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Executive functions enable flexible thinking, something young children are notoriously bad at. For instance, in
the dimensional change card sort (DCCS) task, 3-year-olds can sort cards by one dimension (shape), but con-
tinue to sort by this dimension when asked to switch (to color). This study tests a prediction of a dynamic
neural field model that prior experience with the postswitch dimension can enhance 3-year-olds’ performance
in the DCCS. In Experiment 1A, a matching game was used to preexpose 3-year-olds (n = 36) to color. This
facilitated switching from sorting by shape to color. In Experiment 1B, 3-year-olds (n = 18) were preexposed
to shape. This did not facilitate switching from sorting by color to shape. The model was used to explain this
asymmetry.

Executive functions (EFs) enable humans to think
and behave in a flexible, goal-directed fashion. Exec-
utive function is an umbrella term for a set of inter-
active control processes that include working
memory, inhibition, and attention switching. EFs
contribute to children’s reasoning (Carlson, Moses,
& Breton, 2002), arithmetic (Blair & Razza, 2007),
reading (van der Sluis, de Jong, & van der Leij,
2008), and social (Clark, Prior, & Kinsella, 2002)
abilities. Moreover, the establishment of robust EFs
in early childhood is predictive of positive develop-
mental outcomes, and EF deficits at 3 years of age
are predictive of negative outcomes in health,
wealth, and criminal activity involvement nearly
30 years later (Moffitt et al., 2011). Not surprisingly,
then, EF interventions that positively impact indi-
vidual development are in great demand.

To date, efforts to develop early interventions to
improve EFs have yielded mixed results. Interven-
tions that have trained children’s task-switching
abilities have transferred to other EFs such as

working memory and inhibitory control (Karbach &
Kray, 2009). Interventions that have trained chil-
dren’s working memory abilities, by contrast, have
not (for reviews, see Diamond, 2012; Shipstead,
Hicks, & Engle, 2012). One potential reason that EF
intervention efforts have yielded mixed results is
that theories of EF development do not predict
what contexts training should transfer to because
they do not specify the mechanisms by which expe-
rience generalizes across contexts (Simmering &
Perone, 2013; see also Gibson, Gondoli, Johnson,
Steeger, & Morrissey, 2012). For example, theories
of EF development do not explain how the same
working memory system is used in multiple task
contexts. This limitation hinders their ability to
specify the types of experience acquired in one
context that should influence working memory in
another context.

Here, we test a novel prediction of a dynamic
neural field (DNF) model of EF development that
specifies how experience in one context can facili-
tate children’s performance in a canonical probe of
EF in early development—the dimensional change
card sort (DCCS) task. In the DCCS, children sort a
collection of two-dimensional cards (e.g., red stars
and blue circles) to target cards that match on one
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dimension (e.g., red circle and blue star). After sort-
ing by one dimension, children are instructed to
switch the dimension used to sort the same cards.
Under these standard conditions, 4-year-old, but
not 3-year-old, children flexibly switch attention
across dimensions and sort correctly during the
postswitch phase (Zelazo, 2006).

The standard DCCS task conditions require chil-
dren to flexibly switch the dimension to which they
attend across the pre- and postswitch phases of the
task. A number of studies have shown that 3-year-
old children can pass the DCCS task when the stan-
dard conditions are simplified or modified such
that selective dimensional attention is not required
(Brace, Morton, & Munakata, 2006; Brooks, Hanaur,
Padowska, & Rosman, 2003). Other studies have
shown that 3-year-old children can pass the DCCS
task under the standard conditions if they are
explicitly pretrained to attend to the bidimensionali-
ty of the cards they sort in the DCCS task (Mack,
2007; Ramscar, Dye, Gustafson, & Klein, 2013). No
previous study has shown that children can pass
the DCCS task under the standard conditions with-
out explicit pretraining. The DNF model predicts
that flexible attention switching under the standard
conditions of the DCCS task can be induced via
prior experience with the label for and features dis-
tributed over the feature dimension used in the
postswitch phase of the task. In the following
section, we describe the DNF model and the basis
of this prediction. We then test this prediction with
children.

A DNF Model of EF Development

DNF models embody a set of concepts linking
brain and behavioral dynamics in real time and
over development (for a review, see Spencer, Per-
one, & Johnson, 2009). The central component of
a DNF model is the neural field. Neural fields
consist of populations of neurons selectively tuned
to continuous dimensions (e.g., hue). The dynam-
ics of neural fields are governed by local excit-
atory/lateral inhibitory interactions. For example,
a blue stimulus excites neurons selectively tuned
to the specific hue. These neurons, in turn, excite
neurons tuned to similar hues in a graded fash-
ion. This excitation also leads to broad inhibition
surrounding the excitation, creating a local excit-
atory/lateral inhibitory activation profile called a
“peak” of activation. One important feature of
DNFs is that activity within neural fields creates
long-term Hebbian memories that influence their
activity at a future point in time. For example,

the neuronal response to a blue stimulus will cre-
ate a long-term memory that strengthens the neu-
ronal response to similar hues at a future point in
time.

Buss and Spencer’s (2014) model of EF develop-
ment consists of coupled visual-cognitive and
dimensional attention systems (ASs). The left panel
of Figure 1A shows the architecture of the model.
The visual-cognitive system consists of three inter-
active working memory fields. Shown at the top of
1A is the spatial working memory (SWM) field.
SWM represents the presence of stimuli at specific
locations. SWM is coupled to a shape working
memory (WMS) field and a color working memory
(WMC) field, both of which are shown just below
SWM. These fields are sensitive to “what” is
“where”; that is, they respond to features distrib-
uted along metrically organized feature dimensions
such as hue
(y-axis) at spatially specific locations (x-axis). The
connection of WMS and WMC to SWM enables the
model to represent objects as a color and a shape at
a particular location (e.g., red + star on the left).
The AS consists of competitive nodes that respond
to the labels “shape” and “color” that control atten-
tion switching across dimensions (1B). These nodes
are coupled to WMS and WMC via a weight matrix
that represents learned associations between the
labels (e.g., “color”) and the feature values (e.g.,
blue) the labels represent.

