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What is this school about?

embodiment

neural dynamics

autonomous behavior



Soccer as a form of cognition

perception: recognize the ball and the other 
players, estimate their velocities, perceive the 
scene 

attention: select and track a visual target, 
controlling gaze 

working memory: to predict where you need to 
look to update your scene understanding

plan and control own action, running, kicking, 
tackling, updating movement plans any time 

pursue goals, make decisions 

learning: get better at playing

background knowledge: know the goal of the 
game/rules, know how hard the ball is, how fast 
players are



Much cognition contains 

perception: explore scene, recognize screws, while 
keeping track of spatial arrangement

attention: fixate on relevant part, visually search tool

working memory: use to efficiently find tools and 
places to act on, update with toaster pose

plan: manipulating cover, taking it off, recognizing 
spring, re-attaching it, mounting cover back on, 
generating the correct action sequence

pursue goals  

learning: get better at this 

background knowledge: know about cover, screws, 
how hard to turn or press 
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Embodied cognition

Properties of sensorimotor processes

continuous link to the sensory and motor surfaces 

temporal continuity in state 

stabilization of states against sensor and motor noise

unfolding of processes in closed loop with the 
environment

sensitive to the structure of the environment



Embodied cognition

Embodied cognition emerges from 
sensorimotor processes

through decision making 

working memory 

autonomous sequence generation

achieving invariance through coordinate transforms 



Neural dynamics 
hypothesis

embodied cognition 

unfolds continuously in time

with internal closed loops: prediction/planning

in closed loops with the environment 

=> embodied cognition requires stability 

embodied cognitive processes must be 
characterized as dynamical systems

behavioral dynamics

neural dynamics 



Neural dynamics hypothesis

the theoretical language of neural 
dynamics captures the 
fundamental stability requirement 
of embodied cognitive systems…

from instabilities in neural 
dynamics, new qualities emerge 
that go beyond the control 
theoretical aspects of dynamics 

u 

du/dt 

resting 
level 



Dynamic Field Theory 

is a branch of neural dynamics 
that is particularly suited to 
understand neural cognitive 
architectures 

focusses on the functional 
significance of neuronal activity

abstracting from the functionally 
insignificant discrete spatial and 
temporal structure of neuronal 
activity 



The strong embodiment hypothesis

embodied cognitive processes are 
characterized by the stability/instability and 
the link to sensorimotor processes 

Hypothesis: there is no particular boundary 
up to which, cognition is embodied, but 
beyond which cognition loses the properties 
of embodiment 



Neural dynamics + 
strong embodiment hypotheses

=> all cognition processes have the 
properties of embodied cognition: 

stability

potential link to sensorimotor processes

instabilities at original of new qualitites

=> understanding cognition requires the 
theoretical framework of neural dynamics 



Implications

when studying cognitive competences, keep 
the links to the sensorimotor domain in 
view, both experimentally and theoretically

tasks create context, study behavior and 
cognition in naturalistic tasks that connect 
to elementary behaviors 

keep conceptual commitments made in one 
domain when studying other domains: 
stability 



Theoretical research program

develop a set of theoretical concepts that 
are necessary … to fulfill constraints

probe how the set is sufficient to account 
for behavior and cognition 

be conservative: only introduce new 
theoretical concepts when forced to … 

be mindful of neural constraints 



Experimental research program

look for metric effects

study role of time

look for online updating



Robotic research program
autonomous robots: actively generate 
behavior, initiating, selecting, 
terminating actions based on the 
system’s own perceptual processes

use autonomous robots as heuristic 
devicdes

the demonstrate that a link to the 
sensorimotor domain is possible

they may uncover overlooked 
processes and constraints 

they may review that certain 
processes are not necessary 



A short history of thought 

dynamical systems thinking

dynamical field theory

attractor dynamics approach



beginnings in ecological psychology: Turvey, 
Kugler, Kelso

emergency of behavior/coordination from dynamics

metaphor: movement is like going to a 
minimum

a link to Anatol Feldman’s ideas of Equilibrium Point 
Theory 

Dynamical systems thinking 
(DST)



[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

Stability and loss of stability in 
movement coordination

stability of relative phase is 
constitutive of coordination

loss of stability (enhanced 
variance, relaxation time) 
leads to change of 
coordination pattern



stability of relative phase constitutive of 
coordination

=>loss of stability (enhanced variance, 
relaxation time) leads to change of 
coordination pattern

[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]
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and 2.88 Hz at the pre-transition segment, $4. By $9 
(the end of the run) the frequency range was between 
2.99 and 4.04 Hz. 

