. The model includes
several populations of simulated neurons to reflect networks tuned
to specific objects, positions, or combinations thereof. The authors
then define a local field potential (LFP) measure from each neu-
ral population by averaging the synaptic flow at each time step. To
generate a BOLD response, they convolved the LFPmeasurewith an
impulse response function. Although one version of themodel was
able to approximate single neuron recordings from a prior study,
as well as a measured fMRI pattern in dorsolateral prefrontal cor-
tex, other fMRI patterns from the ventrolateral prefrontal cortex
were notmodeled.Moreover, comparisons to fMRI dataweremade
qualitatively via visual inspection. No attempt was made to quan-
titatively relate the measures. Finally, behavioral data from this
study were not a central focus. Such issues are relatively common
when modeling relies on biophysical neural networks due to the
immense computational challenges of simulating such networks.
Appropriate partitioning of the parameter space and estimation of
model parameters are, in general, difficult steps of this approach
(see Anderson, 2012; Turner et al., 2016).

Inspired by this work, Buss, Wifall, Hazeltine, and Spencer
(2013) adapted this approach to simultaneously model behavioral
and fMRI data from a dual-task paradigm (Buss,Wifall, Hazeltine, &

Spencer, 2013). They first constructed a dynamic neural field (DNF)
model of the dual-task paradigm reported by Dux and colleagues
(Dux et al., 2009). The model quantitatively fit a complex pattern
of reaction time changes over learning, including the reduction
of dual-task costs over learning to single task levels. These
researchers then generated a LFP measure from each component
of the neural model and convolved the LFPs with an impulse
response function to generate BOLD responses from themodel. The
DNF model captured key fMRI results from Dux et al., including
the reduction of the amplitude of the hemodynamic response
in inferior frontal junction in dual-task conditions over learning.
Moreover, Buss et al. contrasted competing predictions of the DNF
model and ACT-R, showing that changes in hemodynamics over
learning predicted by the DNF model matched fMRI results from
Dux et al., while predictions from ACT-R did not.

It is important to highlight several key points achieved by Buss
et al. (2013). First, the DNF model simulated neural dynamics in
real time. The dynamics created robust ‘peaks’ of activation that
were directly linked to behavioral responses by the model, and
these responses quantitatively captured a complex pattern of re-
action times over learning. Second, the same neural dynamics that
quantitatively fit behavior also simulated observed hemodynamics
measured with fMRI. Finally, Buss et al. demonstrated the speci-
ficity of these findings by contrasted predictions of two theories.
Thus, their work constitutes a notable example of an integrative
cognitive neuroscience approach using a neural processmodel that
capitalizes on constraints regarding how brains work.

The current paper builds on the above example, by formal-
izing an integrative cognitive neuroscience approach using dy-
namic neural fields. Our paper is tutorial in nature, walking the
reader through each step of this model-based cognitive neuro-
science framework. We extend the work of Buss et al. (2013) by
(1) formalizing several steps regarding the calculation of LFPs from
dynamic neural fields and the generation of BOLD predictions;
(2) adding new methods to quantitatively evaluate BOLD predic-
tions from dynamic neural field models using general linear mod-
els (GLM), inspired by other model-based fMRI approaches; and
(3) adding new methods to identify model-based functional net-
works from group-level GLM results. These methods allow for ef-
fectively identifying where particular neural patterns live in the
brain, as well as specifying their functional roles.

The paper proceeds as follows. We begin with a brief
introduction to dynamic field theory. This places our model-based
approach within a broader context for readers who might be
less familiar with this theoretical approach. Next, we introduce
the particular case study we will use throughout the paper, that
is, the particular behavioral and fMRI dataset that serves as the
basis for the tutorial. We then discuss the DNF model that we
used to capture simultaneously behavioral and neural data from
this study, explaining where this model comes from and how
we approached the simulation case study. The presentation will
highlight key issues that theoreticians face when adopting an
integrative cognitive neuroscience approach. Next, we present
behavioral fits of the data and discuss strengths and limitations of
the DNF model at this level of analysis.

After considering the behavioral data, we introduce a step-by-
step guide to generating hemodynamic predictions from dynamic
neural field models. We then discuss how to evaluate these
predictions using general linear modeling (GLM).We first evaluate
the model predictions at the individual level. We then move
to the group level, showing how our approach can be used
to identify model-based functional networks. To evaluate these
networks, we compare our approach to standard fMRI analyses,
highlighting examples where the DNF model sheds interesting
light on the functional roles of particular brain regions. The tutorial
concludes with a general evaluation of our model-based approach,
highlighting strengths, weaknesses, and future directions.
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2. Overview of dynamic field theory

The present report introduces a tutorial on an integrative
model-based fMRI approach using Dynamic Field Theory (DFT).
Thus, for clarity, before explaining the integrative cognitive
neuroscience approach, we start by giving a brief introduction to
DFT. Readers are referred to the DFT Research Group (2015) for a
thorough treatment of these ideas.

DFT grew out of the principles and concepts of dynamical
systems (Schöner, Spencer, & The DFT Research Group, 2015)
theory initially explored in the ‘motor approach’ pioneered by
Gregor Schöner, Esther Thelen, Scott Kelso, and Michael Turvey
(Kelso, Scholz, & Schoner, 1988; Schöner & Kelso, 1988; Turvey,
1995). The goal was to develop a formal, neurally-grounded theory
that could bring the concepts of dynamical systems theory to bear
on issues in cognition and cognitive development (for discussion,
see Spencer & Schoner, 2003). DFT was initially applied to issues
closely aligned with the cognitive aspects of motor systems
such as motor planning for arm and eye movements (Erlhagen
& Schöner, 2002; Kopecz & Schöner, 1995). Subsequent work
extended DFT, capturing a wide array of phenomena in the area of
spatially-grounded cognition, from infant perseverative reaching
(Smith, Thelen, Titzer, & McLin, 1999; Thelen, Schöner, Scheier, &
Smith, 2001) to spatial category biases to changes in the metric
precision of spatial working memory from childhood to adulthood
(Schutte, Spencer, & Schöner, 2003; Simmering, Peterson, Darling,
& Spencer, 2008). In the last decade, DFT has been extended
into a host of other domains including visual working memory
[VWM] (Johnson, Hollingworth, & Luck, 2008; Johnson, Spencer,
Luck, & Schöner, 2009; Schneegans, Spencer, Schöner, Hwang, &
Hollingworth, 2014), retinal remapping (Schneegans & Schöner,
2012), preferential looking and visual habituation (Perone &
Spencer, 2013; Perone, Spencer, & Schöner, 2007), spatial language
(Lipinski, Spencer, & Samuelson, 2010), word learning (Samuelson,
Jenkins, & Spencer, 2015), executive function (Buss & Spencer,
2008), and autonomous behavioral organization in cognitive
robotics (Sandamirskaya & Schöner, 2010).

The dynamic field framework was initially developed to
understand brain function at the level of neural population
dynamics. Evidence suggests that local neural populations move
into and out of attractor states, reliable patterns of activation that
the neural populationmaintains in the context of particular inputs.
For instance, when presentedwith visual input, neural populations
in visual cortex create stable ‘peaks’ of activation that indicate that
something is on the left side of the retina (Erlhagen, Bastian, Jancke,
Riehle, & Schöner, 1999; Markounikau, Igel, & Jancke, 2008). These
local decisions – peaks – then share activation with other neural
populations – other peaks – creating a macro-scale brain state.
Thinking, according to DFT, is the movement into and out of these
states. Behaving is the connection of these states to sensorimotor
systems. Learning is the refinement of these patterns via the
construction of localizedmemory traces and connectivity between
fields. Development is the shaping of neural activation patterns
step-by-step through hours, days, weeks, and years of generalized
experience.

Formally, dynamic neural field models are in a class of bi-stable
neural networks first developed by Amari (1977), and then studied
theoretically and computationally by many research groups over
last two decades (Bressloff, 2001; Coombes & Owen, 2005; Curtu
& Ermentrout, 2004; Ermentrout & Kleinfeld, 2001; Jirsa & Haken,
1997; Laing & Chow, 2001; Wilson & Cowan, 1973; Wong &
Wang, 2006). Activation in these networks – called ‘cortical fields’
– is distributed over continuous dimensions—space, movement
direction, color, and so on. Importantly, patterns of activation
can live in different ‘‘attractor’’ states: a resting state; an input-
driven state where input forms stabilized ‘‘peaks’’ of activation

within a cortical field, but peaks go away when input is removed;
and a self-sustaining or working memory state where activation
peaks remain stable even in the absence of input. Movement into
and out of these states is assembled in real-time depending on
a variety of factors including inputs to a field. Critically, though,
activation patterns can ‘‘rise above’’ the current input pattern via
recurrent interactions: activation can be in a stable ‘‘on’’ state
where subsequent inputs are suppressed. That said, the ‘‘on’’ state
is still open to change: in the presence of continued input, the
network might ‘‘update’’ its decision to focus on one item over
another. This points toward flexibility—how activation patterns
can go smoothly and autonomously from one stable state to
another.

To date, several strengths of DFT are evident. First, DFT provides
a predictive language to understand both brain and behavior.
DFT has been used to test specific predictions about early visual
processing, attention, working memory, response selection, and
spatial cognition at behavioral and brain levels using multiple
neuroscience technologies (Johnson et al., 2009; Markounikau,
Igel, Grinvald, & Jancke, 2010; Schneegans et al., 2014; Schutte
et al., 2003). Second, DFT scales up. Across several papers, we
have demonstrated, for instance, that ‘local’ theories of attention,
working memory, and response selection can be integrated in a
large-scale neural model that explains and predicts how humans
represent objects in a visual scene—see Schöner et al. (2015).
Third, DFT is well positioned to bridge the gap between brain and
behavior, simultaneously generating real-time neural population
dynamics and responses thatmimic behavior, often in quantitative
detail (Buss et al., 2013; Erlhagen & Schöner, 2002).

The neural grounding of DFT has been investigated using both
multi-unit neurophysiology (Bastian, Riehle, Erlhagen, & Schöner,
1998; Erlhagen et al., 1999) and voltage-sensitive dye imaging
(Markounikau et al., 2010). Data from these studies demonstrate
that DFT can capture the details of neural population activation
in the brain and generate novel, neural predictions (Bastian,
Schöner, & Riehle, 2003; Markounikau et al., 2010). Thus, the
neural grounding of DFT extends beyond mere analogy. Rather,
DFT implements a set of formal hypotheses about how the brain
works that can be directly tested using neuroscience methods. It
was the success of this framework at capturing the details of neural
population dynamics in the brain that encouraged us to consider
the mapping between neural population dynamics and the BOLD
signal measuredwith fMRI. The integrative cognitive neuroscience
approach detailed here is a critical step in this new direction.

3. Introduction to the case study

To illustrate the model-based approach to fMRI using DFT, we
have to select a specific case study. This anchors the modeling
approach to a specific task, a specific set of behaviors, and a
specific fMRI dataset. Here, we use as case study the neural and
behavioral dynamics that underlie response selection. Response
selection has been studied using DFT for almost two decades
at both behavioral (Christopoulos, Bonaiuto, & Andersen, 2015;
Erlhagen & Schöner, 2002; Klaes, Schneegans, Schöner, & Gail,
2012; McDowell, Jeka, Schöner, & Hatfield, 1998, 2002; Schutte
& Spencer, 2007) and neural levels (Bastian et al., 1998; Erlhagen
et al., 1999; McDowell et al., 2002). Thus, there is a rich history
to build on. Furthermore, the last decade has seen an explosion of
research examining the behavioral and neural bases for response
selection and inhibition using fMRI. This stems, in part, from the
clinical relevance of this topic: poor performance on response
selection tasks has been linked to performance deficits in atypical
populations (Kaladjian, Jeanningros, Azorin, Anton, & Mazzola-
Pomietto, 2011; Monterosso, Aron, Cordova, Xu, & London, 2005;
Pliszka, Liotti, & Woldorff, 2000).
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Fig. 1. Experimental design for the GnG task.