Buss and Spencer (2014) created 3- and 4-year-
old models by making two changes to the AS.
First, older models had stronger excitatory and
inhibitory interaction strengths within the AS mak-
ing the shape and color nodes more competitive
(winner-take-all interactions) and better able to
maintain excitatory interaction once one node
“won” the competition. Second, the older model
had a more selective weight matrix between the
AS and the visual-cognitive system—the color
node, for instance, projected greater activation to
WMC and less activation to WMS. Buss and Spen-
cer used the 3- and 4-year-old models to quantita-
tively simulate developmental changes in
children’s performance in the DCCS task across 14
variants of the task and to generate and test novel
behavioral predictions. Our goal here was to probe
ways to facilitate the performance of the same 3-
year-old model used by Buss and Spencer. Note
that all model details including equations and
parameter settings can be found in Buss and
Spencer.

Figure 1 illustrates how the 3- and 4-year-old
models perform the DCCS task. Figure 1A shows
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the DNF model during the preswitch phase of the
task. The very top shows target cards present at left
(short, blue object) and right (tall, green object)

locations. These target cards provide task input to
SWM and generate “bumps” of activation at left
and right locations in SWM.
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The target cards also provide task input to WMS

and WMC. As indicated by the light blue patches of
activity in these fields, the target card depicting the
tall, green object generates an increase in activation
at the tall value in WMS (see “task input” in Fig-
ure 1A) and at the green value in WMC. Similarly,
the target card depicting the short, blue object gen-
erates an increase in activation on the left side of
WMS and WMC.

At the onset of the preswitch phase, the DNF
model is instructed to sort by shape. This selec-
tively activates the shape node in the AS. The
activation of the shape node is shown in 1B for the
3-year-old model (solid blue line) and 4-year-old
model (solid red line). Because the shape node is
activated, this node sends stronger activation to
WMS than the color node sends to WMC. This dif-
ference in input strength from the AS to the visual-
cognitive system is quantified in 1C: The activation
from the shape node to WMS is stronger than the
activation of the color node to WMC for both the
3-year-old model (blue bars) and 4-year-old model
(red bars). This raises the baseline activity of neu-
rons within WMS, effectively priming the system to
selectively attend to the shape dimension. Note that
the strength difference in 1C is greater for the
4-year-old model because the nodes have stronger
excitatory/inhibitory interactions and because the
weight matrix connecting the AS to the visual-cog-
nitive system is more selective.

Figure 1D shows that the priming effect also
has an impact on the AS. In particular, because
the AS and the visual-cognitive system are recipro-
cally connected, the priming leads to an increase
in the strength of activation WMS sends back to
the shape node. This feedback from the visual-cog-
nitive system to the AS is stronger for shape than
color for both the 3- and 4-year-old models,
although the activation strengths are greater for
the 4-year-old model due to the more selective
weight matrix.

Next, the model is presented with a response
card depicting a short, green object (right panels in
1A). This provides a ridge of input across all spatial
locations activating all neurons tuned to the short
feature in WMS and the green hue in WMC (see
“ridge input” in 1A). Recall that because of the task
instructions, WMS is primed to respond more
strongly to shape stimuli than WMC is to color
stimuli. Consequently, the overlap of the ridge
input from the response card with the task input
from the target input in WMS creates an activation
peak at the left location associated with the short
stimulus (see red “hot spot” of activation in WMS).
This peak is a real-time neuronal representation of
the shape of the short object at the left location. The
peak excites neurons tuned to the left location in
WMC and SWM, leading to peaks in both fields,
effectively “binding” the short feature in WMS to
the green feature in WMC. Consequently, the model

Figure 1. The dynamic neural field (DNF) model dynamics for 3- and 4-year-old models in dimensional change card sort task are illus-
trated. Panel A shows the model dynamics during the preswitch phase. Initially, the model is situated in front of target cards depicting
a short, blue object and a tall, green object. This generates task inputs in spatial working memory (SWM; see “bumps”) and shape
working memory (WMS) and color working memory (WMC; see light blue patches). The model is instructed to sort the short, green
object depicted on the response card by shape. This leads the shape node in the attention system (AS) to become active for the
3- and 4-year-old models (see solid blue and solid red lines in B). Consequently, the strength of the connectivity between the AS and
the visual-cognitive system is stronger for shape than color node (compare left portion to right portion of C-D). It is also stronger for
the 4-year-old than 3-year-old model (compare red bars to blue bars in C-D). This reflects the stronger connectivity in the 4-year-old
than 3-year-old model (see text). These interactions between the AS and visual-cognitive system lead the model to sort by shape by
forming activation peaks in WMS, WMC, and SWM at the left location. Note that the arrows shown from the AS to the visual-cognitive
system indicate the window of time that AS activity corresponds to the onset of a trial (left portion of A) and the sorting of the card
(right portion of A). Panel E shows the DNF model dynamics during the postswitch phase. The model is instructed to sort the short,
green object by color. This leads the color node in the AS to become active for the 3- and 4-year-old models (see dashed blue and
dashed red lines in F). During the postswitch phase, the strength of the connectivity between the AS and visual-cognitive system is
stronger for color than for shape (compare right portions of G-H). It is also stronger for the 4-year-old than the 3-year-old model (com-
pare red to blue bars in G-H). Importantly, for the 3-year-old model, this connectivity is too weak for WMC to overcome the robust
Hebbian memories acquired from sorting by shape during the preswitch phase in WMS (see white circles). The 3-year-old model contin-
ues to sort the short, green object to the left location by shape. The 4-year-old model sorts by color (not shown). Panel I shows the
3-year-old model during the postswitch phase after it has acquired experience in the form of Hebbian memories with the dimensional
label “color” in the AS and 5 objects that differ in color (see distributed light blue patches in WMC) and share one shape (see light blue
ridge in WMS). This experience primes WMC to respond more strongly during the postswitch phase. It also creates a stronger pattern
of connectivity from the AS to the visual-cognitive system for color than shape (green bars in G) and from the visual-cognitive system
to the AS for color (green bars in H) than in the 3-year-old model alone for color (blue bars in G-H). This is also reflected in the
strength of the color node in the AS, which is stronger for the 3-year-old + memory model than 3-year-old model alone (compare
dashed green line to dashed blue line in the AS in J). The 3-year-old model switches attention across dimensions and sorts the short,
green object to the right location based on color in the postswitch phase.
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sorts the response card to the left location, correctly
attending to the shape on the card.

