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… from behavioral to neural 
dynamics
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Neurons as input-output 
threshold elements

activation state (membrane potential or 
spiking rate) 

summing inputs and generating output 
through a sigmoidal threshold function 
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Activation

activation as a real number, 
abstracting from biophysical details

low levels of activation: not transmitted to 
other systems (e.g., to motor systems)

high levels of activation: transmitted to other 
systems

as described by sigmoidal threshold function 

zero activation defined as threshold of that 
function 
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(Forward) neural networks

output from one set of 
neurons provides input 
to another set of 
neuron 
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is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a 
set of changes in the input pattern do not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 
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FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3 , are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.
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FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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Recurrent neural networks

neural dynamics…

·u(t) = − u(t) + h + input(t) + g(u(t))



Activation dynamics

naive neural dynamics

⌧ u̇ = ⇠t
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Activation dynamics

neural dynamics with stability

⌧ u̇ = �u+ h+ ⇠t.
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Neural dynamics

In a dynamical system, the present predicts the future: given 
the initial level of activation u(0), the activation at time t: 
u(t) is uniquely determined
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Neural dynamics
stationary state=fixed point= constant solution

stable fixed point: nearby solutions converge to the 
fixed point=attractor
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Neural dynamics

exponential relaxation to fixed-point attractors

=> time scale

⌧ u̇(t) = �u(t) + h

du/dt = f(u)
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Neural dynamics

attractor structures ensemble of solutions=flow

⌧ u̇(t) = �u(t) + h

du/dt = f(u)
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Neuronal dynamics

inputs=contributions to 
the rate of change

positive: excitatory

negative: inhibitory

=> shifts the attractor

activation tracks this 
shift (stability)

⌧ u̇(t) = �u(t) + h + inputs(t)

u

h+s

input, s

resting
level, h 

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, s



⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation
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⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation
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=> this is nonlinear dynamics!

Neuronal dynamics with self-excitation
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⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))



stimulus input

Neuronal dynamics with self-excitation
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⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))



at intermediate stimulus strength: bistable=> 
essential nonlinearity

Neuronal dynamics with self-excitation
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with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability

Neuronal dynamics with self-excitation
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with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability

Neuronal dynamics with self-excitation
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detection instability
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Neuronal dynamics with self-excitation



with varying input strength system goes through two 
instabilities: the detection and the reverse detection 
instability

Neuronal dynamics with self-excitation
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reverse detection instability
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Neuronal dynamics with self-excitation



signature of instabilities: hysteresis
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=> simulation



Neuronal dynamics with competition

stimulus

input

output

u1
inhibitory coupling

output
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⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2



interaction: the rate of change of activation at one 
site depends on the level of activation at the other 
site

mutual inhibition

⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2

sigmoidal nonlinearity

Neuronal dynamics with competition



to visualize, assume that u_2 
has been activated by input 
to positive level

=> then u_1 is suppressed
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Neuronal dynamics with competition



why would u_2 be positive 
before u_1 is? E.g., it grew 
faster than u_1 because its 
inputs are stronger/inputs 
match better

=> input advantage translates 
into time advantage which 
translates into competitive 
advantage
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vector-field in the 
absence of input
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Neuronal dynamics with competition



vector-field (without 
interaction) when both 
neurons receive input
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only activated neurons participate in interaction!
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site 1 inhibits site 2
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Neuronal dynamics with competition



vector-field with strong
mutual inhibition: 

bistable
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Neuronal dynamics with competition
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=>biased competition
stronger input to site 1: 

attractor with activated u_1 stronger, 
attractor with activated u_2 weaker, may become unstable
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Neuronal dynamics with competition
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=> simulation



Outlook

Where do activation variables come from? How 
does an activation variable come to “stand” for a 
behavior or percept ?

How do discrete activation variables reflect 
continuous behaviors? 

=> DFT lecture