In a recent paper (Wijeakumar et al., 2015), we contributed
to this fMRI literature by examining whether response selection
and inhibition areas in the brain are active primarily on inhibitory
trials as some researchers have claimed (Aron, Robbins, & Poldrack,
2014), or, alternatively, whether response selection and inhibition
areas are active when salient events occur, regardless of whether
these events require inhibition per se (Erika-Florence, Leech, &
Hampshire, 2014; Hampshire & Sharp, 2015). To contrast these
views, we had participants complete a set of classic inhibitory
control tasks in an MRI scanner. We varied whether events were
excitatory (i.e., required a motor response) or inhibitory, and
whether events were frequent or infrequent. Wewere particularly
interested in the brain response on infrequent, excitatory trials.
The inhibitory network view suggests that key areas of a fronto-
cortical–striatal network should show a weak response on these
trials because no inhibition is required. The salience network
view suggests the opposite—that there should be a robust fronto-
cortical–striatal network response because infrequent events
stand out as salient.

We used the data from Wijeakumar et al. (2015) as our case
study in the present report. We do this for two reasons. First, this
is a convenient choice because we have the full dataset, we are
aware of all the processing details, and so on. Second, although
there are numerous other studies we could have picked, this one
has some unique features. Most notably, the study of Wijeakumar
et al. has parametrically manipulated several factors in the same
task. This is good fodder to probe the potential of our model-based
approach because there is a lot of systematic patterning in the data
to capture.

In the present report, we focus on data from one of the
tasks from Wijeakumar et al. (2015) — a Go/Nogo (GnG) task.
Participantswere asked to press a button (Go)when they saw some
stimuli and withhold (Nogo) their response when another set of
stimuli were presented. Stimuli varied in color but not in shape.
Go colors were separated from Nogo colors by 60° in a uniform
hue space such that directly adjacent colors were associated with
different response types.

Each trial started with a fixation cross presented at the center
of the screen for 2500ms, followed by the stimulus presentation at
the center of the screen for 1500 ms (see Fig. 1). The participants
were advised to respond to the visual stimuli as fast as possible. If a
response was not detected on the Go trials, then a message saying
‘No Response Detected’ was presented on the screen for 250 ms.
Inter-trial intervals were jittered between 1000, 2500 or 3500 ms
presented on 50%, 25% or 25% of the trials respectively.

Two parametric manipulations were carried out — a Proportion
manipulation and a Load manipulation. For the Proportion
manipulation (at Load 4), the number of Go and Nogo trials were
varied as follows. In the 25% condition, 25% of the trials were Go
trials and 75% of the trials were Nogo trials. In the 50% condition,
50% of the trials were Go trials and 50% of the trials were Nogo

trials. In the 75% condition, 75% of the trials were Go trials and 25%
of the trials were Nogo trials.

For the Load manipulation, 50% of the trials were Go trials and
the rest were Nogo trials. In the Load 2 condition, one stimulus
(color) was associated with a Go response and another with
the Nogo response. In the Load 4 condition, two stimuli were
associated with a Go stimulus and two other stimuli with a Nogo
response. In the Load 6 condition, three stimuli were associated
with the Go response and three stimuli with a Nogo response.
Participants completed five runs in the fMRI experiment: Load
2, Load 4 (also called Proportion 50), Load 6, Proportion 25 and
Proportion 75. Each run had a total of 144 trials. The order of the
runs was randomized.

fMRI data were collected using a 3T Siemens TIM Trio magnetic
resonance imaging system with a 12-channel head coil. An MP-
RAGE sequence was used to collect anatomical T1-weighted vol-
umes. Functional BOLD imaging was acquired using an axial 2D
echo-planar gradient echo sequence with the following parame-
ters: TE = 30 ms, TR = 2000 ms, flip angle = 70°, FOV = 240 Å ∼

240 mm, matrix = 64 Å ∼ 64, slice thickness/gap = 4.0/1.0 mm,
and bandwidth = 1920 Hz/pixel.

The task was presented to the participant inside the scanner
through a high-resolution projection system connected to a PC
using E-prime software. The timing of the stimuli being presented
was synchronized to the MRI scanner’s trigger pulse. Head
movement was prevented by inserting foam padding between the
participants’ heads and the head coil. Participants’ responses were
obtained through a manipulandam strapped to the participants’
hand.

Data were analyzed using Analysis of Functional NeuroImages
(AFNI) software (http://afni.nimh.nih.gov/afni). DICOM images
were converted to NIFTI images. Voxels containing non-brain
tissue were stripped from the T1 structural image. The T1
structural image was aligned to the Talairach space. Then, EPI data
was transformed to alignwith the T1 structural scan in the subject-
space. Transformation matrices across both these steps were
concatenated and applied to the EPI data to move it from subject-
space to Talaraich space. Six parameters for head movement
were estimated X, Y , Z , pitch, roll, and yaw directions) for use as
regressors to account for variance in the BOLD signal associated
with motion. Spatial smoothing was performed on the functional
data using a Gaussian function of 8 mm full-width half-maximum.

Results showed a robust neural response in key areas of the
fronto-cortical–striatal network on infrequent trials regardless of
the need for inhibition (Wijeakumar et al., 2015). Interestingly,
the number of stimulus–response (SR) mappings modulated the
neural signal across multiple brain areas, with a reduction in
the BOLD signal as the number of SR mappings increased. We
suggested that this might reflect competition among associative
memories of the SR mappings as the SR load increased, consistent
with recent proposals (Cisek, 2012) and modeling work by
Erlhagen and colleagues (Erlhagen & Schöner, 2002).

In the next section, we present an overview of a dynamic
neural field model designed to capture both the behavioral and
neural dynamics that underlie performance in this study. Note
that we use the model primarily in a tutorial fashion—to illustrate
the model-based fMRI approach using dynamic neural fields.
Critically, we make no claims that this is an optimal model of
response selection. There are other more comprehensive models
of inhibitory control in the literature. For instance, Wiecki and
Frank’s model of response inhibition unifies many findings from
the inhibitory control literature and has simulated key aspects
of neural data from both neurophysiology and evoked-response
potentials (Wiecki & Frank, 2013). We think our model has some
interesting strengths relative to Wiecki and Frank’s model that
we highlight below, but it also has some interesting limitations

http://afni.nimh.nih.gov/afni
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that we also highlight. These strengths and limitations are useful
in a tutorial style paper like this to illustrate the range of
issues one must consider when pursuing an integrative cognitive
neuroscience model.

4. A dynamic neural field model of response selection

A key question one must ask when modeling even the most
basic of tasks is what perceptual, cognitive, and motor processes
one should try to capture in the model and what aspects should be
left out in the interest of simplicity. In mathematical psychology,
such issues are central given that model simplicity versus
complexity – often indexed by the number of free parameters – is
a key dimension along which models are compared. The GnG task
is relatively simple; thus, we can articulate the set of possibilities.
One could consider modeling the following: (1) the early visual
processes that perceive and encode colors presented in the visual
field; (2) the attentional processes that selectively attend to the
presented color; (3) the memory and visual comparison processes
that identify whether the presented color is from the Go or Nogo
set; (4) the response selection processes that compete to drive
a Go or Nogo decision; (5) the motor planning processes that
are activated, either partially or wholly by the response selection
system; and (6) the motor control processes that do the job of
pushing the response button in the event of a Go decision (whether
correct or not).

In cognitive modeling of the GnG task, models typically focus
on the heart of this list—the response selection processes. Classic
race-horsemodels (Boucher, Palmeri, Logan, & Schall, 2007; Logan,
Yamaguchi, Schall, & Palmeri, 2015), for instance, capture many
aspects of reaction time (RT) distributions from the GnG task
using an elegant set of simple equations. These models have also
generated interesting neural predictions. More complex models
have also considered aspects of thememory and visual comparison
processes that underlie performance in this task (Wiecki & Frank,
2013). The Wiecki and Frank model, for instance, used a set of
SR associations in a complex neural network to implement these
memory and visual comparison processes. This added complexity
was justified because their goal was to mimic properties of the
neural systems that underlie response selection.

Our goal in the present report was to build a neural dynamic
model of response selection that captures the processes that
underlie the GnG task from perception to decision—to create an
integrated neural architecture to capture processes 1–4 in the list
above. (Links to motor planning and control systems have been
studied extensively with DFT, but we opted for simplicity on this
front; for discussion, see Bicho & Schöner, 1997; Schöner et al.,
2015.) We did this for two central reasons. First, we have proposed
and tested models that capture the full sweep of processes 1–4
in the domain of VWM; thus, we wanted to examine whether the
processes that underlie performance in VWM tasksmight also play
a role in response selection. This is important theoretically because
it probes the generality of a theory—can a theory instantiated in
a particular architecture and designed to capture data from one
domain quantitatively capture data from a different domain of
study? If so, this suggests that the model has the potential to
integrate findings across domains provided, of course, that the
model is constrained and unable to capture findings that are
not present in those domains. Note that answering this question
requires deep study of the theory in question. We do not do that
work here; rather, the present paper is merely a first step in this
direction.

The second reason stems from Buss et al. (2013) where we
used a dynamic neural field model to simulate fMRI data from a
dual-task paradigm. In that project, we discovered that non-neural
inputs to the model – for instance, a perceptual input applied

directly to a higher-level processing area – often dominated the
neural activation patterns, thereby dominating the model-based
MRI signals as well. This suggests that it is important to embed the
neural processes of interestwithin a fully neural system if youwant
to capture neural dynamics in a reasonable way. Concretely, this
means that we had a priori reasons for simulating early perceptual
and attentional processes in the model, even though most models
do not do this in the interest of simplicity.

4.1. Conceptual overview and model architecture

With that background in mind, Fig. 2 shows the architecture
of the model. This model is an integration of several models
developed to simulate findings from VWM tasks (Johnson et al.,
2009; Schneegans et al., 2014; Schöner et al., 2015), consistent
with our goal of asking whether a model of VWM can generalize
to a response selection task. We describe the architecture in detail
below, pointing out links to prior work to justify why we have
used this particular architecture here. Note that each element in
Fig. 2 is a dynamic neural field. We provide the full mathematical
specification of a dynamic neural field in the next section.

Themodel has a visual field in the lower right panel thatmimics
properties of early visual cortical fields (Markounikau et al., 2008).
The visual field is composed of neural sites receptive to both color
(hue) and spatial position. Inputs into this field build localized
‘peaks’ of activation in the two-dimensional field that specify the
color of the stimulus and where it is located. These peaks, in turn,
drive activation – in parallel – in the fields along a ventral feature
pathway shown in the bottom row of Fig. 2 (see fAtn, con, wm)
and in a dorsal pathway in the top right panel (see sAtn). Two of
these fields are ‘winner-take-all’ attentional fields that selectively
attend to the color of the presented item (feature attention or
fAtn) or its spatial position (spatial attention or sAtn). These fields
do not have much to do in the GnG task because only a single
item is presented centrally in the visual field; they are included
here for continuity with previous models (Schneegans et al., 2014;
Schöner et al., 2015) and to pass neurally-realistic inputs to the
other cortical fields.

The more interesting fields are ‘higher up’ in the ventral
pathway, where the model must decide whether the presented
color is from the Go set or the Nogo set. This requires some form
of memory – the system has to remember the details of the Go
and Nogo set (see Logan et al., 2015 for evidence that the Nogo
set is remembered) – and some form of visual comparison – the
systemhas to visually compare the hue value of the presented color
to the memorized options. The reciprocally inhibitory architecture
instantiated in theworkingmemory (wm) and contrast (con) fields
implements this visual comparison process (see Johnson et al.,
2009). This piece of the architecture has been tested in several
previous studies including tests of novel behavioral predictions
(see Johnson et al., 2009). Moreover, this core approach to visual
comparison has been generalized to visual comparison tasks
in infancy as well (Perone & Spencer, 2013a,b, 2014). To this,
we add a memory trace mechanism that remembers the colors
previously consolidated in working memory (mem_wm) and the
colors previously identified as ‘contrasting’ with the go set in the
contrast field (mem_con) (Lipinski, Schneegans, Sandamirskaya,
Spencer, & Schöner, 2012; Perone, Simmering, & Spencer, 2011;
Schutte & Spencer, 2002).

