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Abstract—Intentionality is the capacity of mental states to
be about the world, both in its “action” (world-to-mind) and
its “perception” (mind-to-world) direction of fit. An intentional
agent must be able to perceive, act, memorize, and plan. These
psychological modes may be driven by desires and be informed by
beliefs. We have previously proposed a neural process account of
intentionality, in which intentional states are stabilized by inter-
actions within populations of neurons that represent perceptual
features and movement parameters. Instabilities in such neural
dynamics activated the conditions of satisfaction of intentional
states and induced sequences of intentional behavior. Here we
explore the idea that the process organization of such intentional
neural systems enables autonomous learning. We show how
beliefs may be learned from single experiences, may be activated
in new situations, and be used to guide behavior. Beliefs may also
be dis-activated when their predictions do not match experience,
leading to the learning of a new belief. We demonstrate the idea
in a simple scenario in which a simulated agent autonomously
explores an environment, directs action at objects and learns
simple contingencies in this environment to form beliefs. The
beliefs can be used to realize fixed desires of the agent.

Index Terms—autonomous agent, fast learning, learning be-
liefs, neural dynamics, neural cognitive architecture

I. INTRODUCTION

Although neurally inspired learning is increasingly used in
robotics and computer vision, such work rarely addresses fast
autonomous learning, that is, learning from experience as a
system behaves and steers its own perception. Humans learn
autonomously during lifelong development. They are able to
learn and generalize from single instances of an experience.
In fact, belief formation can be so fast as to be sometimes
counter-productive, leading to superstitious behavior (even in
pigeons [1]).

This ability to efficiently erect or derive beliefs about the
environment provides enormous cognitive power [2]. Neurally
inspired methods of learning are far from approximating
this form of single shot learning. Fast learning has been
demonstrated for object recognition based on exploiting prior
knowledge about the visual appearance of objects [3] or
on built-in knowledge about the transformations that enable
generalization [4]. Early in development, contingency learning
may be a way how infants break down the complexity of the
world, which supports their social skills [5]. Our framing of
belief acquisition approximates contingency learning.

We argue that neural models miss an important com-
ponent for autonomous learning: The process structure to
autonomously generate meaningful behavior and stable per-
ceptual representations and thus, to generate experience. That
process structure must support recognizing novelty, activating
learned representations, and learning. We propose that the
philosophical notion of intentionality, the capacity to generate
internal states that are about the world, helps uncover the req-
uisite process structure. The philosopher John Searle divides
intentional states into two classes: The mind-to world direction
of fit, which comprises “perceptual” states representing the
world, and the world-to-mind direction of fit, which comprises
“action” states representing desired world states [6].

We have previously analyzed the neural process require-
ments for intentional states of both directions of fit [7] (see
[8] for a different analysis). Our analysis was based on
Dynamic Field Theory (DFT) [9], a mathematical language
that describes the neural dynamics in networks of neural pop-
ulations. In particular, we exploited the notion that intentional
states are stable patterns of neural activation, which may
transition sequentially to other intentional states by inducing
dynamic instabilities through a neural representation of the
condition of satisfaction [10]. This mechanism gives neural
dynamic architectures the potential to autonomously generate
behavioral sequences (see [11] for a discussion of autonomy).

Our previous analysis led to a neural process account
for four basis level psychological modes of intentionality
(perception, memory, intention-in-action, and prior intention).
In this paper we argue, that a fast form of learning captures
the psychological mode of belief. We think of belief as a
form of memory formation that generalizes beyond the specific
instance by being categorical and propositional in nature. We
are able to construct propositional content in a neural dynamic
account again by organizing underlying processes through
the condition of satisfaction [12]. We model the autonomous
learning of beliefs which encompasses activation of existing
beliefs, rejection of activated beliefs, formation of new beliefs,
and integration of beliefs into the set of beliefs on which
behavior is based.