There are two influences on attention switching
during the postswitch phase. The first is a Hebbian
memory. The presence of peaks in the working
memory fields creates Hebbian memories that accu-
mulate slowly over trials. These Hebbian memories
facilitate the re-formation of peaks at previously
active sites in the working memory fields. Sorting
the response cards in the preswitch phase leads to
the accumulation of Hebbian memories in WMS

and WMC at sites associated with the sorting
responses (e.g., at short and green feature values).
This can be seen in the left panel of 1E, which
shows the state of the model at the onset of the
postswitch phase. In WMS, there is cooperation
between the Hebbian memories and task inputs
(white circles) because the model sorted response
cards based on a match in shape (i.e., short objects
to the left and tall objects to the right). Conse-
quently, the model is primed to continue sorting by
shape. In WMC, by contrast, there is competition:
Hebbian memories (white circles) accumulated at
sites that did not overlap with the task inputs
because the model sorted response cards to target
cards that did not match in color.

The second influence on attention switching dur-
ing the postswitch phase is the state of the AS. At
the onset of the postswitch phase, the model is
instructed to sort by color instead of shape. As is
shown in 1F, this selectively activates the color node
for the 3-year-old model (dashed blue line) and 4-
year-old model (dashed red line). Consequently, the
activation sent from the color node to WMC (see
1G) is stronger than the activation sent from the
shape node to WMS for both the 3-year-old model
(blue bars) and 4-year-old model (red bars). The
activation returned from WMC to the color node is
also stronger than the activation returned from
WMS to the shape node (1H). Importantly, the
degree to which WMC is primed to respond to color
is less for the 3-year-old model than the 4-year-old
model due to weaker excitation/inhibition within
the AS and a less selective weight matrix between
the AS and the visual-cognitive system.

This weaker priming has consequences in the
postswitch phase because the system must over-
come the response biases created during the pre-
switch phase. In particular, when the 3-year-old
model is presented with the short, green response
card in the right panels of 1E, it sorts the card based
on shape. The color priming was not sufficient to
overcome the cooperation between Hebbian memo-
ries and task input in WMS. By contrast, the 4-year-

old model sorts correctly during the postswitch
phase (not shown; see Buss & Spencer, 2014, for
example simulations) because the color priming
effect is much stronger (see Figure 1G and H).

In summary, the 3-year-old model fails the
DCCS task because there is strong cooperativity
within the preswitch working memory field (in this
case, WMS) and the AS activity is weak and not yet
selective. But what if we could somehow boost
attention to the postswitch dimension, in this exam-
ple, color? One way to do this is to give the model
experience with different hue values in the context
of the label “color.” These experiences should leave
distributed Hebbian memories within WMC and
stronger “color” memories in the AS, effectively
“boosting” the degree to which the model is primed
to respond to color during the postswitch phase of
the task. Such a boost might be sufficient to tip the
scales toward the color dimension during the post-
switch phase.

Figure 1I implements this idea in the 3-year-old
model (see the Appendix S1 in the online Support-
ing Information for additional simulation details).
In these simulations, the color node was initialized
with a slightly stronger Hebbian memory reflecting
recent experiences with the label “color,” priming
the color node to respond more strongly to “color”
than it would without this experience. The model
was also initialized with Hebbian memories for a
collection of objects experienced outside the context
of the DCCS task that all shared the same shape
but varied in color. Importantly, we did not use
any of the feature values used in the DCCS task.
The resultant Hebbian memories are shown in the
left panels of 1I. There is a localized memory on
the shape dimension (light blue ridge at center of
shape dimension in WMS). This reflects the one
shape shared by all colors experienced prior to the
DCCS task. There are distributed memories on the
color dimension (light blue patches along entire
color dimension in WMC). This reflects the variable
colors the model was exposed to prior to the DCCS
task. These memories elevate the neural activity
across the color dimension in WMC, priming WMC

to respond more robustly to color stimuli than it
would without this prior experience.

This priming had a big impact on the perfor-
mance of the 3-year-old model in the DCCS task.
This is evident in the right panels of 1I, which
show performance during the postswitch phase.
When the model is presented with the short,
green response card at the onset of the postswitch
phase and is instructed to sort by color, the label
input and Hebbian memories in the AS and WMC
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combine to create a stronger boost for color. The
model sorts the short, green card to the right by
color.

The influence of the Hebbian memories on the
model’s dynamics is evident in the reciprocal inter-
action between the AS and visual-cognitive system.
In particular, the slight increase in the Hebbian
memories at the start of the simulation creates
stronger activation from the color node to WMC

(1G) and stronger activation from WMC to the color
node (1H) during the postswitch phase for the 3-
year-old model with Hebbian memories (green
bars) relative to the standard 3-year-old model
(blue bars). This can also be seen in 1J, which
shows the stronger activation of the color node for
the model with prior experience (dashed green line)
relative to the standard 3-year-old model (dashed
blue line). This slight initial boost for color is suffi-
cient to tip the balance during the postswitch phase
of the task and the 3-year-old model correctly
switches attention from shape to color.