The final piece of the architecture implements the decision
process. Here, we have implemented two dynamical nodes –
localized neural populations (Schöner et al., 2015) – that compete
in a winner-take-all manner to make a Go or a Nogo decision.
The go node receives the summed activation from the working
memory layer. Conceptually, if the working memory layer detects
a match between the remembered set of Go colors (in the memory
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Fig. 2. Architecture of the GnG DNF model. Seven sub-networks are included: (i) the visual field, vis; (ii) the spatial attention field, sAtn; (iii) the feature attention, fAtn;
(iv) the contrast field, con; (v) the working memory field; wm; (vi) the go and (vii) nogo nodes. The neural fields are coupled by uni- or bi-directional excitatory (green) or
inhibitory (red) connections. Within each field, the activation variable u(x, t) at a given time instance t = t̃ is plotted in blue. Field output g(u(x, t)) at t = t̃ is in red. The
range [−20, 20] (horizontal axis for fAtn, con, wm), or [−15, 15], [−15, 30] (vertical axis for sAtn, go, Nogo) shows values taken by activations and field outputs. Feature
(color) and space dimensions have a span of 204 units (vertical axes in the lower panels) and 101 units (horizontal axes in upper and lower right panels) respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

trace) and the current color detected in the feature attention and
visual fields, this layer will build a peak of activation, consolidating
the item in working memory and passing strong activation to the
go node (Fig. 3(A)). Alternatively, if the contrast layer detects a
match between the remembered set of Nogo colors – the items
that contrast with the Go set – and the current color detected in
the feature attention and visual fields, this layer will build a peak
of activation and send strong activation to the nogonode (Fig. 3(B)).
Conceptually, the winner in the race between Go and nogo nodes
would then drive activation in the motor system (which we do not
implement here).

In the section below,we provide amore formal treatment of the
dynamic neural field model. We also walk through an example to
illustrate the neural population dynamics in the model that give
rise to an in-the-moment decision to make a Go decision or to
inhibit responding via a Nogo decision.

4.2. Formal specification of the model and exemplary simulations

Themodel consists of several dynamic neural fields (DNFs) that
compute neural population dynamics uj according to the following
equation (Amari, 1977; Ermentrout, 1998):

τeu̇j(x, t) = −uj(x, t) + hj + [cj ∗ gj(uj)](x, t)

+


k

[cjk ∗ gk(uk)](x, t) + ηj(x, t) + sj(x). (4.1)

The activation uj of each component is modeled at high temporal
resolution (millisecond timescale) with time constant τe. It
assumes a resting level hj and depends on lateral (within the
field) and longer range (between different fields) excitatory and
inhibitory interactions, cj∗gj(uj) and cjk∗gk(uk) respectively. These
are implemented by convolutions between field outputs g(u(x, t))

and connectivity kernels c(x) with the latter defined either as a
Gaussian function or as the difference of two Gaussians (‘‘Mexican
hat’’ shape). The temporal dynamics of the neural activity is also
influenced by external inputs sj and it is non-deterministic due to
noise ηj.

The activation u(x, t) is distributed continuously over an
appropriate feature space x such as color or spatial position (Fig. 2
— blue curves). Then the field output g(u(x, t)), is computed
by the sigmoid (logistic) function g(u) = 1/(1 + Exp [−βu])
with threshold set to zero and steepness parameter β (Fig. 2—
red curves). Therefore, g(u) remains near zero for low activations;
it rises as activation reaches a soft threshold; and it saturates
at a value of one for high activations. Excitatory and inhibitory
coupling, both within fields and among them, promote the
formation of localized peaks of activation in response to external
stimulation. In our model, any above-the-threshold activation
peak is interpreted as an experimentally detectable (via neural
recordings) response of that particular neural field to a stimulus.

The architecture of the dynamic neural fieldmodel includes the
seven fields shown in Fig. 2. (For details on field equations and
parameter values, see Appendix) A time snapshot of the dynamics
of the DNF model during a Go/Nogo task is shown in Fig. 3. (The
time instance t̃ is approximately 500 ms after stimulus onset, and
it is indicated on the graph by a black arrow.)

Fig. 3(A) illustrates the network state of the DNF model at time
t̃ during the Go task. The parameter values used in simulations
are listed in the Appendix (Model 1 for Load 2 condition). Shortly,
when a Go color is presented (duration of stimulus is 1500 ms), an
activation peak is built in the visual field vis. This induces a peak
in the working memory field wm and a weak peak in the feature
attention field fAtn (curves in blue). Then, the peak in wm leads
to an increase in activation of the go node (Fig. 3(A); in green).
In addition, due to inhibition from wm that dominates excitation
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Fig. 3. Network state of the DNF model at time instance t̃ approximately 500 ms after stimulus onset during: (A) Go task and (B) Nogo task (only vis, fAtn, con, wm are
shown). Time evolution of the output of go (in green) and Nogo (in red; left panel) nodes is also shown. Time t̃ is indicated by the black arrow. Simulations used parameters
from Appendix (see Model 1 and Load 2 condition). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

received from vis, the activity of the contrast field con is lowered
at the location of the Go color. At some time between 400 and
500 ms after stimulus onset, the activity of the go node crosses
the threshold, that is, its output function is greater than 0.5 (see
left panel; in green). This is caused by the formation of a strong
peak in wm. In addition, the peak in fAtn becomes stronger and
a sub-threshold hill forms in con as well. In the interval of time
between the response (reaction time RT ∼ 450 ms) and end of the
trial (1500ms), the activity peaks in vis, fAtn, con andwmstabilize.
Importantly, the hill in con remains sub-threshold. Also note that
the activity of the go node reaches saturation.

Fig. 3(B) shows the network state of the DNF model at time t̃
during theNogo task. In this case, theNogo color induces activation
of the visual field vis. This, in turn, increases activation in the
contrast field con at the corresponding color coordinate along the
feature space. A sub-threshold hill in fAtn forms as well, and wm
is locally inhibited. Then, later during the trial (e.g. at time t̃), the
activation of the nogo node has crossed its threshold. The peak in
con becomes stronger and stabilizes, and field fAtn shows supra-
threshold activity. At the Nogo color location in wm the activity is
inhibited. Approaching the end of the trial, the activity stabilizes in
vis, fAtn, con and wm, the peak in wm remaining sub-threshold.
Note that the nogo node stays ‘on’, while the go node remains
inactive.

5. Simulating behavior with the dynamic neural field model

When contrasted with cognitive models, the dynamic neural
field model in Fig. 2 is complex. Each field has several parameters
that need to be ‘tuned’ appropriately to get the model to perform

in a manner that is consistent with our hypotheses about how
response selection works. When contrasted with biophysical
neural network models, however, the dynamic neural field model
is relatively simple—there are fewer neural sites and far fewer
free parameters. Along this dimension of complexity, therefore,
DFT sits somewhere in the middle. That is by design. We contend
that using neural process models is critical in psychology and
neuroscience because this opens the door to important constraints
for theory from both behavioral and neural measures—constraints
readily apparent when one tries to construct integrative cognitive
neuroscience models. In our view, these constraints justify the
complexity. At the same time, we think it is important to add
just the right amount of complexity. Data from neurophysiology
suggest to us that perception, cognition, and action planning live at
the level of neural population dynamics, and not at the biophysical
level per se (for discussion, see Schöner et al., 2015). Thus, we
contend that the added detail from biophysical models is not
critical if the goal is to bridge the gap between brain and behavior.

Of course, the downside to the added complexity introduced by
dynamic neural field models is that fitting data to behavioral and
neural data becomes harder and a bit more subjective in nature.
This is not to say that DFT cannot achieve quantitative fits—that
is certainly still a goal. Rather, the subjective sense of DFT comes
from the fact that it is rarely possible to search the full parameter
space of a dynamic neural field model. Consequently, many of the
issues that are central tomathematical psychology andmany of the
tools that are used to evaluate model fits (Turner et al., 2016) are
difficult, if not impossible, to apply to dynamic neural field models
(Samuelson et al., 2015).

Critically, however, fitting dynamic neural field models to data
is not an unconstrained free-for-all. Rather, constraints come from
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multiple sources. First, the neural dynamics in the model must
reflect our understanding of how brains work. Thus, we would
rule out parameters that give rise to pathological neural states. For
instance, if excitatory neural interaction strengths in one of the
cortical fields are too strong, input to the field will build a peak
that grows out of control—the model has a seizure. By contrast, if
excitatory neural interaction strengths are too weak, no peaks will
build—the model will remain in a sub-threshold state.

Second, parameters must be tuned such that the neural
dynamics reflect our conceptual theory of how the model should
behave in the task. Concretely, this means that the right sequence
of peaks emerges during the course of a trial to give rise to the
right type of behavior (in this case, the generation of a Go or Nogo
decision). Formally, this means that the sequence of bifurcations
in the model must be correct. For instance, the following should
hold: (1) peaks in the working memory and contrast fields should
not build spontaneously from a memory trace; (2) peaks in the
working memory and contrast fields should be influenced by
the formation of peaks in feature attention (that is, the parallel
input from the visual field should not be too strong); and (3) the
Go and Nogo competition should be influenced by sub-threshold
activation in the working memory and contrast fields as decision-
making unfolds.

The third category of constraint comes, of course, from the de-
tails of behavioral data. In the GnG task, these constraints are rel-
atively modest since the participant only responds on Go trials.
Nevertheless, if one considers RT distributions rather than just
means, this can be relatively constraining. For instance, Erlhagen
and Schöner fit the details of response distributions from several
response selection paradigms (Erlhagen & Schöner, 2002) This is
possible with dynamic neural field models because such models
are stochastic, and they generate measurable behaviors on every
trial (e.g., the formation of a stable Go or Nogo decision). Moreover,
relatively complex models as the one used here generate complex
non-linear patterns through time—for instance, a sequence of peak
states across fields, which can amplify stochastic fluctuations lead-
ing to macroscopic behavioral differences across conditions. Fur-
ther behavioral constraints emerge when one considers response
distributions frommultiple studies. Here, the goalwould be to cap-
ture the quantitative details of behavioral responses from multi-
ple studies, ideally without anymodification tomodel parameters.
This has been achieved in several notable cases (Buss & Spencer,
2014; Erlhagen & Schöner, 2002; Schutte & Spencer, 2002).

Here, our goals were more modest—we did not optimize the
quantitative fit to the behavioral data. Rather, we pursued a more
iterative parameter fitting approach. First, we fit themean reaction
times with the dynamic neural field model, and made sure the
variance in the model was in the right ballpark. We refer to this as
Model 1 (see Appendix). As readerswill see, our fits to the standard
deviations could have been better; however, we did not optimize
the model on this front. Rather, we pushed forward to evaluate
the quantitative fMRI fits first. Data from these fits revealed that
Model 1 did not quite outperform the quantitative fit provided by a
Standard GLM analysis — the ‘gold standard’ statistical model we
set a priori. We then examined the model’s neural data, focusing
on the ways in which the model’s neural dynamics differed from
the neural dynamics evident in the fMRI data (see Wijeakumar
et al., 2015). This led to new insights into how we had the model
parameters ‘tuned’ and prompted a second round of behavioral fits
targeting more competitive neural interactions. This resulted in a
second set of parameters – Model 2 (see Appendix) – that fit the
behavioral data relatively well and fit the fMRI data better than
Model 1. This illustrates how an interactive cognitive neuroscience
approach can be used in practice to bridge the gap between brain
and behavior.

5.1. Simulation methods

Before turning to the details of the behavioral fits, we provide
a few more details about the simulation method. All numerical
simulations were performed using the COSIVINA simulation
package (available at www.dynamicfieldtheory.org). This package
allows one to construct dynamic neural field architectures
relatively quickly, along with a graphic user interface that enables
evaluation and ‘tuning’ of the model in real time (see Figs. 2–3).
The same simulator can then be run in ‘batch’ mode to iterate
the model across many trials, recording responses that can be
evaluated relative to empirical data. The COSIVINA package also
includes a new toolbox for generating local field potentials directly
from the model at the same time that the model is simulating the
experimental task. Thus, themodel is truly an integrative cognitive
neuroscience model, generating behavioral and neural data (with
millisecond precision) simultaneously.