The account is framed within a rudimentary toy scenario in
which an agent is situated in a simple environment containing
solely “bucket” and “canvas” objects of different color. The



PREPRIN
T

©2019 IEEE

robotic agent explores the environment, moves towards objects
and directs an effector to them to either pick-up paint from
buckets or to dispense paint onto canvases, observing the re-
sulting color. A network of neural dynamic fields is connected
to the agent’s sensory-motor surfaces and enables the agent
to visually detect and select objects, build scene memories,
generate sequences of actions to paint particular objects to
achieve a particular color and ultimately to form and activate
beliefs about which paint applied to which canvas generates
which outcome.

II. DYNAMIC FIELD THEORY

Dynamic Field Theory (DFT) [9] is a theoretical framework
for understanding perception, motor behavior, and cognition
based on neural principles. In DFT the activity of neural
populations, tuned to metric dimensions, x, is modeled by
activation fields, u(x, t), described through the dynamics:

τ u̇(x, t) = −u(x, t)+h+s(x, t)+
∫
ω(x−x′)σ(u(x′, t))dx′.

The time-continuous evolution of neural activation, u(x), on
the time scale τ relaxes to the stable solution, h+s(x), defined
by the field’s resting level h and its localized inputs, s(x), if
the current activation u(x) is below the sigmoidal threshold
σ. Field locations with activation surpassing the threshold
level engage in lateral interaction defined by the field’s kernel,
ω(x − x′), which is excitatory locally, and inhibitory over
longer distances, x − x′. This leads to the emergence of
self-stabilized peaks of supra-threshold activation, which are
the unit of representation in DFT (see Figure 1). Supra-
threshold peaks arise as the sub-threshold state goes through
the detection instability.
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Fig. 1. A dynamic neural field spanned across the metric-dimension x
representing value x0 through a supra-threshold activation peak.

Depending on the individual parametrization of excitatory
and inhibitory interaction strength, fields operate in different
regimes. In the self-stabilized regime, supra-threshold peaks
are stabilized against input noise. In the selective regime,
lateral inhibition allows only a single peak at any point in
time. In the self-sustained regime, peaks are retained after
localized input is removed. Peaks in multi-dimensional fields
represent conjunctions of feature dimensions. For instance,
a peak in a two-dimensional field that spans across color
and position represents a particular color seen at a particular
position. Dynamic neural nodes are zero-dimensional fields
that represent categorical states.

A field, utar, receives input from another field, usrc, if
that field’s output, σ(usrc), adds to the target field’s rate
of change, u̇tar, weighted with a homogeneous projection
kernel ωtar,src. The source output might need to be contracted
or expanded to match the target field’s dimensionality [13].
Typically, contractions entail integrating over the excess di-
mension, while expansions provide input that is constant along
the excess dimensions (e.g., ridges, tubes, or slices). Concept
nodes are connected reciprocally to fields through a pattern
of connectivity that encodes the feature representation of the
concept. For instance, the concept node for “blue” is connected
to an appropriate range of hue values in a hue feature field.

A. Networks of field form architectures

Networks of dynamic neural fields that connect to the
sensory-motor surfaces of an agent define architecture from
which complex behavior may emerge through autonomous
transition between different stable macro states, each repre-
sented by peaks of supra-threshold activation. Boost nodes
provide homogeneous input to a target field, and may induce
such transitions by altering the dynamic regime of the target
field, so that peaks may form from sub-threshold localized
activation. Such boost nodes may effectively modulate the flow
of activation within an architecture by enabling or disabling
particular branches of the architecture to form peaks. Boost
nodes may thus act as “gates”, or also as “go” signals that
trigger an action by activating a sub-network.

Pairs of fields, an excitatory “intention” field and an in-
hibitory “condition of satisfaction” (CoS) field, control the
initiation and termination of actions or mental states [14] (see
Figure 2). The intention field represents the desired end state of
a particular action and activates a sub-network that ultimately
realizes the desired action. The intention field pre-activates
the CoS-field, in which a peak is formed when desired and
perceived state overlap sufficiently. A peak in the CoS-field
inhibits the intention field, destabilizing the peak there and
deactivating the associated sub-network, which terminates the
action. The CoS-field inhibits any precondition node that
prevented competing actions from becoming activated. This
unlocks the next step in a sequence.
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Fig. 2. Two consecutive elements of an action sequence each represented
through a pair of intention and CoS field.