Quantitative Model Predictions

We quantitatively probed this prediction using
the 3-year-old model, parameters, and simulation
method from Buss and Spencer (2014). The distribu-
tion of the stimulus inputs is shown in Figure 2.
The inputs were sampled from a set of 18 equidis-
tant metric steps on the shape and color dimen-
sions, which were distributed over 100 neurons in
the model. Each metric step in the model for color
and for shape was separated by four neurons. Each
object consisted of one feature from the shape
dimension and one feature from the color dimen-
sion. For example, stimulus s5c5 is the fifth feature
on the shape and color dimensions. The values s5c5
and s14c14 (squares) were used as target cards. The
values s14c5 and s5c14 (circles) were used as
response cards. The model was instructed to sort
each response card 3 times by shape during the pre-
switch phase and each response card 3 times by
color during the postswitch phase. When sorting by
shape during the preswitch phase, sorting response
card s14c5 to target card s14c14 and response card
s5c14 to s5c5 was the correct response because they
share the same shape. When sorting by color dur-
ing the postswitch phase, sorting response card
s14c5 to target card s5c5 and response card s5c14 to
s14c14 was the correct response because they share
the same color. The model was run through the
DCCS task 100 times under these standard condi-
tions. To pass the DCCS task, it was required to
correctly sort five of the six cards during the post-

switch phase. The model passed at a rate of 30%
(Figure 3). The model was also run through a mem-
ory + standard condition 100 times. It was initial-
ized with Hebbian memories for five colors that
spanned the color dimension (1, 6, 10, 13, and 18),
all paired with the same shape (10). The strength of
the memories for the five colors was set to .2 (the
strength of the memory for the single shape shared
by all colors was set to .6). The model passed at a
rate of 81% (Figure 3).

Previous studies have shown that children can
pass the DCCS task when the standard conditions
are simplified (Brace et al., 2006) or children are
explicitly pretrained to attend to the features on both
dimensions on the response cards used in the DCCS
task (Mack, 2007; Ramscar et al., 2013). The DNF
model predicts that attention switching in 3-year-old
children can be induced by experience with the post-
switch dimension even when the features used in the
DCCS task are not part of that experience and the
preexposure happens in a different task context. We
tested this prediction in Experiment 1A.

Experiment 1A

Method

Participants

Eighteen 3-year-old (9 girls, M = 42.50 months,
SD = 2.84) children participated in a memory
game + standard DCCS condition. One additional
child participated but was excluded for failing to
sort 5 of 6 cards correctly during the preswitch
phase (see Zelazo, 2006). Eighteen 3-year-old chil-
dren (10 girls, M = 41.30 months, SD = 2.30) partic-
ipated in the standard DCCS task only. Four
additional children participated but were excluded
due to fussiness (n = 2) and failing to sort five of
six cards correctly during the preswitch phase
(n = 2). Children were recruited from birth records
and local child-care facilities.

Stimuli, Design, and Procedure

The stimulus set from which the target, sorting,
and memory game (described below) cards were
derived were buggles (see Figure 2; Perone & Spen-
cer, 2014). The set is a collection of objects that con-
sist of one value along continuous color (hue) and
shape (aspect ratio) dimensions. On the color
dimension, 18 equidistant colors were sampled
from 1� to 180� of a 360� continuous color space
(CIE*Lab, 1976). The shape dimension was parsed
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into 18 equidistant steps. Each metric step was
defined by a proportional change in height and
width, with total area held constant.

The color and shape values used were the same
as those used in the DNF model. For the DCCS
task, there were two sets of cards. For one set,
s5c5/s14c14 were target cards and s14c5/s5c14
were response cards. For the other set, s5c14/s14c5
were target cards and s5c5/s14c14 were sorting
cards. The set of cards used was counterbalanced
across children. The goal of the standard condition
was to ensure that 3-year-old children pass the
DCCS at rates comparable to that observed in the
literature with this new, metrically organized stimu-
lus set. Given this goal, it was important for half of
the children to sort by shape during the preswitch
phase and the other half of the children sort by
color.

The standard conditions followed Zelazo’s (2006)
protocol. The experimenter told the child the pre-
switch rule (“We are going to play the shape
game”). The experimenter showed the child how to
sort one card by the preswitch dimension and
ensured that the child could do so with another
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card. During the preswitch phase, the experimenter
presented each response card, labeled it along the
preswitch dimension (“Here’s a blue buggle”), and
asked the child to sort the card (“Can you put it
where it goes?”). If the child sorted incorrectly, the
preswitch rules were restated. At the onset of the
postswitch phase, the experimenter explained
the postswitch rule (“Now we are going to play the
color game”) but did not show the child how to
sort the cards by the postswitch rule. The post-
switch phase was otherwise identical to the
preswitch phase. Children sorted each response
card three times each. The order of the cards was
random with the constraint that no more than two
identical cards were presented on consecutive trials.

Children in the memory + standard condition
played a memory game much like those sold com-
mercially or played with a standard deck of cards.
The goal of the memory game was to expose
children to what would be the postswitch dimension
in the DCCS task in an engaging task appropriate
for the age group. For all children in the mem-
ory + standard condition, the preswitch dimension
was shape and the postswitch dimension was color.
During the memory game, children matched five
pairs of cards depicting the same shape and color
values used in the DNF model. The same shape (10)
was used for all cards but the colors spanned the
color dimension (1, 6, 10, 13, 18; see Figure 2).

