Introduction

Gregor Schöner

What is this school about?

- embodiment
- neural dynamics
- autonomous behavior

Soccer as a form of cognition

- perception: recognize the ball and the other players, estimate their velocities, perceive the scene
- attention: select and track a visual target, controlling gaze
- working memory: to predict where you need to look to update your scene understanding
- plan and control own action, running, kicking, tackling, updating movement plans any time
- pursue goals, make decisions
- learning: get better at playing
- background knowledge: know the goal of the game/rules, know how hard the ball is, how fast players are

Much cognition contains

- perception: explore scene, recognize screws, while keeping track of spatial arrangement
- attention: fixate on relevant part, visually search tool
- working memory: use to efficiently find tools and places to act on, update with toaster pose
- plan: manipulating cover, taking it off, recognizing spring, re-attaching it, mounting cover back on, generating the correct action sequence
- pursue goals
- learning: get better at this
- background knowledge: know about cover, screws, how hard to turn or press

[image: mystery fandom theater 3000]

Embodied cognition

- Properties of sensorimotor processes
 - continuous link to the sensory and motor surfaces
 - temporal continuity in state
 - stabilization of states against sensor and motor noise
 - unfolding of processes in closed loop with the environment
 - sensitive to the structure of the environment

Embodied cognition

Embodied cognition emerges from sensorimotor processes

through decision making

working memory

autonomous sequence generation

achieving invariance through coordinate transforms

Neural dynamics hypothesis

- embodied cognition
 - unfolds continuously in time

with internal closed loops: prediction/planning

in closed loops with the environment

- => embodied cognition requires stability
- embodied cognitive processes must be characterized as dynamical systems

behavioral dynamics

neural dynamics

Neural dynamics hypothesis

- the theoretical language of neural dynamics captures the fundamental stability requirement of embodied cognitive systems...
- from instabilities in neural dynamics, new qualities emerge that go beyond the control theoretical aspects of dynamics

- is a branch of neural dynamics that is particularly suited to understand neural cognitive architectures
- focusses on the functional significance of neuronal activity
- abstracting from the functionally insignificant discrete spatial and temporal structure of neuronal activity

The strong embodiment hypothesis

- embodied cognitive processes are characterized by the stability/instability and the link to sensorimotor processes
- Hypothesis: there is no particular boundary up to which, cognition is embodied, but beyond which cognition loses the properties of embodiment

Neural dynamics + strong embodiment hypotheses

=> all cognition processes have the properties of embodied cognition:

📕 stability

- potential link to sensorimotor processes
- instabilities at original of new qualitites
- => understanding cognition requires the theoretical framework of neural dynamics

Implications

- when studying cognitive competences, keep the links to the sensorimotor domain in view, both experimentally and theoretically
- tasks create context, study behavior and cognition in naturalistic tasks that connect to elementary behaviors
- keep conceptual commitments made in one domain when studying other domains: stability

Theoretical research program

- develop a set of theoretical concepts that are necessary ... to fulfill constraints
- probe how the set is sufficient to account for behavior and cognition
- be conservative: only introduce new theoretical concepts when forced to ...
- be mindful of neural constraints

Experimental research program

look for metric effects

study role of time

look for online updating

Robotic research program

- autonomous robots: actively generate behavior, initiating, selecting, terminating actions based on the system's own perceptual processes
- use autonomous robots as heuristic devicdes
- the demonstrate that a link to the sensorimotor domain is possible
- they may uncover overlooked processes and constraints
- they may review that certain processes are not necessary

A short history of thought

dynamical systems thinking

dynamical field theory

attractor dynamics approach

Dynamical systems thinking (DST)

- beginnings in ecological psychology: Turvey, Kugler, Kelso
 - emergency of behavior/coordination from dynamics
- metaphor: movement is like going to a minimum
 - a link to Anatol Feldman's ideas of Equilibrium Point Theory

stability of relative phase is constitutive of coordination

Ioss of stability (enhanced variance, relaxation time) leads to change of coordination pattern