Other than through the CoS mechanism, autonomous tran-
sitions between macro states may also be induced by neural
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representations of a “Condition of Dissatisfaction” (CoD)
which detect failed actions or invalid perceptual states.

III. MODEL/SCENARIO

We illustrate the autonomous formation, utilization, and
rejection of beliefs by a dynamic neural field architecture in
a toy scenario, in which a robotic agent performs a simple
painting task. The task requires the agent to collect paint from
buckets (elongated cuboids) and to apply the paint to coat
colored canvases (cubes) leading to a new resulting color of
the canvas cube. The agent learns the relationship between
the color of the paint, and the color of the canvas before
and after the coating is applied. This simple toy scenario
exemplifies semantic learning in a context that entails both
mind-to-world intentionality (from perception to memory)
and the world-to-mind intentionality (from prior-intentions to
executing intentions-in-action, see Figure 3 for a schematic
overview of the field architecture1.

A. Architecture Capabilities

The simulated world consists of an array of cuboids of
different height and color, which the robotic agent faces. The
robot may move sideways along the array and reach with its
arm towards objects in its current field of view to either collect
paint from a tall cube (bucket) or to apply a coat of paint to a
small cube (canvas). The architecture is capable of elementary
acts of perceptions and of intention in action, which together
enable the agent to perform the task. Perceptions may drive
memory formation and intentions in action may be performed
in sequences that realize prior intentions (see [7] for details).

1) Perceptions: Cuboids in the world, that are currently
perceived, are represented as peaks of activation in the retinal
space/color perception and retinal space/height perception
fields. Peaks in this fields are induced sequentially through a
mechanism of selective spatial attention (see [15] for details).
A transient detector allows the agent to detect changes in the
world (e.g. a sudden change of color of an object) and to
direct spatial attention to the location of change. In addition
to visual perception of the world, the agent perceives the
current Cartesian position of its arm’s end-effector, its own
body position along line of cubes, and whether its painting
tool contains a charge of paint.

All perceptions are represented as self-stabilized peaks
of activation that may be sustained as working memory in
absence of the inducing input in fields with strong excitatory
kernels.

2) Memories: Memories of cuboid positions and features
are stored as slowly decaying memory traces spanned across
two-dimensional space/feature space fields. Each visual per-
ception contributes to the build-up of a trace at the activated
location and decay of activation at other locations, leading to
memory that is subject to interference [16]. The memory trace
generates sub-threshold activation in a space/feature memory
field, which may receive additional inputs in the form of

1The full architecture containing all parameter values is available for
download under: https://www.ini.rub.de/the institute/people/jan-tekulve/

feature cues. Whenever feature cues overlap with the memory
trace, a peak emerges in the memory field, recalling the
memorized position and feature value of a cuboid.

3) Intentions in Action (IiA): Each action of the robot is
specified by a pair of intention and CoS-fields connected to
various sub-networks. Reaching and driving to a position are
realized by sub-networks simplified from [17], which generate
velocity profiles for either the joint angles of the arm or
the wheels of the vehicle. The simulated actions to collect
and apply pain manifest themselves through a change of the
fill status of the painting device. In addition to driving to a
specified position, the robot may also explore its environment
by moving in a one of the two directions along the line of
cuboids, until a previously unattended cuboid is detected. The
latter three intentions in action are categorical in nature and
are represented by neural nodes.

The actions “visual search”, “recall”, and “activate belief”
do not directly induce motor actions, but are aimed at par-
ticular perceptual, memory or belief states in which a given
feature cue matches visual information, memory, or a learned
belief.

4) Prior Intentions: Sequences of actions (or rather, of the
entailed intentions in action (IiAs) are represented by intention
fields that project excitatory onto all component IiA-fields and
onto precondition nodes between them, that implicitly impose
a serial order of activation. The IiA that is not inhibited by a
precondition node is activated first.