5.1.1. Parameter fitting in Model 1
We adopted the following approach when tuning model

parameters to arrive at Model 1. First, we made a simplification of
themodel. Initial simulationswith a dynamicmemory trace in both
the working memory and contrast fields showed that the memory
trace dynamics conformed to expectations based on previouswork
(Buss et al., 2013; Erlhagen & Schöner, 2002; Lipinski et al., 2010).
In particular, memory traces were stronger in the Load 2 condition
and weaker in the Load 6 condition. This occurs because each
color is presented more often over trials in Load 2. Similarly,
memory traces were stronger for Go stimuli in the Proportion 75%
condition and weaker in the 25% condition. Again, this mimics
the frequency of stimulus presentation. Although these memory
trace – or learning – dynamics are fundamentally interesting,
they also make simulation work more complex because one must
simulate a variety of stimulus presentation orders to obtain robust
estimates of learning effects. Given that such learning effects – in
both behavioral and fMRI data – were central to our previous work
using an interactivemodel-based fMRI approach (Buss et al., 2013),
we opted to simplify the learning dynamics here. Thus, instead of
simulating memory traces dynamically over trials, we used static
memory traces, that is, the memory trace inputs were fixed for
each condition to reflect the properties revealed by these initial
simulations (see Eq. (A.17) and Table A.4.1in the Appendix, for
details).

The next objective was to find a set of parameters that
quantitatively captured data from the Load 2 conditionWe started
with parameters from Schöner et al. (2015, Chapter 8), and
adjusted the model parameters to approximate the right behavior
from the Load 2 condition. For instance, connection strengths
between the gonode andwm field and nogo node and con fieldwere
tuned. The strength of the memory trace inputs into the wm and
con fields for Go and Nogo trials respectively, were tuned as well.

Once themodel captured the reaction times for Go trials at Load
2, the next step was to capture reaction times for the Load 4 and
Load 6 conditions Here we hypothesized that increasing the Load
in the task would increase competition among memory traces,
slowing down the time it takes to build a peak in the working
memory and contrast fields and yielding slower reaction times
(Erlhagen & Schöner, 2002). Hence, we adjusted the strength of the
memory trace inputs in bothwm and con fields without modifying
any other parameters. (See Table A.4.1 in the Appendix; third
column shows how the strength of the memory trace inputs for
wm and con is varied across different conditions.) We then tested
whether the model was able to capture the increase in reaction
times observed as memory Load increased.

For the Proportion manipulation, Proportion 50% corresponded
to Load 4 and so its parameters were used as an anchor to fit

http://www.dynamicfieldtheory.org
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Fig. 4. (A–B) Mean reaction times computed for the DNF model (Model 1 shown in light gray and Model 2 shown in dark gray) and behavioral data (shown in black) for
the manipulation of the (A) Load and (B) Proportion. (C–D) Mean standard deviations of reaction times across simulations for the (Model 1 shown in light gray and Model 2
shown in dark gray) and behavioral data (shown in black) for the manipulation of (C) Load and (D) Proportion.

the reaction times from Proportion 25% and Proportion 75%. Here,
we hypothesized that as the number of Go trials increased, the
strength of the memory trace for Go trials would also increase.
Likewise, as the number of Go trials decreased, the strength of
thesememory traceswould decrease (Table A.4.1 in the Appendix).

To generate quantitative data from the model, we ran 144
trials per model and 20 identical models (to reflect the number
of participants in the original study) for each of the Load and
Proportion manipulations. Mean and standard deviations were
calculated across reaction times and compared to the empirical
data (Fig. 4).

5.1.2. Parameter fitting in Model 2
To identify parameters for Model 2, we proceeded as follows.

After discovering that Model 1 did not meet our quantitative
criterion for fits to the fMRI data, we examined the neural
predictions from the model across conditions relative to fMRI
results from Wijeakumar et al. (2015). A central effect in
Wijeakumar et al. was that regions of the fronto-cortical–striatal
network showed greater activation on infrequent trials, regardless
of whether an infrequent stimulus appeared on a Go or Nogo trial
(Wijeakumar et al., 2015). For instance, brain areas responded
strongly on infrequent Go trials. Quantitative fMRI predictions
from Model 1 did not show this pattern. Given that local
field potentials are positively influenced by both excitatory and
inhibitory interactions, we hypothesized that a strong response
on infrequent Go trials might be most likely to occur when
there is a strong memory of frequent Nogo responses and strong
competition between theworkingmemory and contrast fields (and
vice versa on infrequent Nogo trials). To examine this possibility,
we added a new element to the model—a memory trace to the
go and nogo nodes (implemented by modulating the gain on
self-excitation across conditions, see Table A.2.1 in the Appendix)
and we increased competition between the wm and con fields
(Table A.3.1). We also balanced the parameters across the go and
Nogo systems, setting the reciprocal connections between nogo

node and con field so theywere equal to the parameters connecting
go node and wm field (Table A.3.1).

Our examination of the model’s neural dynamics also revealed
that differences across conditions were relatively modest. We
realized that this was influenced by the trial duration we were
simulating. Decisions in the model – and decisions by participants
– occur within the first 500 ms; for the remaining 1000 ms,
the model simply sits in a neural attractor state, maintaining
peaks across all fields (because the stimulus remains ‘on’). Because
the BOLD signal reflects the slow blood flow response to all of
these events, the ‘final’ attractor states of the model dominate
the hemodynamic predictions and the more interesting cognitive
processes – the neural interactions leading to the decision –
have relatively less impact. This does not accurately reflect neural
systems; rather, neurophysiological data suggest that neural
attractor states stabilize, but are then suppressed once a stable
decision has been made (Bastian et al., 2003). To implement this,
we added a ‘condition of satisfaction’ node (CoS), building off
recent work by Sandamirskaya and colleagues (Sandamirskaya &
Schöner, 2008; Sandamirskaya, Zibner, Schneegans, & Schöner,
2013; Schöner et al., 2015). This node receives input from both
the go and nogo nodes. When either becomes active, the ‘CoS’
node becomes active, signaling that the conditions for a stable
decision have been satisfied. The CoS node then suppresses the
working memory and contrast fields, globally inhibiting these
fields. Consequently, the stable decision made by the go or nogo
node remains active throughout the 1500 ms trial, but peaks in
the wm and con fields are suppressed once the decision is made.
Conceptually, this frees up these systems to move on to other
interesting events that might (but do not) occur in the visual field.

5.2. Quantitative behavioral results

Here, we present the results of the behavioral fits for Models 1
and 2 alongside the reaction times from the actual behavioral data
Both DNF models provide reasonable fits to the trends in reaction
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times shown by the behavioral data in response to manipulating
Proportion and Load (see Figs. 4(A) and (B)). Root Mean Squared
Error (RMSE) for reaction times for Model 1 with respect to
the Standard GLM analysis = 10.58 ms and RMSE for reaction
times for Model 2 with respect to the Standard GLM analysis =

27.02 ms. For the Load manipulation, reaction times increased
as the number of SR mappings increased. For the Proportion
manipulation, increasing the frequency of Go trials from25% to 75%
resulted in a decrease in reaction times. Although there were some
variations in the standard deviations across the 20 simulations for
both models (as shown in Fig. 4(C) and (D)), the trends across the
conditions were qualitatively correct.

6. Generating local field potentials and hemodynamics from
the DNF model

To simulate the hemodynamics for this study, we adapted the
model-based fMRI approach from Deco et al. (2004). Specifically,
we created an LFP measure for each component of the model
during each condition and tracked the LFPs in real time as
the model simulated behavioral data. Then, we convolved the
simulated LFPs with a gamma impulse response function to
generate simulated hemodynamics, and as a result, regressors for
each component and condition.

6.1. Definition of the DNF model-based LFP

To illustrate the procedure, we explain below the computation
of the LFP for the contrast field neural population (con field in
Figs. 2–3). The LFPs for all other neural fields in the GnGDNFmodel
(e.g. Model 1; see Fig. 1) follow an identical approach.

Consider the dynamic field Eq. (4.1) with appropriate input
neural fields and connections that contribute to the dynamics of
the neural population in the con field. This equation is defined by
(A.4) in the Appendix or, more explicitly, by

τeu̇con(y, t) = −ucon(y, t) + hcon + scon(y) + ccon,noise ∗ ξ(yt)
+ ((ccon,E − ccon,I) ∗ gcon(ucon))(y, t)

+


j=vis,fAtn,wm

ccon,j ∗ gj(uj)(y, t)

+ acon,nogognogo(unogo(t))

where f ∗ h denotes the convolution f ∗ h(y, t) =

f (y − y′)

h(y′, t)dy′.
Here scon(y) specifies the stationary sub-threshold stimulus to

the con field (‘‘the memory trace’’), spatially tuned to Nogo colors.
The spatially correlated noise ηcon is obtained by convolution
between kernel ccon,noise and vector ξ of white noise. Local
connections include both excitatory and inhibitory components,
ccon = ccon,E − ccon,I . All kernels are Gaussian functions of the form

c(y − y′) = a Exp

−

(y−y′)2

2σ 2


with positive parameters a except

acon,wm < 0. Note that, whenever Model 2 is used in simulations,
an additional term associated with feedback projections from the
condition of satisfaction node (CoS) appears in ucon.

To generate an LFP for the contrast field, we sum the absolute
value of all terms contributing to the rate of change of activation
within the field, excluding the stability term, −ucon(yt), and the
neuronal resting level, hcon. The resulting LFP equation for the con
field is given by:

LFPcon(t) =
1
n


|scon(y)| +

ccon,noise ∗ ξ(y, t)
 dy

+
1
n

 ccon,E ∗ gcon(ucon)(y, t)


+
ccon,I ∗ gcon(ucon)(y, t)

 dy

+
1
n

 ccon,fAtn ∗ gfAtn

ufAtn


(y, t)


+

ccon,wm ∗ gwm (uwm) (y, t)


+
1

n × m

 ccon,vis ∗ gvis (uvis) (y, t)
 dy

+
acon,nogognogo 

unogo (t)
 . (6.1)

Several observations about this calculation need to be made.
First, since both excitatory and inhibitory communication require
active neurons and, biophysically, generate positive ion flow, we
need to sum both in a positive way toward predictions of local
activity; thus, we take the absolute value of all excitatory and
inhibitory contributions. Second, given that field activities in the
calculation of the LFP measure may span different dimensions,
we normalize them. In this way, we can maintain a balance
among their contributions. We do that by dividing each field
contribution by the number of units in it (e.g., in Eq. 6.1 certain
field contributions were divided by n or n × m where n is the
feature dimension and m is the space dimension). Third, due to
correlated noise in each field of themodel, small-scale variations in
the signal occur (especially evident in the second component), as
well as overall variation in reaction times. Indeed, for same initial
conditions, the DNFmodel yields relatively different LFP measures
(see Fig. 5(A)).

Each component in the model has a different network of
interactions that drives a different response pattern. Consequently,
individual LFP measures are created for each model component,
that is, for each of the 7 fields shown in Fig. 2. Figs. 5(A) and (B)
depict LFP simulations from fAtn andgonode inModel 2, over three
and four trials, respectively.

6.2. Canonical predicted LFPs per experimental condition

Note that, in some components, the LFP level is similar across
conditions with minor differences in timing (fAtn). In others (go
node), different conditions (Go trial versusNogo trial) lead to larger
differences in the LFP (Fig. 5(B)). This contrast is key to the model-
based approach because it allows components to have unique
signatures on both the scale of the individual trial as well as larger
scale signatures across task conditions.

To account for this variance, we run many repetitions of each
condition (i.e.we start from same initial values in themodel; there-
fore, the variability will be a direct consequence of noise only). The
number of repetitions is chosen usually to reflect the number of
trials undertaken by the subjects in the actual experiment. (For ex-
ample, if in the experiment, each of 20 subjects underwent 72 Go
trials for Load 4, we will run 20 sets of 72 repetitions (simula-
tions) of Model 2 with the corresponding parameters for stimulus
strength fromTableA.4.1.)We then average the generated LFP time
series over repetitions of the same condition to determinewhatwe
call the canonical predicted LFP signal per condition. Fig. 6 depicts
examples of such canonical LFP predictions for two fields, fAtn (in
blue) and go-node (in green). The first 1500 ms in Fig. 6 shows the
canonical LFP predictions for Load 4, Go trials (e.g., as seen repeated
in Fig. 5(A)). The last 1500 ms shows the canonical LFP predictions
for Load 4 Nogo trials.