The experimenter and child sat at a table with
the matching cards spread out face up within
reaching distance. The experimenter familiarized
the child with each matching pair of cards by
showing the child each card and its match together.
The experimenter said to the child, “Look! These
two are the same color” to help ensure the child
was engaged in the familiarization phase. The
experimenter only labeled the dimension (i.e., color)
and did not label any of the individual color values
(e.g., blue). After the child was familiar with each
pair, the experimenter flipped all the cards over so
that they were face down and scrambled them. The
experimenter then explained to the child that they
were going to try to find the colors that matched.
The experimenter provided a demonstration by
turning over two nonmatching cards, one at a time,
and said, “These two aren’t the same color.” The
experimenter then flipped the two nonmatching
cards back over and told the child it was his or her
turn. The child and experimenter took turns flip-
ping over pairs of cards. If the pair was a match,
then the cards were removed from the game. If the
pair was not a match, both cards were flipped back
over. Each child was required to find four of the

five matches during the game. The experimenter
randomly selected nonmatching pairs of cards dur-
ing his or her turn, until only four cards remained
in the game. The experimenter then selected a
matching pair to allow the child to uncover the
final matching pair. It is notable that children may
solve the memory game via trial and error or ran-
domly flipping over cards rather than finding
matches by relying on memory of the colors of pre-
viously flipped over cards. However, previous
studies have shown that children of this age form
working memories even for rapidly presented stim-
uli (Simmering, 2012); thus, even if children’s per-
formance was based on trial and error, they likely
formed memories for the color values. Once all the
matches were found, the DCCS task was adminis-
tered.

Results

Children were considered to pass the postswitch
phase of the DCCS task if they correctly sorted five
of the six cards presented during the postswitch
phase (Zelazo, 2006). Only 7 of 18 (38.9%) children
passed the standard condition of the DCCS task
with our metrically organized stimulus set (Fig-
ure 3), replicating previous findings (Zelazo, M€uller,
Frye, & Markovitch, 2003). Of the 7 children who
passed, 3 sorted by color during the preswitch
phase and 4 sorted by shape during the preswitch
phase. The rate of passing did not differ by pre-
switch dimension, v2(1, N = 18) = 0.234, p = .629.
Results for the memory + standard condition were
strikingly different: Fourteen of 18 children (77.8%)
passed the DCCS task (Figure 3). A chi-square
analysis revealed that significantly more 3-year-old
children passed in the memory game + standard
condition than in the standard condition alone,
v2(1, N = 36) = 5.60, p = .018. Thus, 3-year-old chil-
dren flexibly switched attention from the shape to
the color dimension under the standard conditions
of the DCCS task after acquiring prior experience
with the postswitch dimension.

Discussion

The results of Experiment 1A are consistent with
the DNF model prediction that experience with col-
ors prior to the DCCS task can induce flexible
attention switching from shape to color in 3-year-
old children. Previous studies have shown that chil-
dren can pass the DCCS task when the standard
conditions are simplified (Brace et al., 2006) or
children are explicitly pretrained to attend to the
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features on both dimensions on the response cards
used in the DCCS task (Mack, 2007; Ramscar et al.,
2013). Here, however, children’s flexibility was
induced under the standard conditions without
explicit task-specific pretraining or simplification.

One open question is whether flexible attention
switching in the DCCS can also be induced for the
shape dimension. Our simulations of the DNF
model treated the color and shape dimensions
equivalently. That is, the metric organization of
the colors and shapes was identical for both
dimensions in the model. Nevertheless, previous
studies have observed asymmetries in children’s
DCCS performance based on the dimension they
sort by during the postswitch phase. For example,
Fisher (2011) found that 3-year-old children failed
a version of the DCCS task when they were asked
to switch from a dimension with distinct features
(e.g., star and flower) to a dimension with similar
features (e.g., pink and red), but not when they
were asked to switch from similar features to dis-
tinct features. Although children failed our DCCS
task under the standard conditions regardless of
whether they were sorting by color or by shape
during the postswitch phase, it is possible that a
memory game for the shapes used here would not
influence children in the same way as color did.
Thus, in Experiment 1B we tested whether experi-
ence with values distributed over the shape
dimension could induce flexible attention switch-
ing from color to shape.

Experiment 1B

Method

Participants

Eighteen 3-year-old children (8 girls, M = 41.36
months, SD = 4.84) participated in this study. Nine
additional children participated but were excluded
due to fussiness (n = 2), experimenter error (n = 6),
or failing the preswitch phase (n = 1). Children were
recruited from birth records, university community,
and child-care facilities.

Stimuli, Design, and Procedure

The stimuli, design, and procedure were identi-
cal to Experiment 1A with two exceptions. First,
children matched by shape instead of color during
the memory game with the same metric distribution
of values over the shape dimension as was used for
the color dimension in Experiment 1A (see Fig-

ure 2). Second, children sorted by color during the
preswitch phase of the DCCS task and shape dur-
ing the postswitch phase.

Results

One child was excluded from the final analysis
because he or she failed the preswitch phase of the
task. Eight of 18 (44.4%) children passed the post-
switch phase of the task (Figure 4). A chi-square
analysis revealed that the number of 3-year-old
children who passed the shape memory
game + standard condition was not significantly
different from the number of children who passed
under the standard conditions alone, v2(1,
N = 36) = 0.11, p = .74, but was significantly less
than the number of children who passed in the
color memory game + standard condition, v2(1,
N = 36) = 4.21, p = .04. Thus, the experience pro-
vided during the shape memory game prior to
participating in the DCCS task did not facilitate
3-year-old children’s ability to flexibly switch atten-
tion from color to shape.

Discussion

The results indicate that experience with the
color and shape dimensions used here do not influ-
ence children’s ability to flexibly switch attention
across dimensions in the DCCS task in the same
way. Why might this be? For insight, we return to
results from Fisher (2011) showing that 3-year-old
children failed a version of the DCCS task when
they were asked to switch from a dimension with
distinct features to a dimension with similar fea-
tures, but not when they were asked to switch from
similar features to distinct features. Buss and Spen-
cer (2014) quantitatively simulated results from this
study by changing the metric distribution of fea-
tures used in the DNF model. When model inputs
were compressed along one dimension making the
inputs less distinctive along that dimension, the
model failed the DCCS task if this less distinctive
dimension was used as the postswitch dimension.
By contrast, when the less distinctive dimension
was the preswitch dimension, the model correctly
switched rules in the postswitch phase.