B. POINT ESTIMATE OF RELATIVE PHASE

[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

stability is both necessary and sufficient for the emergence of coordination patterns

Thelen, Smith: dynamical systems thinking as metaphor in development

embodiment/situatedness

development is driven by experience, in which cognition is closely linked to sensory and motor behavior afforded by the structure of the environment

emergence

- competences emerge in the here and now in real time
- multi-causality, soft-causation, softassembly

time

- behavioral history in the task matters
- developmental history matters: individual trajectories of development

- from metaphor toward mathematically formalized theory
- beyond the motor domain, toward embodied cognition

Kopecz Schöner (1995): saccadic target selection as sensorimotor decision

[after Kopecz, Schöner: Biol Cybern 73:49 (95)]

 Erlhagen Schöner: movement preparation (1997, 2002)

Thelen, Smith, Schöner (2001) Perseverative reaching as sensorimotor decision making

Spencer Schöner (2003): refuting the antirepresentationalist stance of some proponents of dynamical systems thinking

- the rest of that history ... emerges over this week...
- In that is the "neural dynamics" strand of DST

Attractor dynamics approach

a second strand of formalization of DST

Attractor dynamics approach

Schöner, Dose, 92;

- behavioral variables: capture state of a system in the environment
- behavior emerges from attractors
 - avoidance from repellors
- instabilities lead to new dynamic regimes: decisions

Attractor dynamics approach

- describes human visually guided steering!
- Fajen, Warren, 2003

Behavior based attractor dynamics

attractor dynamics driven by low-level sensory input

- Bicho, Schöner 1997: 2nd order dynamics
- Mallet, Bicho, Schöner 2000: first order dynamics on a wheelchair

Attractor dynamics for arm movement

lossifidis et al.

Jokeit, Reimann, Schöner

even Schöner, Dose 1992 hat first elements of representation: discrete neurons select representative obstacles

Neural fields for obstacle avoidance... in an architecture: Engels, Schöner, 1995

competitive dynamics to select behaviors in seuquences: Steinhage, Schöner, 1997

DFT for target representation in phono-taxis from lowlevel sensors: Bicho, Mallet, Schöner (2000)

How is DFT embedded in the broader history of thought?

connectionism

deep networks

computational neuroscience

probabilistic thinking

How is DFT embedded in the broader history of thought?

In the second second

- Braitenberg vehicles: to create an intuition how behavior emerges from dynamics... and to position neural relative to behavioral dynamics
- Neural dynamics: to formalize the concepts of dynamics in the context of individual "neurons" and the strongly recurrent neural networks they form

- Dynamic Field Theory I: show how "neurons" come to represent sensory or motor states and ground neural dynamics in neurophysiology
- and discuss the instabilities of DFT and link them to different behavioral signatures

- Dynamic Field Theory: II introduce the memory trace, link to autonomous learning, and use A not B as a model case
- Dynamic Field Theory and behavioral dynamics: show how fields can be linked to attractor dynamics to generate motor behavior

- Higher dimensional fields: show how new functions become possible when the number of represented dimensions is increased: biased competition, coordinate transforms
- Multi-layer fields: expand the dynamic repertoire by introduces inhibitory interneurons, linking to neural timers/oscillators and active transients

Show how sequential behavior and sequential activation states emerge in DFT

link to architectures ...

Advanced lectures

Mathis Richter: a DFT architecture for the perceptual grounding of relational concepts as an example of "higher cognition"

spatial language, movement concepts

- perceptual grounding vs. generating descriptions
- coordinate transforms to generalize neural operators

mental maps?

Advanced lectures

Jan Tekülve: a DFT architecture for the generation of movement directed at objects in the visual surround

integrates many of the modules laid out previously

- pulls many methods from the neural dynamic tool kit: selection, coordinate transform, sequence generation, neural timers, link to attractor dynamics
- robotic demonstration