6.3. Construction of the long-form LFP template

Another concern that we aimed to address was placing the sim-
ulated canonical LFP values in an appropriate context. Much like
the measurement of fMRI data, we take a baseline measurement
from themodel as follows.We use the same LFP calculations as de-
scribed above, but we compute a ‘‘resting level’’ by simulating the
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Fig. 5. DNF-model-based LFPs computed for two fields in Model 2: feature
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is a consequence of the stochastic nature of the model. (For interpretation of the
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this article.)
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1500 ms) Load 4, Go trials, and (right, last 1500 ms) Load 4, Nogo trials. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

model in the absence of external stimuli. We average these read-
ings (across all time points and repetitions) to obtain an average
resting value. Then, this value is subtracted out of our predictions
to express the change in LFP activity relative to the resting value.

Once we have calculated a canonical baselined LFP for each
model component and condition type, we proceed to construct

long-form, averaged LFP templates. The latter are long-scale (tens
of minutes) model-generated LFP predictions for each subject in
the experiment. The structure of the long-form LFP templates, for
all components of the DNF model, is determined by the order
and timing of trials that particular subject experienced during the
experimental block(s).

To do this, we first create a zero-valued time series the length of
the entire experiment (i.e. a zero-valued long-form LFP template).
We then use trial onset timings from the experiment to anchor
the trial canonical baselined LFP prediction, for each corresponding
trial type. For example, if a trial of a certain condition (e.g. Load
4, Nogo trial) has an onset time of 7500 ms after the start of the
experiment, then the canonical LFP for that trial is inserted to
the long-form template-LFP starting at the same onset time (see
Fig. 7). Once this iterative process is completed (across all trials)
and the algorithm is applied to all DNFmodel components,wehave
constructed experiment-based, subject-specific LFP time series for
each component of the DNF architecture. These time series reflect
predicted differences in neural activation based on the processes
at work within each field.

6.4. Generating hemodynamics from the DNF model

fMRI data does notmeasure neural activity directly. It measures
changes in blood flow as the neurovascular system responds to
resource demands of active neurons. Consequently, there is a delay
between neural activity and themeasured BOLD signal. To account
for this, we use a standard hemodynamic response function,

HRF(t) =
tn−1

λn(n − 1)!
Exp


−

t
λ


, λ = 1.3 s, n = 4,

to describe the expected response pattern in the BOLD signal,
for a given amount a neural activity. By convolving HRF(t) with
the long-form LFP templates ( ˆLFP(t)), we are able to generate
predicted BOLD activity patterns that are directly comparable to
the measured data.

Note that time variable inHRF(t) and ˆLFP (t) has different units,
seconds (former) and milliseconds (latter). Also, note that we used
a mapping of 1 model time-step to 1 ms in the experiment to
simulate the details of each trial. Thus, care should be taken to
bring these time units on the same scale, before the convolution
BOLD(t) = (HRF ∗ ˆLFP) (t) is computed. Fig. 8 shows two examples
of BOLD predictions obtained as described above.

Next, we address the question of comparingmodel units for the
numerically generated BOLD signal to those derived from the fMRI
data. We again take guidance from the treatment of fMRI data: we
normalize each predicted BOLD signal by its average value over
time across the entire experiment-length time series. This takes
us away from model-based units to an abstract percentage scale
relative to the mean.

Then we turn these normalized BOLD signal predictions into
regressors for the statistical analysis of the fMRI data. Care should
be taken at this step, again, given that the calculations require
matching the sampling rate of the time series to that of the data
(down sampling to match the temporal resolution (TR) from the
fMRI data). Fig. 9 shows the normalized BOLD signals resulting
from those shown in Fig. 8, as well as the discrete sequence of
points retained from the numerically generated BOLD signal after
down sampling.

Note that in the analysis of the GnG task, we decided to create
split regressors for Go and Nogo trials (see following section for
details). To split the trials, two long-form LFPs (again, for each
subject and each component) were created based on only Go or
Nogo trial onsets instead of all trials together. The proceeding steps
from long-form LFP to regressor follow identically.
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7. Testing model-based predictions with GLM

In the previous section, we generated a linking hypothesis that
allows us to specify a local-field potential for each field in a dy-
namic neural field model. We also detailed the steps required to
transform these LFPs into hemodynamic predictions that are tai-
lored to each individual participant. The next step is to evaluate

whether these individually-tailored hemodynamic predictions are,
in fact, good predictions relative to the fMRI data from each indi-
vidual.

We used GLM to evaluate this question. In particular, we
used the individually-tailored hemodynamic predictions described
above as regressors in a GLM for each individual participant’s
fMRI data. This provides quantitative metrics with which we can
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Fig. 10. Testing DNF model predictions with GLM (numerical results using Model 2): (A) Average HDR and LFP for Go (blue/cyan) and Nogo (green/red) Load 4 trials for
the fAtn field and go node. (B) Predictions for five components of DNF model (fAtn, con, wm, go, nogo) across Load and Proportion manipulations; bars show signal change.
(C) DNF regressors of a single subject and a sampling of the nogo node’s time course (at right). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

evaluate the model’s goodness of fit. In particular, we examined
the following metrics from each individual GLM: (1) the number
of voxels where the model-based GLM captured a significant pro-
portion of variance, and (2) the average R2 value across all signif-
icant voxels. Note that, because the R2 values were not normally
distributed, we z-transformed the data. An average z-value was
calculated across the mask of voxels that were significant. The
z-transformation was then undone using R = a tan h(z), where
z is the average z-value. Finally, the R-value was adjusted using

adjR = 1 −
(1 − R)(N − 1)

N − p − 1

where N = number of time points across runs and p = 1.
Although the GLM approach gives us quantitative metrics, we

need a way to assess whether the fit of the model is any good.
As Turner et al. discuss, the optimal approach here would be to
quantitatively compare the fit of the DNF model relative to a
competing model (Turner et al., 2016). For instance, in Buss et al.,
they compared hemodynamic predictions of the DNF model to
hemodynamic predictions of ACT-R (Buss et al., 2013). Here, we
pursue an alternative approach that was motivated by a recent
model-based fMRI study of VWM. In that study, we did not have
a second cognitive model from which to generate competing fMRI
predictions. Instead, we compared the GLM-based fit of a DNF
model to Standard GLM fMRI analyses. This is useful because,
at present, Standard GLM fMRI analyses are the gold standard
in the functional neuroimaging literature and such analyses can
be performed in all cases. Thus, we can treat the Standard GLM
analysis as a baseline and ask whether the DNF-based GLM
quantitatively outperforms this baseline.

The next question is, of course, which metric to use. One op-
tion is to analyze voxel counts; however, several studies have high-
lighted the limitations of this approach (Bennett & Miller, 2010;
Cohen & DuBois, 1999) An alternative is to compare the mean R2

values acrossmodels. The problemhere is that the DNF-based GLM
might capture significant variance in some voxels, while the Stan-
dard GLM analysis might capture significant variance in different
voxels. The overall mean R2 value does not take this into effect.
Thus, we used an alternative approach: we created an intersection

mask that defined voxels where the DNF-based GLM and the Stan-
dard GLM analysis both captured a significant proportion of vari-
ance and then statistically compared these intersection R2 values.
This provides a direct head-to-head comparison of the two mod-
els in the same voxels, asking whichmodel does a better job fitting
the brain data. Our objective was to see whether we could tune the
DNF model parameters such that it significantly outperformed the
Standard GLM analysis on this comparison metric.

We struggledwith two final issues. First, the degrees of freedom
of the DNF-based GLM and Standard GLM analysis were not the
same. The Standard GLM analysis of data from Wijeakumar et al.
(2015) had 10 regressors: 5 conditions (Proportion 75%, Proportion
25%, Load 2, Load 4, Load 6) × 2 trial types (Go, Nogo). By contrast,
the DNF model had 7 regressors – one for each component (vis,
sAtn, fAtn, con, wm, go, nogo; see, for instance, Fig. 9) – see
Section 6 for the steps leading up to the creation of regressors from
the DNF components. Second, we discovered when running the
DNF-based GLM that several regressors were collinear which can
make beta estimates unstable. This was not terribly surprising: the
most collinear fields were vis, sAtn, and fAtn, and all three fields
basically serve the same function in the GnG task.

To resolve both issues, we created a 10-regressor DNF-based
GLM model by (1) reducing the number of model components to
the 5 least collinear fields (fAtn, con, wm, go, nogo), and (2) includ-
ing separate model-based regressor for Go and Nogo trials.

Fig. 10 illustrates the DNF-based GLM approach with numerical
results from Model 2 Fig. 10(A) shows examples of HDRs and
LFPs for Load 4 Go and Nogo trials in the fAtn field and go
node—the same fields used for illustration in Figs. 5–9. As above,
differences in the HDR amplitude between Go and Nogo trials are
evident in the go node but not in the fAtn field. Maximum HDRs
across the five DNF components included in the GLM (fAtn, con,
wm, go, nogo) and across Load and Proportion manipulations are
displayed in Fig. 10(B). These bars reveal differences in the model-
based predictions across components and conditions. Note, for
instance, that fAtn shows comparable hemodynamic predictions
across go and nogo trials, while the go and nogo nodes show
different patterns with, for instance, greater activation in the
Prop25 condition on go trials, and greater activation in the Prop75
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Fig. 11. Excerpts from the 10-regressor design matrices for one subject from the three GLMs from the project. The excerpts are taken from part of the Load 6 and Load 4
experimental blocks for the given subject. Note that differences exist in themodel regressors between components, but they are difficult to appreciate at this scale/resolution.

condition on nogo trials. This reflects one of the key hemodynamic
patterns evident in the fMRI data: some brain areas showed a
strong response on infrequent trials, regardless of whether those
trials required inhibition (a nogo trial in the Prop75 condition) or
not (a go trial in the Prop25 condition).

Fig. 10(C) shows go and Nogo trial regressors for each compo-
nent of the model, constructed by inserting the condition-specific
HDR at the onset of each trial in the same order that was presented
to each participant. An example predictor for one participant – a
regressor in the GLM model – is shown in the inset in Fig. 10(C).
This time course was created by inserting the predicted hemo-
dynamic time course from the Nogo component (similar to those
from Fig. 10(A)) for each trial type at the appropriate start time
in the time series and then summing these predictions. If there is
a brain region involved in the generation of a Nogo decision, the
model predicts that this brain area should show the particular pat-
tern of BOLD changes over time shown in the inset. TheGLM results
can be used to statistically evaluate such predictions.

8. Model evaluation: Individual-level GLMs

We ran 3 sets of GLM models (using afni_proc in AFNI) for
each participant: a 10-regressor DNF-based GLM for Model 1; a
10-regressor DNF-based GLM for Model 2; and a 10-regressor
Standard GLM analysis. All GLM analysis also included regressors
for motion and drifts in baseline. Fig. 11 shows portions of the 10
regressor design matrices from the three models we investigated.
Note in particular that the Standard GLM analysis employs a
separate regressor for each trial type and condition. In contrast,
the DNF model-based method only separates trials based on trial
type (go and Nogo trials). For this reason, themodel-basedmethod
generates more constrained predictions because the relationship
between trial conditions (variations in Load and Proportion) is
determined a priori and not allowed to vary independently as

with the Standard GLM analysis method. As well, the model-based
method employs different predictions for each model component,
allowing us to identify effects indicative of specific functions.

In each case, we report the total number of significant voxels
and the mean R2 value across those voxels (see below). We then
intersected the images as per themodel pairs and identified voxels
that were significant for both Model 1 and the Standard GLM
analysis, and voxels that were significant for both Model 2 and the
Standard GLM analysis. Then, we calculated the mean intersection
R2 value for each model for each participant and compared these
values using a paired-samples t-test.