Based on these findings, we hypothesized that
the asymmetry in the present study might reflect a
similar asymmetry in the distinctiveness of the
color and shape dimensions. In particular, we
hypothesized that the shape dimension was less
distinctive; that is, adjacent steps along the shape
dimension were compressed relative to steps along
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the color dimension. The critical question here is
how this asymmetry might impact the memories
carried forward from the shape memory game to
the DCCS task.

To explore this, we constructed a simplified, one-
dimensional DNF model that enabled us to probe
how experience with a distributed versus com-
pressed set of stimuli would influence working
memory peaks and Hebbian memories across a ser-
ies of learning trials comparable to what children
might experience in the memory game (for model
details, see Appendix S1). Figure 5 shows these
simulations. The top of 5A shows the metric organi-
zation of colors used in Experiment 1A. Each metric
step on the 18-step dimension is separated by 4
neurons in a neural population of 100 neurons
selectively tuned to color. With this separation of
values in color space, there is a substantial neural
territory devoted to each color. The middle panel of
5A shows a working memory field for color
(WMC_1D), and the bottom panel shows an associ-
ated Hebbian layer for color (HLC_1D). This model
was presented with the five color values used in
the color memory game in a random order across

30 learning trials, much like successively flipping
over cards in the color memory game while seeking
matches. Figure 5A shows the model early in learn-
ing. The model is maintaining a working memory
for color 13 and has accumulated Hebbian memo-
ries for colors 1 and 10 on previous trials. Figure 5B
shows the model a bit later in learning. Now, the
model is maintaining a working memory for color
1, but critically, it is also maintaining a working
memory for color 10 that was presented in the just-
recent past. This enables the model to form robust
Hebbian memories for both items. This learning
process continues across trials, leading to strong
Hebbian memories for all colors from the memory
game (5C).

Figure 5D–F shows what emerges when the
model is presented with shapes that are less distinc-
tive, that is, with shapes that are compressed
together along the metric feature dimension (see
top panel of 5D). In particular, each metric step on
the 18-step dimension is separated by just 1.5 neu-
rons in a neural population of 100 neurons selec-
tively tuned to shape. With this small step size in
shape space, there is little neural territory devoted
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Figure 4. The results across Experiments 1A and 1B are shown. The left portion shows the percentage of dynamic neural field (DNF)
model simulations (black bars) and children (white bars) who passed the postswitch phase of the dimensional change card sort task
under the standard conditions when the postswitch dimension was color and when the postswitch dimension was shape (Experiment
1A). The right portion shows the percentage of DNF model simulations (black bars) and children (white bars) who passed the post-
switch phase after the color memory game (Experiment 1A) and the shape memory game (Experiment 1B).
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to each shape. This has a dramatic impact on learn-
ing about shapes in the model. Figure 5D shows
the model early in learning. At this point, the
model is maintaining a working memory of shape 6
and has accumulated Hebbian memories for shapes
1 and 6. A bit later in learning, the model is still
only maintaining one shape in working memory
(5E). This contrasts with the same model learning
about colors in 5B—that model was able to main-

tain multiple colors in working memory at the same
point in learning. What is the source of this differ-
ence? The close proximity of shape values leads to
working memory peaks that inhibit each other.
When a new working memory peak is formed, the
lateral inhibition surrounding it effectively knocks
out any existing working memory peaks that are
close by (see inhibitory troughs surrounding peaks
in 5D–F). This interferes with the formation of

A 

D 

B 

E 

C 

F 

Figure 5. Simulations of a one-dimensional dynamic neural field model of the color memory game (top portion) and shape memory
game (bottom portion) are shown. The top of Panel A shows the metric organization of the color values used in the color memory
game. This is the input to a one-dimensional working memory field for color (WMC_1D), shown just below. WMC_1D is coupled to a
Hebbian layer for colors (HLC_1D). Panel A also shows the model early in learning, after exposure to just a couple of colors in the color
memory game. At this time, the model has acquired a couple of weak memories in HLC_1D. Panel C shows the model a bit later in
learning. Now, the model has acquired more memories in HLC_1D, some of which are robust. It is also maintaining multiple items in
WMC_1D, which helps the model acquire even more robust memories in HLC_1D. By the end of learning, late in the color memory game,
the model has acquired robust memories in HLC_1D for all the colors in the color memory game. The top of Panel D shows the metric
organization of the shape values used in the shape memory game. These are noticeably closer than those used in the color memory
game, even though the distribution is the same. These values were input into a one-dimensional working memory field for shape
(WMS_1D). Panel D also shows the model early in learning, after exposure to just a couple of shapes in the shape memory game. The
model has a couple of weak memories in the associated Hebbian layer, HLS_1D. Panel E shows the model a bit later in learning. The
model has acquired memories for several shapes in HLS_1D. Notice that WMS_1D is only maintaining one item, as compared to two in
WMC_1D at the same time in learning in the color memory game (see B). This is because the closeness of the shape values creates inter-
ference in WMS_1D, effectively limiting it to remembering only one item at a time. This, in turn, hinders the ability of the model to form
robust memories in HLS_1D during the course of the shape memory game (F).
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Hebbian memories, ultimately leading to weak
Hebbian memories for the individual shapes over
learning (5F). These weaker Hebbian memories for
shapes, relative to those for colors (5C), may be
insufficient to prime the shape dimension in the
DCCS task. These simulations are consistent with
recent evidence showing that young children’s per-
formance in a working memory task was poorer for
similar items than dissimilar items (Simmering &
Cooper, 2014).

To probe whether this account might explain the
asymmetry we observed across Experiments 1A
and 1B, we conducted a second set of quantitative
simulations. In particular, we resimulated the
model, testing the hypothesis that weaker Hebbian
memory strengths for less distinctive shapes rela-
tive to stronger Hebbian memory strengths for col-
ors could account for the pattern of behavioral
results observed in Experiments 1A and 1B.