To coat a particular cube with a particular paint, the agent
must first collect paint of the specified color from a bucket
(tall cuboid) and then apply the paint to a canvas (small cube).
Both actions comprise a sequence of actions: Collecting paint
comprises locating a tall cuboid, reaching for it, and picking-
up the paint. Applying a coat of paint comprises locating the
small cube, reaching for it, and dispensing the paint. Locating
a cuboid of particular height and color entails the sequence
of recalling the cuboid’s location, driving to the location, and
visually searching for the cuboid within the visual array after
reaching the location.

Sequences may also entail alternative action plans, that may
be activated once a particular action terminates in failure. This
is mediated by activation of its “condition of dissatisfaction”
(CoD). For instance, activation of the CoD node of “recall”
or “visual search” destabilizes the precondition node of the
“explore” intention, which will then activate and move the
robot to a new position.

What kinds of paint buckets and canvases are actually
sought is determined by the architecture’s state of its goals
and belief representation.

B. Belief Model

Beliefs differ from memories in that they are combinations
of activated concepts rather then perceptual or motor experi-
ences, that would be directly expressed in metric feature spaces
such as space, color or height. Any individual belief activates
a subset of concepts, but not necessarily the associated feature
values. How is such set of concepts formed into a belief
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Fig. 3. Schematic overview of the dynamic fields and nodes representing the agent’s intentional states grouped according to their psychological modes. For
clarity’s sake, we show only the most relevant connections to the belief sub-network, which is depicted in more detail in Figure 4.

and how may an individual belief become activated based
on matches of its concepts? In Figure 4, we illustrate a
neural-dynamic architecture that is inspired by Carpenter’s
and Grossberg’s Adaptive Resonance Theory (ART) [18] and
associates a triple of color concepts (paint, canvas and post-
coating canvas) represented by concept nodes with a neural
node representing a belief. During the execution of a painting
action, a concept node for each role (coat, canvas, result)
activates autonomously. At the end of the painting sequence,
a belief node becomes connected to these nodes through a
reward-modulated Hebbian learning rule. Formed beliefs may
become activated to paint a particular canvas with a particular
paint or to achieve a particular result. They may become
deactivated if they do not correctly predict the observed
outcome. We step through the belief system illustrated in
Figure 4 from bottom up.

1) Belief Formation: The belief learning sub-network
is coupled to the rest of the architecture through three
working memory color role fields, urole, where role ∈
{coat, canvas, result}. The role fields are connected to the
color perception field each via a different gating field that
becomes activated when pick-up, dispense, and color change
detection nodes are on, respectively. In each case, a single peak
is formed in a role field that reflects the used or experienced
colors during the painting process.

The role fields are reciprocally connected to color-
concept nodes, urolecolor, that discretize the continuous
hue-space in a simple form of abstraction (color ∈
{yellow, green, orange, cyan,blue,purple,pink, red}, and

role as above) and are governed by this neural dynamics

τ u̇rolecolor =− urolecolor + hcon +
∑
i

lrolei,color σ(bi)

+ wrcl σ(urcl) +

∫
wcolor(x) σ(urole(x))dx.

(1)

Here, wrcl σ(urcl) describes the resting level boost during
recall, wcolor(x) the connection pattern that describes the
particular color representation in the role field, urole(x), and
lrolei,color the learned connection strength to a belief node bi.
Incoming connection strengths and resting level, hcon, are set-
up such that a concept node may either be activated through a
peak in the role field, urole, or the combination of and activated
recall boost, urcl, and activated associated belief, bi.