Overall voxel counts across models were the following: Model
1 = 3964 voxels, Model 2 = 4762, Standard GLM analysis =

3978 voxels. Overall, both models were comparable but Model 2
captured significant variance in more voxels The overall R2 values
were the following: Model 1 = 0.139, Model 2 = 0.135, Standard
GLM analysis = 0.130, so both DNF models captured more
variance, though neither represents a significant improvement
relative to the Standard GLM analysis when we compare the
average values computed across all voxels (p = 0.20 and p = 0.43,
respectively).

The importantmetric in this evaluation between theDNF-based
GLM and the Standard GLM analysis is the intersection R2 values
across model pairs. The intersection R2 was 0.153 for Model 1
and 0.141 for the Standard GLM analysis across 1616 intersected
voxels; Model 1 performed better than the Standard GLM analysis
but this effect did not reach significance (t(19) = 0.199, p =

0.086). On the other hand, the intersection R2 was 0.150 for Model
2 and 0.131 for the Standard GLM analysis across 1507 intersected
voxels, with Model 2 performing significantly better than the
Standard GLM analysis (t(19) = 0.427, p = 0.006). When
both DNF models were compared against each other, intersection
R2 values across 1615 intersected voxels were not significantly
different, but Model 2 performed quantitatively better than Model
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1 (Model 1 = 0.148 and Model 2 = 0.149, t = 0.01, p = 0.18).
In summary, Model 2 significantly outperforms the Standard GLM
analysis and quantitatively performs better than Model 1. Thus, at
the group level analysis, we only compared results betweenModel
2 and the Standard GLM analysis.

9. Model evaluation: Group-level GLMs

9.1. Overview of the approach

The betamaps from the Standard GLM analysis were input into
two 2-factor ANOVAs, a Load ANOVA and a Proportion ANOVA
(run using 3dMVM). The Load ANOVA consisted of Type and
Load as factors and the Proportion ANOVA consisted of Type and
Proportion as factors. The main effect and interaction maps from
both sets of ANOVAs were thresholded and clustered based on
family-wise corrections obtained from 3dClustSim (α = 0.05).
The main effect of Type from the Proportion and Load ANOVAs
were pooled together and called the ‘Type main effect’ image. The
‘Other effects’ image consisted of the pooled effects from the Load
main effect, Proportion main effect, Load x Type interaction, and
Proportion × Type interaction.

The DNF-based GLM (Model 2 only) also yielded betamaps
for each of the ten regressors. These betamaps were input into
an ANOVA with regressor as the only factor. The main effect of
regressor obtained from this ANOVAwas corrected for family wise
errors using 3dClustSim as described above. A one-sample t-test
was conducted within the spatial constraints of this clustered
main effect image to ascertain the contribution of each regressor
to the main effect. These t-test results for each regressor were
corrected for family wise errors again, identifying which model
components were significant predictors for each voxel. At this
point, we collapsed effects across trial type for each regressor.
For instance, voxels that showed an effect of the wm field for Go
trials and/or for Nogo trials were pooled together as wm areas.
Consequently, the final image consisted of voxels that showed
unique and combined contributions from five fields in the DNF
model—fAtn con, wm, go node and nogo node. This map was
intersected with the Type effect and Other Effects maps from the
Standard GLM analysis to establish whether the two GLM analyses
identified similar brain regions and whether effects in each cluster
were comparable.

It is important to note that the DNF-based approach not only
identifies where the brain responded in a way predicted by the
model, but alsowhich function(s) operates within that brain region.
Thus, in the section that follows, we examine the functional
networks identified by the DNF model and then compare the
spatial overlap between theDNF-basedGLMand the StandardGLM
analysis.

9.2. Group-level results

Fig. 12 shows those DNF model predictors that produced
statistically significant clusters within the brain regions showing
a main effect of component. Overall, the DNF-based GLM revealed
patterns of activation consistent with themodel-based predictions
in cortical and sub-cortical networks of the brain that included the
cerebellum, putamen, insula, caudate, supplementary motor area
(SMA), as well as parts of the occipital cortex and the cingulate
cortex.

Unique contributions from the wm field recruited the largest
numbers of regions (accounting for 1738 voxels). Critically, key
parts of the insular-thalamic-putamen network were assigned to
a working memory function, consistent with claims by Hampshire
and colleagues (Erika-Florence et al., 2014) that working memory
and attention processes may underlie response selection. Clusters

Table 1
Voxel count of unique and common effects between the DNF-based GLM and
Standard GLM analysis activation maps.

Voxel type Voxel count

Type main effect only 2610
Other effects only 414
DNF components only 2053
DNF components and type main effects 494
DNF components and other effects 97

that showed combined effects from more than one component
accounted for 965 voxels. Importantly, all of these voxels included
a common wm component. Looking at the model predictions from
Fig. 10(B), two patterns likely explain the predominance of the
wm field predictions: (1) there is a reduction in wm activation
as Load was increased, and (2) there is a larger modulation of
wm activation across the Proportion manipulation on Go trials
relative to Nogo trials As discussed in Wijeakumar et al. (2015),
both patterns were pervasive in the fMRI data.

The DNF-based GLM approach also identified regions that
laid outside of the network obtained from the Standard GLM
analyses approach. Thewm field recruited parts of the left fusiform
gyrus, left cuneus and left superior temporal gyrus. The lingual
gyrus and fusiform gyrus also reflected neural predictions of a
combination of the wm, go, and nogo fields. This is consistent
with previous findings suggesting that the lingual gyrus plays a
role in visual memory as well as visual classification decisions
(Mechelli, Humphreys, Mayall, Olson, & Price, 2000). Our results
also assign the same functional role to the fusiform gyrus which
is functionally connected to the lingual gyrus and plays a central
role in visual processing and visual comparison (Mechelli et al.,
2000). Another result is the recruitment of parts of the left middle
frontal gyrus (not shown) by the wm field and a combination of
the wm field and go and nogo nodes (Johnson, Hollingworth et al.,
2008; Johnson et al., 2009; Simmering et al., 2008) The wm field
plays a very important role of maintaining memory traces in the
DNF model of VWM in adulthood and development. Furthermore,
the middle frontal gyrus has been implicated to be involved in
maintenance of goals and abstract representations during VWM
processing (Aoki et al., 2011; Barbey, Koenigs, & Grafman, 2013;
Haxby, Petit, Ungerleider, & Courtney, 2000; Jonides et al., 1998;
Munk et al., 2002; Pessoa, Gutierrez, Bandettini, & Ungerleider,
2002; Pessoa & Ungerleider, 2004).

The next question we examined was how these results from
the DNF-based GLM overlapped with results from the Standard
GLM analysis. Table 1 shows voxel counts for common and unique
effects between these GLM results. Fig. 13 shows the spatial
distribution of these clusters for the unique and common effects.
The Type main effect from the Standard GLM analysis overlapped
with 534 voxels that were also significant in the DNF-based GLM
(Fig. 13; yellow). In addition, the ‘Other effects’ from the Standard
GLManalysis overlappedwith 116 voxels thatwere also significant
in the DNF-based GLM (shown in brown in Fig. 13). We focus
on these overlapping effects below because they provide a way
to evaluate our model-based fMRI results relative to findings
discussed in Wijeakumar et al. (2015).

Tables 2 and 3 show clusters that overlapped between the DNF-
based GLM and the Typemain effect and Other effects respectively.
For each overlapping cluster, we identify the fields that were
significant in the DNF-based GLM.

Critically, there was overlap between the areas recruited by
the wm field and the Type main effect in parts of the insular-
thalamic-putamen network. As noted above, this is consistent
with claims by Hampshire and colleagues that working memory
plays a central role in response selection via activation of anterior
insular and frontal operculumnetwork (Erika-Florence et al., 2014;
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Fig. 12. Functional maps generated by DNF model. Colored regions represent
cortical areas where a main effect of component was present. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 13. Overlap between DNF and the standard GLM analysis. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Hampshire & Sharp, 2015) Overlap between combinations of the
wm field and other components and the Type main effect was
also observed in parts of the cerebellum and SMA. It is interesting
that activation elicited by the DNF components seemed more
localized as compared to the activation from the Type main effect
(see yellow regions embedded in red regions in Fig. 13). This is
an encouraging sign for future work, suggesting that the DNF
model might identify functional networks that are more precisely
localized thanwhat is typically revealed by StandardGLManalyses.

The Other effects activation maps contained the effects of
Proportion and Load and interactions of these two manipulations
with Type of trial. Once again, the greatest degree of overlap was

with the wm field including portions of the cerebellar regions and
also the insula and putamen. In our previous work, this insular
network has been implicated in detecting salient or infrequent
events (Wijeakumar et al., 2015). In the model, the wm field
is responsible for associating and retrieving the appropriate SR
mappings to both frequent or non-salient and aswell as infrequent,
salient events. As noted above, the wm field showed two key
effects that were pervasive in the Standard GLM analysis results:
a reduction in activation over Load and a larger modulation of wm
activation across the Proportion manipulation on Go trials relative
to Nogo trials. This likely explains the overlap between predictions
from the wm field and the Other effects.

10. General discussion

The objective of the current paper was to formalize an
integrative cognitive neuroscience approach using DFT. To this
effect, we adopted a tutorial-style approach wherein we first
introduced DFT and its applications to readers who might be less
familiar with this modeling approach. Then, we used data from a
response selection paradigm as an exemplar case study to explain
the steps and rationale involved in building DNF models that
could capture behavioral and neural data and the challenges in
bridging brain and behavior using these methods. The central goal
of this approach was to generate hemodynamic predictions from
DNF models and evaluate these predictions at the individual and
group levels using GLM by making comparisons to Standard GLM
analyses.

Two DNF models captured behavioral data from the task rea-
sonably well; however, only one of the DNF models outperformed
the Standard GLM analysis when comparing adjusted R2 values
within the same regions of the brain. Interestingly, this model ar-
chitecture was developed by tuning the first model parameters to
capture competitive neural interactions first and then simultane-
ously capturing behavioral data aswell. This suggests that iterative
modeling using this approachmight bemost effective.Model 2was
then advanced to the group level analyses to look at spatial dis-
tributions of DNF components and how these distributions over-
lapped with effects observed in the Standard GLM analysis from
our previous work.

The DNF model engaged a large cortico-sub-cortical network
that included parts of the cerebellum, SMA, insula, putamen, thala-
mus, caudate and parts of the occipital cortex. In particular, unique
contributions from the wm field accounted most of spatial dis-
tributions. The rest of the contributions were from a combina-
tion of effects between the wm field and other components in the
DNF model. This finding is in line with Hampshire and colleagues
who argue that response selection and inhibition is a property of
spatially distributed functional networks that support a general
class ofworkingmemory and attentional processes (Erika-Florence
et al., 2014).

These spatial distributions also overlapped with effects from
the Standard GLM analysis. Findings from the Cisek lab might
provide some evidence that are in line with our findings on the
recruitment of a host of cortical and sub-cortical regions by the
wm field that overlappedwith areas showing a difference between
Go and Nogo responses in the Standard GLM analysis (Cisek,
2012). These authors presented evidence that action selection
emerges through a distributed consensus across many levels of
representation,which in the current casewould representmultiple
SR mappings. According to this theory, cortical and subcortical
regions compete through inhibitory interactions when individuals
are faced with multiple potential actions. So, it is possible that the
BOLD signal reduction reported in our previous work is related to
the inhibitory competition between the Go and Nogo responses.
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Table 2
Spatial overlap between DNF model and the type main effect from the standard GLM analysis.