Quantitative Model Simulations of Dimensional
Asymmetry

To resimulate the DNF model and test whether
the asymmetry across Experiments 1A and 1B
might reflect differences in the distinctiveness of the
colors versus shapes used in our stimulus set, we
used the metric organization of the color and shape
dimensions shown in Figure 5. The 18 metric steps
on the color dimension were distributed as in
Experiment 1A with each step separated by four
neurons as illustrated in 5A. The 18 metric steps on
the shape dimension, by contrast, were each sepa-
rated by 1.5 neurons as illustrated in 5D. Recall that
the metric organization of the stimulus inputs was
identical on the shape and color dimensions in our
previous simulations. Moreover, Buss and Spencer
(2014) showed that the metric distribution of inputs
can have an impact on performance in the standard
DCCS task. Thus, the first set of simulations below
tested whether the DNF model produces the same
pattern of results in the standard task (see Figure 3)
with the distribution of inputs compressed along
the shape dimension (see Figure 5).

Next, we simulated the color memory
game + standard condition using inputs com-
pressed along the shape dimension. The goal of
these simulations was to examine whether the
novel prediction from Experiment 1A was repli-
cated with the new input distribution for shape
when color was the postswitch dimension in the
DCCS task. The strength of the memories for the
five colors was set to .2 (the strength of the memory
for the single shape shared by all colors was set to

.0375). Finally, we simulated the shape memory
game + standard condition. Here, we once again
used inputs compressed along the shape dimension.
The strength of the initial Hebbian memories for
the shapes used in the shape memory game was
reduced relative to the colors used in the color
memory game to reflect the weaker learning
revealed in our previous simulations (see Figure 5).
The strength of the memories for the five shapes
was set to .025 (the strength of the memory for the
single color shared by all shapes was set to .3). All
simulation sets consisted of 100 simulations of the
3-year-old model from Buss and Spencer (2014).

Simulation results are shown in Figure 4 along
with children’s performance from Experiments 1A
and 1B. The DNF model performed similarly to
children across all conditions. Specifically, the
model with compressed inputs along the shape
dimension showed low rates of passing under the
standard conditions regardless of whether color or
shape was the postswitch dimension. For the color
memory game + standard, the DNF model correctly
switched and sorted by color in the postswitch
phase as before, replicating the novel prediction
from Experiment 1A. By contrast, for the shape
memory game + standard, the DNF model failed to
switch to shape in the postswitch phase. Thus, the
close metric separation for shapes did not influence
the model’s performance under the standard condi-
tions or the color memory + standard condition.
For the shape memory game + standard condition,
by contrast, the model, like children, failed to
switch attention to shape. These simulations pro-
vide support for the hypothesis that the asymmetry
in our empirical results might arise from a shape
dimension that is less distinctive.

General Discussion

The present study showed that experience with a
metrically organized feature dimension in a mem-
ory-matching game can enhance attention switching
in the DCCS task. This is the first demonstration
that young children can pass the DCCS task under
the standard conditions without simplification
(Brace et al., 2006; Brooks et al., 2003) or explicit
pretraining to attend to the bidimensionality of the
cards (Mack, 2007; Ramscar et al., 2013). In Experi-
ment 1A, children played a game prior to the
DCCS task that involved matching colors sampled
from a wide range of the color dimension used here
but that were not the colors used in the DCCS task
itself. This experience over the color dimension
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induced flexible attention switching from shape to
color in the DCCS task. A different pattern of
results emerged in Experiment 1B. Children did not
flexibly switch attention from color to shape in the
DCCS task after experience with shapes sampled
from the shape dimension. These results mark an
important step toward understanding how atten-
tion switching can be facilitated across contexts,
highlighting the role of stimulus features and how
learning carries forward across situations. We dis-
cuss these contributions below.

What are the mechanisms by which experience
over a dimension might influence attention switch-
ing across contexts? It has long been known that
memories for auditory and visual features general-
ize over continuous dimensions based on a similar-
ity gradient (Pavlov, 1927; Spence, 1937; for a
discussion, see McLaren & Mackintosh, 2002). An
old literature exploring developmental change in
children’s dimensional attention abilities showed
that children’s attention could be shifted from the
featural to dimensional level by exposing them to
multiple values distributed over a dimension, much
like we did here. For example, Tighe and Tighe
(1969) gave children who were in their first grade
of elementary school a cylinder, showed them a ser-
ies of different sized cylinders, and asked them to
judge whether their cylinder matched the one
shown to them. This enabled the children to repre-
sent relations between previously unseen values
along that same size dimension in a transposition
task (see also Tighe & Tighe, 1968).

More recently, Perry and Samuelson (2013)
induced attention to dimensions in children who
were holistic attenders via a categorization task that
required attention to a single dimension. In a pre-
test, children were classified as dimensional or
holistic attenders based on performance in a stan-
dard triad classification task with stimuli that var-
ied on size and brightness. Children then did a
categorization task during which they learned to
sort stimuli into two categories based on attention
to one dimension, either size or brightness. Chil-
dren received feedback about their responses and
were required to reach a performance criterion of
100% across multiple trials. Perry and Samuelson
found that some of the children who had initially
been classified as holistic attenders were able to
attend dimensionally in a triad classification post-
test that followed category learning.

The DNF model provides an account of how
experience over a dimension can generate attention
at the dimensional level across contexts. The model
connects neural populations involved in processing

dimensional labels such as “color” and “shape” in
the AS to neural populations involved in remem-
bering feature values distributed over those same
dimensions in the visual-cognitive system. Experi-
ence provided with the label “color” and values
distributed over the color dimension during the
memory game primed these systems to respond
more robustly when exposed to those labels and
similar features at a future point in time, as in the
DCCS task. Importantly, the experience provided
during the memory game led to changes in the acti-
vation passed back and forth between the AS and
visual-cognitive systems—the same systems respon-
sible for developmental change in dimensional
attention in simulations reported by Buss and Spen-
cer (2014). These simulation results raise the possi-
bility that experience with labels and distributed
features may be central to developmental changes
in dimensional attention.

