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… so far we assumed

that a single population of activation variable 
mediates both the excitatory and the inhibitory 
coupling required to make peaks attractors 

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion
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But: Dale’s law
says: every neuron forms with its axon only one 
type of synapse on the neurons it projects onto

and that is either excitatory or inhibitory 

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

S(u)

u

this is not 
actually possible!



2 layer neural fields

inhibitory coupling is 
mediated by inhibitory 
interneurons that 

are excited by the excitatory 
layer

and in turn inhibit the inhibitory 
layer 
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excitatory ones have started firing. The delayed 
onset of inhibition means that an external stimu-
lus may produce an initial overshoot of excitation, 
which then decreases as it is balanced by rising inhi-
bition. This gives rise to a phasic-tonic response 
behavior in the excitatory neurons (although it is 
not the only cause of this pattern).

In the DF model, this connectivity and the 
resulting effects on the activation time course 
can be replicated by introducing separate layers 
for the excitatory and inhibitory subpopulations 
(Figure  3.13; see Box 3.5 for the formal descrip-
tion). The basic structure for the two-layer field is 
as follows:  The two layers, excitatory and inhibi-
tory, are defined over the same feature space and are 
both governed by differential equations similar to 
those used in one-layer DFs. In the version consid-
ered here, only the excitatory layer receives direct 
external input. Excitatory interactions are imple-
mented through connections of the excitatory layer 
onto itself, described by an interaction kernel (e.g., 
a Gaussian function). In addition, the excitatory 
layer also projects to and excites the inhibitory 
layer. These projections are topological; that is, a 
projection from any point along the feature space 
on the excitatory layer acts most strongly onto the 
same point in feature space on the inhibitory layer. 
The inhibitory layer, in turn, projects back to the 
excitatory layer in an inhibitory fashion (that is, it 
creates a negative input in that layer’s field equa-
tion). Within the inhibitory layer, there are typi-
cally no lateral interactions.

The projections between the two layers can be 
described by interaction kernels, just like the lateral 

interactions. Note that the effective spread of inhi-
bition is determined by properties of both the pro-
jection from the excitatory to the inhibitory layer 
and of the reverse projection. Let us assume, for 
instance, that all three projections in the two-layer 
field (from excitatory to excitatory, excitatory 
to inhibitory, and inhibitory to excitatory) are 
described by Gaussian kernels of the same width. 
Then the effective range of inhibition in the excit-
atory layer will be wider than the range of lateral 
excitation, because the inhibition is spread by two 
kernels instead of just one. In practice, the two-layer 
field is sometimes set up in such a way that the pro-
jection from the excitatory to the inhibitory field is 
purely local (point-to-point, without an interaction 
kernel). The kernel for the reverse projection is then 
made wider to produce the overall pattern of local 
excitation and surround inhibition. This is a simpli-
fication done to reduce the computational load and 
the number of parameters. It is not meant to ref lect 
any neurophysiological property of the inhibitory 
neurons or the neural connectivity pattern.

The two-layer field shows a delayed onset 
of inhibition according to the same mechanism 
described earlier for the biological neural system. 
In particular, if an external input is applied to the 
system, it drives the activation in the excitatory 
layer, while the inhibitory layer initially remains 
unchanged. When the activation of the excitatory 
layer reaches the threshold of the output function, 
the interactions start to come into effect. The lat-
eral interactions within the excitatory layer drive 
activation further up locally, and at the same time 
the activation of the inhibitory layer is increased. 
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FIGURE  3.13: Architecture of two-layer field. The excitatory layer (top) projects onto itself and onto the inhibitory 
layer (bottom; green arrows). The inhibitory layer projects back onto the excitatory layer (red arrow). All projections are 
spread out and smoothed by Gaussian interaction kernels.
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2 layer Amari fields

BOX 3.5  TWO-LAYER DYNAMIC FIELD

A two-layer field consists of an excitatory and an inhibitory activation distribution over the 
same feature space x, each governed by a differential equation. We designate the activation 
variable for the excitatory layer with the letter u, the one for the inhibitory with v. The basic 
structure for the two-layer field contains three projections: an excitatory projection from layer 
u to itself, a second excitatory projection from layer u  to layer v, and an inhibitory projection 
back from layer u to layer u. Each of them is specified by an interaction kernel k that describes 
the connection weight as a function of distance in feature space. The three kernel functions are 
kuu, kvu, and kuv. Here, the first letter in the index always designates the target of the projection; 
the second, its origin. The field equations are then:

τu u uu uvu x t u x t h s x t k x x g u x t dx k x! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) − −′ ′ ′∫ ∫ ′′ ′ ′( ) ( )( )x g v x t dx,

τv v vuv x t v x t h k x x g u x t dx! , , ,( ) = − ( ) + + −( ) ( )( )′ ′ ′∫
The output function g is again a sigmoid (logistic) function as in the one-layer system. The 

interaction kernels are typically Gaussian functions of the form:
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The parameter cuu specifies the strength of the projection, the parameter σuu the width of 
the Gaussian kernel. The inhibitory kernel may include an additional constant term to produce 
global inhibition.