Components Intersected with Region Hemi Volume (mm3) Center of mass
x y z

WM Type ME Putamen L 4502 22.6 3.1 10.8
Type ME Cerebellum L 1458 2.6 66.5 −30.4
Type ME Cerebellum R 1158 −15.6 47.7 −33.8
Type ME Caudate nucleus R 943 −21.2 7.8 18.3
Type ME Superior temporal gyrus L 858 37.8 24.4 6.8
Type ME Putamen R 686 −23.2 −9.1 4.5
Type ME Cerebellum L 514 17.5 56.1 −40.2
Type ME Cerebellum R 429 −28.0 64.0 −14.2
Type ME Cerebellum R 386 −34.8 51.2 −25.8
Type ME Cerebellum R 386 −17.3 53.9 −22.7
Type ME Thalamus R 343 −9.2 23.3 14.4
Type ME Cingulate gyrus R 343 6.1 21.1 33.6
Type ME SMA R 257 −3.5 5.1 54.9
Type ME Cerebellum L 214 25.6 72.4 −11.0
Type ME Cerebellum L 172 24.5 51.8 −46.0
Type ME Insula R 172 −36.8 1.9 3.0
Type ME Cerebellum − 172 0.0 44.8 −0.5
Type ME Cerebellum R 129 −30.9 43.0 −33.2
Type ME Cerebellum R 129 −20.4 60.5 −12.2
Type ME Caudate nucleus R 129 −11.1 −3.7 20.5
Type ME Posterior cingulate cortex L 129 5.2 27.8 26.3
Type ME Cerebellum L 86 10.5 64.0 −35.5
Type ME Cerebellum R 86 −8.8 43.0 −5.8
Type ME Cerebellum R 86 −3.5 53.5 −7.5
Type ME Thalamus R 86 −19.2 6.2 3.0

WM and fAtn Type ME Cerebellum L 129 7.6 69.8 −11.0

WM, Go node and Nogo node Type ME Fusiform Gyrus L 86 24.5 74.5 −7.5
Type ME SMA L 86 12.2 6.2 55.5

WM and Con Type ME SMA L 86 1.8 1.0 53.8

WM and Go node Type ME Cerebellum L 514 35.0 50.0 −21.5
Type ME Putamen L 514 22.8 14.1 8.2
Type ME Putamen L 429 32.2 4.8 3.0
Type ME Cerebellum R 257 −24.5 71.0 −13.3
Type ME Cerebellum R 129 −41.4 51.2 −21.5

WM and Nogo node Type ME Cerebellum R 2187 −25.6 48.9 −17.1
Type ME Cerebellum L 686 17.7 59.6 −22.2
Type ME Cerebellum R 557 −7.7 62.4 −30.9
Type ME Cerebellum R 514 −9.3 25.5 −19.5
Type ME Cerebellum R 343 −16.6 53.9 −42.1
Type ME Cerebellum R 214 −13.7 50.0 −6.8
Type ME Cerebellum L 172 41.1 51.8 −18.9
Type ME Cerebellum L 172 24.5 58.8 −11.0
Type ME Cerebellum R 129 −18.1 34.8 −21.5
Type ME Cerebellum L 86 −12.2 64.0 −19.8

Table 3
Spatial overlap between the DNF model and the Other effects from the standard GLM analysis.

Components Intersected with Region Hemi Volume (mm3) Center of mass
x y z

WM Other effects Inferior occipital gyrus R 943 −39.8 69.1 −6.2
Other effects Cerebellum R 557 −18.4 54 −28
Other effects Putamen R 557 −26 −0.3 4.9
Other effects Middle temporal gyrus R 386 −44.1 51.2 6.1
Other effects Cerebellum L 300 7.8 50 −8.5
Other effects Cerebellum L 257 1.8 48.2 −18
Other effects Insula R 172 −36.8 −12.1 6.5
Other effects Fusiform gyrus R 129 −35.6 50 −15.7
Other effects Putamen R 86 −28 −9.5 −4
Other effects Insula R 86 −33.2 −18.2 6.5
Other effects Caudate nucleus L 86 8.8 4.5 15.2

WM, fAtn and Go node Other effects Inferior occipital gyrus R 86 −38.5 74.5 −4

WM, Go node and Nogo node Other effects Lingual gyrus L 172 13.1 64 −4
Other effects Cerebellum L 86 17.5 67.5 −7.5

WM and Go node Other effects Fusiform gyrus R 86 −26.2 65.8 −4

WM and Nogo node Other effects Cerebellum R 86 −14 64 −25
Other effects Cerebellum R 86 −8.8 55.2 −0.5
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The wm field also engaged regions in the occipital cortex,
an insular ‘salience’ network and the cerebellum. Collectively
taken, we suggest that wm field is involved in processing visual
information from the stimuli, to associating and retrieving the
appropriate SR mappings to both frequent or non-salient and as
well as salient events, before activating the motor planning and
execution centers of the brain. These findings show a departure
of our DNF model from typical integrative modeling approaches,
as emphasized by Turner and colleagues (Turner et al., 2016). As
these researchers underline, integrative models require a strong
commitment to both the underlying cognitive process and where
this process is executed in the brain. The DNF model does not fall
into this category. The DNFmodel does show a strong commitment
to specifying the cognitive and neural processes that underlie the
behaviors in questions; however, our approach remains open to
where in the brain these neural dynamics live. This is an important
observation—remember, neurons do not always act like modules.
Neurons can switch their allegiance, thus coding for multiple
dimensions. So allowing for flexibility in the integrative modeling
approach may be beneficial when mapping theories to cognitive
processes in the brain. In the next section, we critically evaluate
this modeling approach with an eye toward future efforts to
optimize model performance and further DFT applications.

10.1. Evaluating the model-based approach

This tutorial has meticulously walked through explaining
the background to DFT, previous applications, the rationale for
developing DNF models, construction of the components of the
fields of DNF models and comparing quantitative fits to the
behavioral and neural data to Standard GLM analyses This raised
several issues we summarize here in our efforts to formalize an
integrative cognitive neuroscience approach.

Choosing parameters for DNF models: We obtained reasonable
behavioral fits for both DNF models using parameters grounded
by previous work (Erlhagen & Schöner, 2002) and our experience
with learning dynamics. That said, it is possible that different
sets of parameters could provide similar quantitative behavioral
fits. Future work will be needed to explore a broader range of
parameters, asking two key questions: (1) are there parameters
that provide a better fit to the behavioral and neural data,
and (2) do we see the same qualitative behavioral and neural
outcomes from the model across a range of parameters, without
dramatic violations of the behavioral and neural patterns. The
former question examines the goodness-of-fit of the model; the
latter question probes the generality of the model. We think an
iterative approach to model exploration would be most fruitful
here, stressing the important constraints gained by modeling two
datasets simultaneously from a single neural process model.

Constraining the model: Despite not testing a multitude of pa-
rameters, there are still many points in this modeling approach
where constraints have been placed. To begin, the architecturewas
heavily constrained by using components that have a history in ex-
plaining working memory processes (Johnson et al., 2009; John-
son, Spencer, & Schöner, 2008; Simmering & Spencer, 2007). This
was done to place emphasis on the generalization of these com-
ponents across different executive functions. Next, we constrained
the model to account for both behavioral and neural data—the
key strength of adopting an integrative cognitive neuroscience ap-
proach. Concretely, constraints here come from the direct map-
ping of neural activation patterns in themodel to LFPs to simulated
BOLD data. Finally, in future work, constraints can also be applied
whenmapping from onemodel to the next with a goal to integrate
across DNF architectures.

Model Complexity. When contrasted with other cognitive
models, DNF models seem rather complex. They are composed of

several fields and parameters that require fine-tuning to generate
good fits to both behavioral and neural data. However, this added
level of complexity is to be expected if one tries to bridge
non-linear patterns of brain activity and macroscopic behavioral
responses. We contend that bridging brain and behavior requires
models that take into account how neural systems actually work.
DFT does this by faithfully capturing many known properties
of neural population dynamics and how neural populations are
recurrently connected across multiple cortical fields to give rise
to complex behaviors (Bastian et al., 1998, 2003; Erlhagen et al.,
1999).

That said, it is also important to note that DFT does not consider
other known aspects of neural function such as the details of
neurotransmitter action, the biophysical properties of individual
neurons, and so on (Garagnani, Wennekers, & Pulvermüller, 2008;
Markram et al., 2015). In this sense, DFT provides a limited view of
neural function. To the extent that these details matter, even more
complex biophysical models will be required if we want to bridge
brain and behavior. Our claim, however, is that many of these low-
level biophysical details are not necessary when capturing fMRI
data because fMRI provides on a low-pass filter on neural activity.
Future work will be needed to evaluate this conjecture. Critically,
however, the approach described here facilitates that work by
providing a formal method to test whether neural population
dynamics are sufficient to capture the details inherent in fMRI.

Exploratory versus confirmatory modeling approaches: Turner
et al. argue that integrative models are confirmatory by nature
because fits to brain networks and behavioral patterns are
constrained. We agree with this outlook (Turner et al., 2016).
However, in the current case study, there is also an exploratory
component. For instance, one of our central questions here was
exploratory in nature: can components from previous working
memorymodels capture brain and behavioral patterns in response
selection? Once we have a model that does this, we can move into
the confirmatory phase. A refined approach at this stage would be
to design conditions in the task that de-correlate the fields of the
DNF model For instance, if we find that decreasing the proportion
of go trials resulted in different LFP patterns in the wm field as
compared to the go node, then a range of proportion of trials can be
tested to determine the point at which collinearity between those
two regressors would be at the lowest, whilst still preserving the
integrity of the DNFmodel. Further, one could test the efficiency of
multiple design matrices constructed from such regressors. After
this confirmatory phase, one could optimally test themodel across
a range of scenarios. Indeed, the ideal scenario is one in which
the confirmatory phase enables contrasts with other theories that
make different predictions for both brain and behavior.

We note, however, that doing this requires having comparable
theoretical approaches such as two integrative cognitive neuro-
sciencemodels. At present, this is difficult given that there are rela-
tively few integrative approaches (but see, (Buss et al., 2013)). One
alternative is to contrast two different models from the same the-
oretical framework. We did a variant of this in the current study,
contrasting Model 1 with Model 2. A more conceptually intrigu-
ing variant of this approach would be to contrast two different dy-
namic field architectures (rather than testing the samearchitecture
under different parameter settings). When contrasted at the levels
of both brain and behavior, this might enable one to eliminate can-
didate models based on the fit to data.

Difficulty of implementation: Developing a dynamic field model
and fitting the model to data is a complex enterprise. However,
the recent book from the DFT group unpacks this complexity, pro-
viding the background to DFT including the underlying rationale.
The book also offers multiple examples of implemented models
that can help foster the development of new models. Further, the
COSIVINA simulation environment allows researchers to build en-
tire DF models using a few lines of code making implementation
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easy. We note that we have added a neuroimaging toolbox to this
framework; thus, creating the LFPs described herein is quite easy
(see www.dynamicfieldtheory.org/software/).

Uncovering the ‘ground truth’ amongst models: An important
issue to address in future work would be the nature of spatial
neural patterns in the cortex that are revealed by the DNF-based
approach relative to Standard GLM analyses. Most critically, when
the two approaches disagree, which approach reveals the ‘ground
truth’? One interesting avenue to explore this question would be
to carefully introduce different types of synthetic data into an fMRI
dataset. For instance, one could effectively insert neural patterns
consistent with the DNF model, inconsistent with the model, or
unbiased to either approach. One could then use Standard GLM
analysis and DNF approaches to fish out these activation patterns.
In this case, one knows the ‘ground truth’ and it is easier to evaluate
which method outperforms the other. Then one could explore
the overlap (or lack thereof) across spatial distributions between
approaches to better understand the discrepancies.

Although future work in this direction will be needed, we
note that compared to Standard GLM analyses, DNF models are
grounded in a formal theory that specifies how neural populations
dynamics give rise to behavioral patterns. In this sense, the
fact that the DNF-based GLM reported here outperformed the
Standard GLM analysis on key quantitative metrics is important.
Nevertheless, we recognize that there is often an inherentmistrust
with formal models and empirically-oriented researchers will
likely gravitate toward Standard GLM analyses to provide the
‘ground truth’. This is certainly a reasonable approach until the
DNF-based integrative cognitive neuroscience approach proves its
worth across multiple projects.
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Appendix A

A.1. Dynamic field (DNF) model for Go/Nogo paradigm

The dynamic field (DNF) model for the Go/Nogo paradigm
consists of 7 coupled neuronal subnetworks as illustrated in
Fig. 2: the visual field (vis); spatial attention field (sAtn); feature
attention (fAtn); contrast field (con); working memory (wm);
and the ‘‘decision system’’ consisting of two nodes (go and
Nogo). The DNF Model 1 is therefore defined by a system of
five integral–differential equations (A.1)–(A.5) and two ordinary
differential equations (A.6)–(A.7), as listed below.