One alternative explanation of children’s
enhanced performance in the DCCS task is that the
act of matching in the memory game, rather than
exposure to the colors, improved children’s ability
to sort correctly during the DCCS task. Interest-
ingly, the asymmetry in results across Experiments
1A and 1B suggests this alternative is unlikely. In
particular, children’s performance in the DCCS task
when switching from color to shape was not
enhanced by the memory-matching game in Experi-
ment 1B, even though children still identified
matches.

Critically, results from Experiment 1B also sug-
gest that the metric organization of a dimension
influences children’s ability to carry forward experi-
ences across contexts and, ultimately, whether or
not flexible attention switching can be induced
across contexts. Similar asymmetries in children’s
DCCS performance have been observed in previous
studies (e.g., Fisher, 2011). Inspired by simulations
of such asymmetries (see Buss & Spencer, 2014), we
hypothesized that the shape stimuli used here were
metrically compressed—less distinctive—relative to
the color stimuli. Simulations of the DNF model
demonstrated the viability of this hypothesis—the
model effectively captured the full range of chil-
dren’s performance across conditions.

One intriguing possibility raised by these simula-
tions is that the influence of the shape memory
game on children’s DCCS performance might be
enhanced via more intensive experience with the
shape dimension. It is well known that the neuro-
nal resources dedicated to stimulus representation
can be increased via experience. For example,
Recanzone, Merzenich, Jenkins, Grajski, and Dinse
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(1992) found that the neural territory devoted to the
representation of one finger in somatosensory cor-
tex increases in an experience-dependent fashion in
monkeys. Similarly, Ditye et al. (2013) found that
improvements in adults’ ability to make subtle per-
ceptual discriminations of color–motion conjunc-
tions is associated with increased cortical matter as
a result of intensive practice performing discrimina-
tions. It is possible that the similarities in the shapes
used here, variations in ovals, were compressed rel-
ative to the entire shape dimension. The entire
shape dimension might reflect children’s experience
with canonical shapes such as star, triangle, and
circle. Giving children extended experience discrimi-
nating the shape variations in our stimuli might
expand the representational space devoted to varia-
tions in oval. This might, in turn, enable experience
with shape to induce flexible attention switching
from color to shape in the DCCS task. Alterna-
tively, it might be possible to make the shape
changes across the dimension more dramatic. While
this is conceptually possible, in our stimulus set
shapes 1 and 18 are already quite stretched (see
Figure 2).

The DNF model provides novel insights into the
influence of dimensional experience across contexts.
The model has several distinct advantages relative
to other neural network models that have been
used to capture developmental change in children’s
performance in the DCCS task (for an extensive
comparison of theories, see Buss & Spencer, 2014).
For instance, Morton and Munakata (2002) pro-
posed a connectionist model consisting of a bank of
nodes for each feature value (e.g., red, blue, circle,
star) and a bank of nodes for each label. These
input units feed into a hidden layer, which in turn
feeds into an output layer that generates a sorting
response (left or right). Across a series of trials, a
robust latent (long-term) memory develops and
competes with an active (working) memory gener-
ated by the postswitch sorting cards and labels.
Developmental differences in DCCS performance
arise when “older” models generate a sufficiently
robust active memory for the postswitch rule that
can overcome the strength of the latent memory
accumulated during the preswitch phase.

The processes in the DNF model involved in
children’s DCCS performance bear some resem-
blance to those proposed by Morton and Munakata
(2002). For example, competition between memories
generated from sorting during the preswitch phase
and what the child is asked to sort by in the post-
switch phase play an important role in both mod-
els’ account of young children’s performance. But

there are also important differences between models
that are relevant to the current results (for addi-
tional contrasts, see Buss & Spencer, 2014). In par-
ticular, the connectionist model represents feature
values independent of the dimensions along which
they are distributed. Thus, it is unclear how experi-
ence with features not present in the DCCS task
could influence later sorting as was evident here.
The DNF model, by contrast, represents features in
neural populations tuned to continuous metric
dimensions. This unique feature led to the novel
prediction tested in the present study. Further, this
aspect of the model was central to our account of
why children showed an asymmetry in responding
across experiments.

In conclusion, our work highlights the utility of
theoretically guided efforts to enhance children’s EF
abilities. The DNF model led to a key insight about
the nature of generalization across contexts, which
led to the first empirical demonstration of success-
ful switching by 3-year-old children in the standard
DCCS task without simplification or task-specific
training. The model provided a mechanistic account
of asymmetries in the influence of dimensional
experience across contexts as well, highlighting the
importance of understanding how the details of the
stimulus and task come together to influence chil-
dren’s behavior. The DNF model also inspired a
new paradigm for future investigations of how
specific types of dimensional experience with fea-
tures and labels influence young children’s cogni-
tive flexibility in the DCCS task. One exciting
possibility is that the experience acquired in the
memory game might generalize to contexts beyond
the DCCS. For example, might experience acquired
in the memory game enhance children’s working
memory for colors?

Perhaps most importantly, our work may shed
new light on efforts to train flexible dimensional
attention in children. Effective attention switching
abilities are necessary for children to meet the chal-
lenges they face each day. In the classroom, chil-
dren are constantly asked to switch attention across
dimensions as they shift from one learning context
to another. For instance, children must switch from
attending to the size dimension while learning
mathematics to the color dimension while painting
during art. We gave children experience with a
dimensional label and stimuli that spanned one
metric dimension. The intriguing possibility is that
this might be an effective way to help children
learn dimensional attention skills as they extract the
pattern of associations that maps a dimensional
label like “color” to a distributed set of features.
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Such training might be an important advance in
efforts to foster EFs across a range of contexts,
including the out-of-lab contexts so critical to posi-
tive developmental outcomes.
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