Increases in fluctuations immediately before the 
transition appear to reflect an instability of the anti- 
phase coordinative pattern. However, the experi- 
mental and analysis procedure in the wrist experi- 
ment still leaves doubts about the evidence for critical 
fluctuations in two respects: (1) The point estimate 
of relative phase necessarily produces a relatively low 
number of data points within each segment for the 
temporal averages. (2) A possible non-stationarity 
in the data is introduced due to the lack of exact con- 
trol over the rate of frequency scaling. To alleviate 
these problems we performed more refined experi- 
ments on finger movements. In these the relative 
phase was measured continuously, i.e. at every 5 ms 
sample. In this case, each sample estimate was deter- 
mined on the basis of the individual phase of each 

finger's motion defined by (~R=Ian-I(J(R/XR) w h e r e  
XR is the position of the right index finger normal- 
ized to the cycle extrema and J(R is its normalized 
instantaneous velocity. Continuous relative phase is 
just ~R-OL at each sample. In fig. 3 it is possible to 
compare the continuous estimate of relative phase 
(fig. 3C) and the point estimate of relative phase (fig. 
3B) for a representative experimental run (fig. 3A). 

The slow component of phase fluctuations is 
apparent in both figs. 3B and 3C, though a finer fluc- 
tuational structure emerges from the continuous 
estimate. Because of the anharmonicities present in 
the individual finger movement trajectories, the con- 
tinuous relative phase also contains an oscillatory 
component. Due to the controlled, stepwise increase 
of cycling frequency explicit stationarity checks could 
be made by averaging over a 0.5 s window that was 
moved through the 4 seconds of data at each fre- 
quency. Stationarity was guaranteed less than 1 s after 

A. TIME SERIES 
,I i l i l i  Ii I! I i l i l i l ! [ i l i l l  I i l i l i l i l i l i l l H I i l i l i l l l l l l ! l ! l l l l l l  ,~ 

P ~ 

,oo vw.wvvvvvv  u, ,.., _£ 
ADD 

RIGHT INDEX FINGER LEFT INDEX FINGER . . . .  

B. POINT ESTIMATE OF RELATIVE PHASE 

"i1 
C. CONTINUOUS ESTIMATE OF RELATIVE PHASE 

3601̂ ,h., 
Fig. 3, (A) Representative time series showing position over t ime of right (solid line) and left (dashed line ) finger abduction-adduction 
movements  as the control parameter F is systematically scaled every 4 s. (B) The corresponding point estimate of  relative phase, i.e. the 
phase of one finger's oscillatory peak relative to the other. (C) The continuous estimate of  relative phase measured every 5 ms (see text 
for details) of the same time series data. 
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Stability and loss of stability in 
movement coordination



stability of relative phase constitutive of 
coordination

=>loss of stability (enhanced variance, 
relaxation time) leads to change of 
coordination pattern

[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

Stability and loss of stability in 
movement coordination



[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

Stability and loss of stability in 
movement coordination

=> stability is both necessary and 
sufficient for the emergence of 
coordination patterns



Thelen, Smith: dynamical systems 
thinking as metaphor in development 

embodiment/situatedness

development is driven by experience, in 
which cognition is closely linked to 
sensory and motor behavior afforded by 
the structure of the environment

emergence 

competences emerge in the here and 
now in real time

multi-causality, soft-causation, soft-
assembly

time 

behavioral history in the 
task matters

developmental history 
matters: individual 
trajectories of development



from metaphor toward mathematically 
formalized theory

beyond the motor domain, toward embodied 
cognition 

Dynamic Field Theory



Kopecz 
Schöner (1995): 
saccadic target 
selection as 
sensorimotor 
decision

input

input

saccadic 

end-point

targets

targets

saccadic 

end-point

activation field

activation

field

[after Kopecz, Schöner: Biol Cybern 73:49 (95)]

bistable

initial 

fixation

visual

targets

[after: Ottes et al., Vis. Res. 25:825 (85)]

activation fieldactivation field

Dynamic Field Theory



Erlhagen Schöner: 
movement 
preparation (1997, 
2002)
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Dynamic Field Theory



Thelen, Smith, Schöner (2001) Perseverative 
reaching as sensorimotor decision making

independently of the infants’ actions; younger infants,
lacking such a hypothesis, reach to the place where their
actions previously led them to find the object [11,12].