Each equation is described by a sum of several components. The
first three terms correspond to the local field interactions, while
local noise is modeled by the function η. All terms that depend
on two distinct indices are associated with long-range, inter-field
coupling. Applied stimulus, when appropriate, is given by function
s. Excitatory coupling takes positive values, while inhibitory
coupling is negative. The functional topography assumes local
excitation and lateral inhibition, and it is modeled by a difference
of two Gaussians resulting in a Mexican-hat connectivity. The dot
in u̇ represents the derivative of neuronal activity u with respect
to time t . Detailed definitions of each coupling term are included
in Appendices A.2–A.4, and the set of parameters used in the
simulation of this DNF model are listed in Tables A.2.1, A.3.1 and
A.4.1.

We start by describing the equation for the visual field. Besides
local neuronal population interactions, the visual field receives
excitatory connections from the spatial attention and the feature
attention fields via convolutions cvis,sAtn ∗ gsAtn (usAtn) and cvis,fAtn ∗

gsAtn

ufAtn


. It is also subject to external stimulus svis (x, y).

τeu̇vis(x, y, t) = −uvis(x, y, t) + hvis

+


cvis


x − x′, y − y′


gvis


uvis


x′, y′, t


dx′dy′

+


cvis,sAtn


x − x′


gsAtn


usAtn


x′, t


dx′

+


cvis,fAtn(y − y′)gfAtn


ufAtn(y′, t)


dy′

+ ηvis (x, y, t) + svis (x, y) . (A.1)

The spatial attention field receives two excitatory inputs:
projections csAtn,vis ∗ gsAtn (uvis) from the visual field, and a sub-
threshold bump activity ssAtn(x). The latter is centered at the
position of stimulus presentation and it simulates the response of
the network during the fixation stage of the task

τeu̇sAtn(x, t) = −usAtn(x, t) + hsAtn

+


csAtn


x − x′


gsAtn


usAtn


x′, t


dx′

+


csAtn,vis


x − x′


gvis


uvis


x′, y′, t


dy′dx′

+ ηsAtn(x, t) + ssAtn(x). (A.2)

The feature attention field receives excitatory inputs from the
visual, contrast and working memory fields:

τeu̇fAtn(y, t) = −ufAtn(y, t) + hfAtn

+


cfAtn


y − y′


gfAtn


ufAtn(y′, t)


dy′

+


cfAtn,vis


y − y′


gvis


uvis


x′, y′, t


dy′dx′

+


cfAtn,con


y − y′


gcon


ucon(y′, t)


dy′

+


cfAtn,wm


y − y′


gwm


uwm(y′, t)


dy′

+ ηfAtn(y, t). (A.3)

The contrast field receives feedforward excitatory connections
from the visual and feature attention fields; inhibitory connections
from the working memory field; and excitatory feedback from the
nogo node. To account for learning during the pre-task instruction
step, a sub-threshold input scon(y) with activity bumps localized at
the Nogo colors is also included

τeu̇con(y, t) = −ucon (y, t) + hcon

+


ccon


y − y′


gcon


ucon(y′, t)


dy′

+


ccon,vis


y − y′


gvis


uvis


x′, y′, t


dy′dx′

+


ccon,fAtn


y − y′


gfAtn


ufAtn(y′, t)


dy′

+


ccon,wm


y − y′


gwm


uwm


y′, t


dy′

+ acon,nogo × gnogo

unogo(t)


+ ηcon (y, t) + scon(y). (A.4)

Similarly, the working memory field receives feedforward
excitatory connections from the visual and feature attention fields;
inhibitory connections from the contrast field; and excitatory

http://www.dynamicfieldtheory.org/software/
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feedback from the go node. In addition, we include a sub-threshold
input swm (y) of activity bumps localized at the Go colors which
simulates learning during the pre-task instruction step,

τeu̇wm(y, t) = −uwm (y, t) + hwm

+


cwm


y − y′


gwm


uwm


y′, t


dy′

+


cwm,vis


y − y′


gvis


uvis


x′, y′, t


dy′dx′

+


cwm,fAtn


y − y′


gfAtn


ufAtn(y′, t)


dy′

+


cwm,con


y − y′


gcon


ucon(y′, t)


dy′

+ awm,go

× ggo(ugo(t)) + ηwm(y, t) + swm(y). (A.5)

The go and nogo nodes are coupled by mutual inhibition. In
addition, feedforward excitation is projected from the working
memory field to the gonode, and from the contrast field to the nogo
node respectively.

τeu̇go(t) = −ugo (t) + hgo + ago × ggo

ugo(t)


+ ago,nogo

× gnogo

unogo(t)


+ ago,wm

×


gwm


uwm(y′, t)


dy′

+ ηgo (t) (A.6)

τeu̇nogo(t) = −unogo (t) + hnogo + anogo × gnogo

unogo(t)


+ anogo,go × ggo


ugo(t)


+ anogo,con

×


gcon


ucon(y′, t)


dy′

+ ηnogo(t). (A.7)

A.2. Local field interactions

All parameters associated with local interactions in the DNF
model above are listed in Table A.2.1.

The Gaussian interaction kernel that determines the spread of
activation inside a given field to neighboring units (see parameters
σj,E and σj,I in Table A.2.1) with strengths determined by the
amplitude parameters aj,E , aj,I and aj,global is defined by

cj

z − z ′


= aj,E Exp


−

(z − z ′)2

2σ 2
j,E


− aj,I Exp


−


z − z ′

2
2σ 2

j,I


+ aj,global. (A.8)

Here the variable z = x or z = y spans either the spatial
dimension (x ∈ S) or the feature (color) dimension (y ∈ F),
while the index j ∈ {sAtn, fAtn, con, wm} corresponds to the neural
field spatial attention, feature attention, contrast field or working
memory, respectively. The gain output function g normalizes the
field activation, and is assumed to be the sigmoidal

g(u) =
1

1 + Exp[−βu]
(A.9)

with threshold set to zero and steepness parameter β . Conse-
quently, activation levels lower than the threshold contribute rel-
atively little to neural interactions, while positive activation levels
(higher than the threshold 0) contribute strongly to neural inter-
actions.

Each neural network is subject to spatially correlated noise
ηj(z, t) defined as the convolution between a Gaussian kernel and
white noise ξ(z, t)

ηj(z, t) =


aj,noise Exp


−

(z − z ′)2

2σ 2
j,noise


ξ


z ′, t


dz ′. (A.10)

Note that the variable ξ(z, t) takes random values from a
normal distribution with zero mean and unit standard deviation
N(0, 1) but has its strength scaled with 1/

√
dt .

Similar definitions are given for the visual field (j = vis) which
spans two coordinates, the spatial and color representations. In this
case, the convolution cvis ∗ gvis (uvis) and the noise ηvis are two-
dimensional functions so the Gaussian interaction kernel and the
spatially correlated noise are defined by

cj

x − x′, y − y′


= aj,E Exp


−


x − x′

2
2σ 2

j,E


Exp


−

(y − y′)2

2σ 2
j,E



+ aj,I Exp


−


x − x′

2
2σ 2

j,I


Exp


−


y − y′

2
2σ 2

j,I


+ aj,global (A.11)

and

ηj (x, y, t) =


aj,noise Exp


−


x − x′

2
2σ 2

j,noise



× Exp


−


y − y′

2
2σ 2

j,noise


ξ


x′, y′

, t

dx′dy′. (A.12)

On the other hand, the go and nogo nodes with index j ∈

{go, nogo} are assumed to have global connectivity. Then their local
field interactions are simply the product

aj × gj

uj(t)


(A.13)

between the gain function and constant aj. The noise function is
defined by

ηj(t) = aj,noise × ξ(t). (A.14)

A.3. Long range (inter-network) coupling

The coupling between two distinct fields of the neural network
is defined by a Gaussian kernel as well. Thus, if field k receives
input from field j then the connectivity function is the convolution
ck,j(·) ∗ gj


uj (·, t)


with kernel

ck,j

z − z ′


= ak,j Exp


−

(z − z ′)2

2σ 2
k,j


. (A.15)

In particular, if the coupling is a projection of the visual field
(j = vis) into either of the fields spatial attention, feature attention,
contrast or working memory (k), then the convolution is a double-
integral over the two-dimensional set, S × F . The Gaussian kernel
depends, however, only on one variable (for example, x) so the
integration over the other variable (y) ultimately reduces to a
summation of the output gain along the secondary dimension y.

If the coupling is a projection of the working memory (or
contrast field) into the go (or nogo node), then the kernel of the
convolution function reduces to a constant,

ck,j = ak,j. (A.16)

In addition, if the coupling is between the go and nogo nodes then
the convolution is simply the product ck,j × gj(uj(t)) and, again,
ck,j = ak,j.

Table A.3.1 summarizes all parameter values associated with
long range coupling in the DNF model.
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Table A.2.1
Local field interactions: parameter values used in the simulation of the DNFmodel. See also Eqs. (A.1)–(A.5) and (A.8)–(A.14).
Differences in parameter values between Model 2 (shown in the table) and Model 1 are highlighted in red and should be
read as follows: Model 1 does not include any ‘‘condition of satisfaction’’ so, for it, last column in the table should be ignored.
In addition, in Model 1, the amplitude aj of all-to-all coupling for go and nogo nodes is fixed to aGo = 1 and aNoGo = 3 (see
columns 8 and 9 in the table).

Table A.3.1
Long range (inter-network) coupling: parameter values used in the simulation of the DNF model.
For all existing connections j to k where it makes sense, the spread of activation takes the value
σk,j = 5. See also Eqs. (A.6)–(A.7) and (A.15)–(A.16). Differences in parameter values betweenModel
2 (shown in the table) and Model 1 are highlighted in red and should be read as follows: Model 1
does not include any ‘‘condition of satisfaction’’ so, for it, last row and last column in the table should
be ignored. In addition, in Model 1, the bi-directional coupling between wm and con is acon,wm =

awm,con = −0.56 and the bi-directional coupling between con and Nogo is acon,nogo = anogo,con = 1.
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Table A.4.1
Stimulus functions: parameter values used in the simulation of the DNF model. See also Eqs. (A.1), (A.2),
(A.4), (A.5) and (A.17).

A.4. Stimulus functions

All parameters associatedwith stimuli in the DNFmodel appear
in Table A.4.1. Stimuli sj to field j are modeled by normalized
Gaussian inputs centered at particular position zj,s in the neural
field, and with spread parameter σj,s and amplitude aj,s. In
particular, stimuli applied to the spatial attention, contrast and
working memory fields induce local sub-threshold bump(s) of
activity in the absence of the external stimulus svis (x, y)

svis (x, y) = avis,s

×
1

2πσ 2
vis,s

Exp


−


x − xvis,s

2
2σ 2

vis,s


Exp


−

(y − yvis,s)
2

2σ 2
vis,s


ssAtn(x) = asAtn,s

×
1

√
2πσ sAtn,s

Exp


−

(x − xsAtn,s)2

2σ 2
sAtn,s


scon(y) = acon,s

×
1

√
2πσ con,s

load/2
l=1

Exp


−

(y − ylcon,s)
2

2σ 2
con,s


swm(y) = awm,s

×
1

√
2πσwm,s

load/2
l=1

Exp


−

(y − ylwm,s)
2

2σ 2
wm,s


. (A.17)

The sub-threshold activity bump in the spatial attention field is
assumed to form during the fixation stage and prior to application

of the Go/Nogo stimulus svis (x, y). Similarly, sub-threshold activity
bumps in the contrast and working memory fields are assumed
to form during the instruction stage when the subject learns the
Go and Nogo colors, and again prior to application of the external
stimulus svis (x, y). For example, Load 4 requires learning of two Go
colors and other two Nogo colors. Therefore, during the numerical
simulation time, two sub-threshold activity bumps centered at the
Go colors are placed in the working memory field, and two sub-
threshold activity bumps centered at the Nogo colors are placed in
the contrast field.
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