Each belief node, bi, is connected to all concept nodes via
the plastic connections, lrolei,color, initialized to zero. Belief nodes
follows the dynamics:

τ ḃi =− bi + hb + wbσ(bi) + wcomσ(ucom)− wcσ(ci)

− winh

∑
j 6=i

σ(bj)− wcodσ(ucod)

+
∑
role

∑
k

[
lrolei,k σ(u

role
k )− wincσ(u

role
k )

] (2)

where wb describes the self-excitation, winh the inhibitory
connections from other belief nodes, wcom the input from the
commit node, wc the inhibition from the corresponding com-
mit state node, ci, and wcod the inhibition from the condition
of dissatisfaction node. The connection pattern between the
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Fig. 4. The sub-network responsible for belief formation, activation and rejection.

concept nodes and the belief nodes is set up such that supra-
threshold activation in any of the concept nodes, urolek , leads
to an inhibition in all belief nodes with fixed strength, winc.
Any node, bi, that has already learned a connection, lrolei,k 6= 0,
receives excitatory input that cancels out the inhibitory effect,
winc, of that concept node. Thus, when n concept nodes are
active, only a belief node that matches all n concepts can
become activated.

An change of color in the scene leads to activation of the
change detection node, ucha. If a belief node, bi, is active
at the same time, then the node, ubac (belief activated), is
pushed through the detection instability and a transient reward
signal, r(t), is generated (see [19] for the details of that). This
strengthens the connections, lrolei,k , according to the following
reward based Hebbian learning rule:

l̇rolei,k = −η r(t) σ(bi) (lrolei,k − σ(urolek )) (3)

where the learning rate, η, is sufficient to learn a perceived
rule in a single presentation (one-shot learning) (see [20] for
a review of neural dynamic learning rules). The stability of the
learned state, lrolei,k = σ(urolek ), makes that later presentations
of the same belief cause little to no weight change.

If no belief node is active at the time at which a color
change is detected, then the current set of concepts nodes has
not previously been learned. The processes of selecting a new
belief to learning this belief is then initiated by activation of

the commit, ucom, and the boost committed, ubst, nodes, both
activated through ucha. The commit node, ucom, boosts all
belief nodes. Lateral inhibition among belief nodes result in
the activation of a single belief node for that purpose. Only
previously uncommitted belief nodes may join the competi-
tion.

This is implemented by the commit state nodes, ci, rep-
resenting commitment of the belief node, bi, to a concept
configuration. The boost committed node ubst activates all
commit state nodes, ci, with non-zero weights. This happens
before the belief nodes, because the dynamics of ubst evolves
on a faster timescale than the dynamics of ucom. The outgoing
inhibition of bi from ci is strong enough to prevent activation
of bi when bi is below threshold. If bi is already active,
however, inhibition from ci does not induce a reverse detection
instability, and does not, therefore, deactivate bi. The commit
state nodes, ci, are governed by the following dynamics:

τ ċi =− ci + hc + wbσ(bi) + wbstσ(ubst) + li,cσ(upai), (4)

where the resting level, hc, is set up such that at least bi or
the combination of ubst and upai need to be active to push ci
through the detection instability.

Commitment is encoded in plastic connections, li,c, from
the paint task node, upai, to each of the ci nodes based on a
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similar reward-modulated Hebbian rule as in Eq. 3:

l̇i,c = −η r(t) σ(upai) (li,c − σ(ci)). (5)

2) Belief Activation: The learned reciprocal connections
between concept and belief nodes allow for the activation of
beliefs through a (partial) concept node cue. For example, if
input from a desire node activates a particular result color con-
cept node, uresultk0

, this inhibits all belief nodes through winc,
and simultaneously excites all nodes, bi, with a previously
learned connection to that result color concept, lresulti,k0

6= 0.
Of these, only one becomes activated due to lateral inhibition
among beliefs. A homogeneous boost, urcl, across all concepts
leads to activation of coat and canvas concept nodes defined
through the connections, lcoati,k1

and lcanvasi,k2
, of the activated

belief. Activation of these concept nodes leads to the formation
of self-sustained working memory peaks in the role fields,
which are projected onto the intention fields of “collect” and
“apply”.