Experimental data favor an alternative, emergentist
account of performance in the A-not-B task that has been
developed within Dynamic Field Theory (DFT) [13,14].
This account explains the error through general processes
of goal-directed reaching (and indeed is a variant of one
model of adult reaching behavior). The model consists of a
dynamic field, shown in Figure 1, which corresponds to the
activation within a population of neuron-like units, each
dynamically representing the direction of a reach. The field
integrates multiple sources of relevant information: the
immediate events (e.g. hiding the toy), the lids or covers on
the table, and the direction of past reaches. The internal
activations that produce a directional reach are themselves
dynamic events, with rise times, decay rates, amplitudes
and varying spatial resolution. Consequently, the model
predicts – and experiments have confirmed – fine-grained
stimulus, timing and task effects [13,14]. Because the
explanation derives from general models of goal-directed

action that are not specific to this task nor to this devel-
opmental period, the model makes predictions (tested and
confirmed) about similar phenomena (and perseverations)
at ages younger than, and considerably older than, the
typical age range examined in the standard task [15,16].
Indeed, using this model as a guide, experimenters can
make the error come and go predictably: by changing the
delay, by heightening the attention-grabbing properties of
the covers or the hiding event, and by increasing and
decreasing the number of prior reaches to A [13,14,16,17].

The DFT-based model accounts for a wide range of
findings showing that variables unrelated to beliefs about
the existence of objects can affect the A-not-B error. The
model has also been used to predict (correctly) that a reach
back to A will occur in some situations when there is no toy
hidden [17]. Furthermore, because the dynamic field is
viewed as a motor planning field, and thus is tied to the
body-centric nature of neural motor plans [17], the model
also makes the novel prediction that perseverative errors
should disappear if themotor plan needed for reaching to B
is distinctly different from that for reaching to A [18]. One

[(Figure_1)TD$FIG]

Figure 1. On the A trials, an experimenter hides an object repeatedly in one location, for example under a lid to the infant’s right. The infant watches the object being hid, a
delay of several seconds is imposed, and then the hiding box is pushed close to the infant and the infant is allowed to reach to the hiding location and retrieve the object.
This is repeated several times: hiding under the rightmost lid, delay, infant retrieval of the object. On the crucial B trial, the experimenter hides the object in a new adjacent
location, under a second lid to the infant’s left. After the delay, the infant is allowed to reach. Bottom left: a DFT simulation of activation in the dynamic field on a B trial. The
activation rises at the B location during the hiding event, but then, because of the cooperativity in the field and memory for previous reaches, activation begins to rise at A
during the delay and the start of the reach inhibits the activation at B resulting in a simulated reach to A. Bottom right: a baby in a posture-shift A-not-B task.

Opinion Trends in Cognitive Sciences Vol.14 No.8
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Dynamic Field Theory



Spencer Schöner (2003): refuting the anti-
representationalist stance of some 
proponents of dynamical systems thinking

Dynamic Field Theory



… the rest of that history … emerges over this 
week…

… that is the “neural dynamics” strand of DST 

Dynamic Field Theory



Attractor dynamics approach

a second strand of formalization of DST



Attractor dynamics approach
Autonomous vehicle motion 261 

two systems need  only de tec t  each  o t h e r  as obs ta -  
cles. This  is d e m o n s t r a t e d  in the  s imula t ion  shown 
in Fig. 5. 

4.2. Flexibility through instabilities 

T h e  con t r ibu t ions  of  the  d i f ferent  obs tac les  
a re  l inear ly  i n d e p e n d e n t  if the  sha red  suppor t  is 
zero,  tha t  is, if the  in tervals  [~b i -Al~ t i , t o t a  I --~, I~ i 
q- Al~i,total -{- t~] and  [~j - A~j,total - t~, I/tj -t- AI/Ij,tota 1 
+ 8] a re  disjoint .  These  con t r ibu t ions  b e c o m e  
increas ingly  d e p e n d e n t ,  as the i r  over lap  in- 
creases .  The re fo re ,  the  degree  of  angu la r  over lap  