In this formulation, the effective width of inhibition is determined by both the kernels kuv 
and kvu. It is sometimes desirable to simplify this by omitting one of the kernels and using a 
simpler point-to-point connection for the projection from the layer u to layer v. This yields the 
dynamical system

τu u uu uvu x t u x t h s x t k x x g u x t dx k x! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) − −′ ′ ′∫ ∫ ′′ ′ ′( ) ( )( )x g v x t dx,

τv v vuv x t v x t h c g u x t! , , ,( ) = − ( ) + + ( )( )

If only global inhibition is required in a model, this architecture can be further simplified by 
replacing the continuous inhibitory layer by a single inhibitory node. This node receives input 
from the whole excitatory layer and projects homogeneous inhibition back to it:

τu u uu uvu x t u x t h s x t k x x g u x t dx c g v t! , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) −′ ′ ′∫ (( )( )

τv v vuv t v t h c g u x t! ( ) = − ( ) + + ( )( )∫ ,

Note that this formulation with a single inhibitory node shows a somewhat different behav-
ior than the form with a continuous layer and purely global inhibition: In a continuous layer, 
the total output can increase very gradually as an activation peak becomes wider. When only 
a single node is used, the total output is always the sigmoid of the single activation variable. 
It can be useful to choose a sigmoid function with a very shallow slope here to allow a more 
gradual increase of the inhibition.
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with projection kernels



simulation



Implications

the fact that inhibition 
arises only after excitation 
has been induced has 
observable consequences 
in the time course of 
decision making: 

initially input-dominated

early excitatory interaction 

late inhibitory interaction

_ +

+

excitatory
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excitatory
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[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



time course of selection 

early: input driven

intermediate: dominated by excitatory interaction

late: inhibitory interaction drives 
selection

[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



=> early fusion, late selection
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[figure: Wilimzig, Schneider, Schöner, Neural Networks, 2006]



fixation and selection
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2 layer fields afford oscillations

=> exercise

(oscillatory states for enhanced coupling 
among fields)

(generic nature of oscillations)



mathematical basis of 
oscillations: limit cycle attractors

Amari 77

36 GREGOR SCHÖNER

FIG. 5. (Top) A periodic evolution of an activation variable cannot be obtained as a solution of a
single-variable dynamical system, because most levels of activation (here the zero level) are crossed in
two different directions, so that the future is not uniquely determined by the present state of the activation
variable. (Bottom) A second variable, here called ‘‘inhibition,’’ is needed to disambiguate these two
events.

To see this, imagine a periodic time course of activation (Fig. 5). All levels of activa-
tion (except at the turning points) are then passed through in two directions, once at
increasing and once at decreasing activation. Thus, such activation values do not
uniquely specify the future. A second variable, here called ‘‘inhibition,’’ is needed,
to disambiguate the future: each activation level is passed through once at a smaller
and once at a larger level of this second variable. Thus, clocks cannot be built as
dynamical systems in terms of activation alone!
Stable periodic solutions, to which the system is attracted from nearby states are

called limit cycle attractors. An example of a dynamical system supporting limit
cycle attractors of an activation–inhibition pair of variables is

τu̇ ! "u # hu # wuu f (u) " wuv f (v) (6)

τv̇ ! "v # hv # wvu f (u), (7)

equations first analyzed by Amari (1977). The first two terms of each equation de-
scribe two linear uncoupled dynamical systems, each with a stable fixed point at the
resting levels of activation, hu, and of inhibition, hv. A sigmoid function,

f (u) !
1

1 # exp["βu]
, (8)

makes the system nonlinear in terms of ‘‘self-excitation’’ (wuu) and of coupling be-
tween activation and inhibition variables (wuv, wvu). For appropriate choices of these
parameters, a limit cycle attractor emerges (Fig. 6). The stability of the periodic solu-
tion manifests itself by attraction of neighboring states toward the limit cycle. The
activation-based stochastic timer model emerges as the limit case, in which the vector
field is structured such that a period of graded activation growth is followed by a
more rapid phase of activation decay (Fig. 6b). In fact, abstractly speaking, any clock
is a limit cycle attractor of a dynamical system (see, e.g., Andronov, Vitt, & Khaikin,
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linearize dynamics in each 
quadrant

compute fixed point

if it lies in same quadrant: 
fixed point attractor

if it lies in next quadrant: 
part of a limit cycle
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two-neuron simulator



Limit cycle oscillators

are source for stable, autonomously 
generated time structure in neural 
dynamics

used in movement generation

and coordination… 

“liquid state machines” or “echo-state 
networks” are an expansion of that idea 
(not very well defined mathematically) 



Active transient 

arises when the  
stable resting state is 
briefly pushed by 
input into the fourth 
quadrant: return on a 
temporally 
structured trajectory



active transient
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start active transient: blue => red
then fall back to blue 



self-stabilized state
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CoS 
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Transient detector 
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Change detection

three layer field => simulation 



Conclusion
by taking into account Dale’s law, reach 
much richer neural dynamics that includes

oscillations: time course generation

active transient: preserve oscillatory time structure in 
single-shot time course

switching an activated node of with a finite/well defined 
amount of time before switch is achieved: Condition of 
Satisfaction 

transient detection: make a single, well defined time 
course from a step change 

change detection 