be twe en  obs tac les  d e t e r m i n e s  to  which  extent  the  
co r r e spond ing  behav io ra l  r eq i r emen t s  a re  aver-  
aged  or  act i ndependen t ly .  A t  the  crossover  be-  
tween  these  two l imit  cases  ins tabi l i t ies  may  oc- 
cur. This  is i l lus t ra ted  in Fig. 6: W h e n  two obs ta-  
cles a re  suff iciently far  f rom each  o ther ,  the  cor-  
r e spond ing  vec tor - f ie ld  con t r ibu t ions  share  l i t t le 
suppor t  and  are  thus  l inear ly  i n d e p e n d e n t .  The  
s u m m e d  force- f ie ld  has  repe l lo r s  co r r e spond ing  
sepa ra te ly  to each  r e q u i r e m e n t  with an a t t r ac to r  
in be tween .  I f  we dec rease  the  d i s tance  be tween  
the  two obstacles ,  the i r  sha red  suppor t  a r ea  de-  
creases .  A t  a cr i t ical  d i s tance  value ,  the  a t t r ac to r  
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Fig. 6. Decisions in the planning dynamics: Two situations are shown, with obstacles separated by more than a vehicle size (top) 
and less than a vehicle size (bottom). In the left column the realized paths are plotted: The vehicle passes between the obstacles to 
reach the target through the most direct path if possible. For obstacles that are too closely spaced the path changes qualitatively 
and now circumnavigates both obstacles on one side. In the right columnn the corresponding initial ~b-dynamics are plotted. The 
contributions to the individual obstacles are shown (dashed lines) as well as their superposition (solid line). On top, the obstacles 
are sufficiently separated (in angle) so that the individual contributions share only little support and the two separate repeUors are 
erected. Between the two repellors an attractor exists allowing for passage between the obstacles. In the bottom panel the obstacles 
are sufficiently close to each other (in angle) to share a fair amount of support: the two repellors combine into one intermediate 

repellor. This qualitative change of the dynamics as a function of the distance of the two obstacles is a bifurcation. 

Schöner, Dose, 92; 

behavioral variables: capture 
state of a system in the 
environment

behavior emerges from 
attractors 

avoidance from repellors

instabilities lead to new 
dynamic regimes: decisions



Attractor dynamics approach

describes human visually 
guided steering! 

Fajen, Warren, 2003

Dynamical Model of Steering 21

1 m, a goal and obstacle appeared simultaneously. Ini-
tial goal angle was fixed at 15◦ and initial obstacle
distance at 4 m. We varied initial goal distance be-
tween 5, 7, and 9 m and initial offset angle between
1◦, 2◦, 4◦, and 8◦ (Fig. 9). Means paths for each con-
dition of initial offset angle are shown in Fig. 11(a).
Although observers took both inside and outside paths
in each condition, the percentage of inside paths de-
creased with initial goal distance and increased with
offset angle (see Fig. 11(b)). Both effects are consis-
tent with the predictions of the model. The distribution
of paths could presumably be reproduced by adding a
noise term to the model.

Interestingly, the shift to inside paths occurred at
somewhat larger offset angles for the model (7–10◦)

(a)

(b)

Figure 11. (a) Mean paths and (b) percentage of inside paths pro-
duced by humans under conditions used in Simulation #3a.

than for human participants (2–4◦). Thus, the param-
eter settings derived from Experiments 1 and 2 yield
behavior that is somewhat biased toward outside paths.
One reason for this may be that the first two experiments
sampled a limited range of conditions, and in particu-
lar did not include cases in which participants crossed
in front of the obstacle to reach the goal. It is possible
that they adapted their behavior (adjusted their “param-
eters”) to these special conditions, with the result that
the parameter fits did not generalize precisely to a wider
range of conditions. We thus performed a second set of
simulations to determine whether we could reproduce
the pattern of routes observed in Experiment 3 with a
minimal change in parameters. Adjusting a single pa-
rameter, c4, from 0.8 to 1.6, was sufficient to induce the
shift from an outside to an inside path at offset angles
between 1◦ and 4◦. The c4 parameter determines the
decay rate of obstacle repulsion as a function of dis-
tance, and increasing it results in somewhat “riskier”
behavior. Thus, the model successfully predicted the
qualitative effects of initial goal distance and initial
offset angle on route selection, and with a minor ad-
justment to one parameter reproduced the quantitative
properties of the human data.

Simulation #3b: Relative Position of Two Obstacles.
Whereas Simulation #3a was intended to reveal how
goal and obstacle components interact, Simulation #3b
focused on the interaction of two obstacle components.
Specifically, we wanted to determine how the location
of a distant obstacle affects the agent’s route around a
nearby obstacle. In this set of simulations, the initial
angle (0◦) and distance (9 m) of the goal was fixed, as
was the initial angle (0.5◦) and distance (4 m) of the
nearby obstacle. We manipulated the initial angle of the
distant obstacle while keeping its initial distance fixed
at 4.5 m (Fig. 12(a)). When the angle of the distant
obstacle was close to zero (− 0.5◦), the agent detoured
to the left of both obstacles (Fig. 12(b)). As that angle
grew slightly (− 5◦), the agent detoured to the right of
both obstacles (Fig. 12(c)). Finally, as the angle opened
further (− 15◦), the agent switched to a route between
the two obstacles (Fig. 12(d)).

The agent appears to be making intelligent route se-
lection decisions, choosing the route that is most effi-
cient for the given configuration of obstacles. It is easy
to see, however, how these “choices” emerge from the
interaction of the two obstacle components. Because
the two obstacles are initially on opposite sides of the
agent’s heading, they oppose one another. When the



attractor dynamics driven by 
low-level sensory input

Bicho, Schöner 1997: 2nd order 
dynamics

Mallet, Bicho, Schöner 2000: first 
order dynamics on a wheelchair 

Behavior based attractor dynamics



Iossifidis et al. 

Jokeit, Reimann, Schöner

Attractor dynamics for arm movement



Linking attractor dynamics and 
neural dynamics



even Schöner, Dose 1992 
hat first elements of 
representation: discrete 
neurons select 
representative obstacles

Linking attractor 
dynamics and neural 

dynamics



Neural fields for obstacle 
avoidance… in an 
architecture: Engels, 
Schöner, 1995

Linking attractor 
dynamics and neural 

dynamics



competitive dynamics to select 
behaviors in seuquences: 
Steinhage, Schöner, 1997

T
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Linking attractor 
dynamics and neural 

dynamics



DFT for target 
representation in 
phono-taxis from low-
level sensors: Bicho, 
Mallet, Schöner (2000)

Linking attractor 
dynamics and neural 

dynamics



How is DFT embedded in the 
broader history of thought?

connectionism 

deep networks

computational neuroscience 

probabilistic thinking



How is DFT embedded in the 
broader history of thought?

… let’s do that when we have learned about 
DFT in some depth… at the end of the 
tutorial lectures… 



What I’ll do in my core/
tutorial  lectures

Braitenberg vehicles: to create an intuition how 
behavior emerges from dynamics… and to 
position neural relative to behavioral dynamics 

Neural dynamics: to formalize the concepts of 
dynamics in the context of individual “neurons” 
and the strongly recurrent neural networks they 
form



What I’ll do in my core/
tutorial  lectures

Dynamic Field Theory 1: show how “neurons” 
come to represent sensory or motor states and 
ground neural dynamics in neurophysiology 

and discuss the instabilities of DFT and link 
them to different behavioral signatures 



What I’ll do in my core/
tutorial  lectures

Dynamic Field Theory: II introduce the memory 
trace, link to autonomous learning, and use A 
not B as a model case 

Dynamic Field Theory and behavioral dynamics: 
show how fields can be linked to attractor 
dynamics to generate motor behavior 



What I’ll do in my core/
tutorial  lectures

Higher dimensional fields: show how new 
functions become possible when the number of 
represented dimensions is increased: biased 
competition, coordinate transforms 

Multi-layer fields: expand the dynamic repertoire 
by introduces inhibitory interneurons, linking to 
neural timers/oscillators and active transients 



What I’ll do in my core/
tutorial  lectures

Show how sequential behavior and sequential 
activation states emerge in DFT 

link to architectures … 



Advanced lectures 

Mathis Richter: a DFT architecture for the 
perceptual grounding of relational concepts 
as an example of “higher cognition”

spatial language, movement concepts

perceptual grounding vs. generating descriptions 

coordinate transforms to generalize neural operators 

mental maps? 



Advanced lectures 

Jan Tekülve: a DFT architecture for the 
generation of movement directed at objects 
in the visual surround

integrates many of the modules laid out previously 

pulls many methods from the neural dynamic tool kit: 
selection, coordinate transform, sequence generation, 
neural timers, link to attractor dynamics

robotic demonstration 