3) Belief Rejection: If environmental conditions change,
beliefs might become outdated and an update of an already
established belief might be necessary. In the toy scenario, this
may be because a color mixing rule changes such that coat
color, a, and canvas color, b, which previously resulted in
color, c, now result in color, d, instead. A belief update would
occur if the agent tried to produce color, c, based on the belief
a, b, c, but instead observed color, d.

During the execution of the paint sequence, the color role
fields contain peaks at the locations a, b, and c based on
the active belief. Once a color change is detected through
the transient-detector, the observed new color, d, leads to the
formation of a new peak of activation in the result role field,
which will override the old representation of c due to strong
lateral inhibition. The activation pattern change in the role
field is detected through a transient detector that activates
the CoD node, ucod, which inhibits all beliefs via wcod (see
[21] for details on the transient detector). This leads to the
destabilization of the active belief and the activation of a new
uncommitted belief node if no previously committed belief
matches the newly, active concept node pattern. Once a belief
is activated, the reward signal is generated and attributes the
new pattern to the active belief node.

IV. RESULTS

We demonstrate how activation of the belief sub-network
develops over time during belief formation, belief activation,
and belief rejection.

A. Belief Formation

Figure 5 depicts an activation time course of the belief sub-
network during the final portion of a painting sequence.

At the point, t0, in time, purple color has already been
collected from a tall, purple cuboid, and that caused the
formation of a working memory peak in the coat color role
field. This leads to activation of the previously learned belief,
B1 (Coat:Purple, Canvas:Purple, Result:Yellow) that matches
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Fig. 5. Activation time course of selected nodes during the formation of a
new belief. The first row displays activation of ubst, ucom, and ubac, while
the second and third rows display the activation of five selected belief nodes,
bi, and their commit state nodes, ci. The bottom half of the figure shows
activation snapshots of the role fields at three different points in time.

the coat color. The corresponding commit node, C1, is also
activated.

Once the agent begins dispensing paint onto the blue cube
at point, t1, a working memory peak emerges in the canvas
color role field. The blue canvas color representation causes a
destabilization of the non-matching belief, B1, which will in
turn deactivate C1 and lower the activation level of the belief
activated node, ubac.

At point, t2, the cube changes its color from blue to yellow
leading to an activation of the color change node, ucha, that
boosts three nodes: “boost committed”, ubst, “commit”, ucom,
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and “belief activated” ubac. The observed changed color forms
a peak in the the result color role field, which excites matching
beliefs, such as B1. No belief matches all three color roles,
however. Activation of ubst activates the commit nodes of all
previously committed beliefs lowering their activation level.

Once the slower ucom passes the detection threshold at
t3, all beliefs receive a boost, which activates the previously
uncommitted belief, B4. This activates ubac, and generates
a transient reward signal that connects the represented color
roles with the belief, B4. The weights of B1 and B4 after t3
are depicted in Figure 6.

0
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yellow blue purple yellow blue purple yellow blue purple

Coat Canvas Result

Fig. 6. Connections lrolei,k of B1 and B4 after the learning episode depicted
in Figure 5.

B. Belief Activation

The learned connections are utilized in belief recall, ac-
tivating beliefs that match a role cue. In Figure 7, a peak
representing yellow has emerged in the result color role field
due to the agent’s desire to paint a yellow cube. This leads to
an increase in activation for all beliefs that match the yellow
result color (B1 and B4) and a decrease for all non-matching
beliefs. Belief, B1, passes the activation threshold first by
chance, leading to inhibition of all other belief nodes and
activation of the connected concept nodes. This causes the
emergence of peaks in the connected coat and canvas role
fields, which guide the subsequent painting sequence.

C. Belief Rejection

Once a belief has been activated by recall, it may be acted
upon during the painting task. In Figure 8, the evolution of
activation of different belief nodes is shown, while the agent
acts upon belief, B2, which should result in a blue-colored
cuboid. However, the properties of the simulated world were
changed such that the combination of coat and canvas color
used in B2 will now result in the color cyan.

At point t0, the agent is engaging in the dispense color
action while belief, B2, has been recalled and is active, which
leads to the formation of a peak representing the anticipated
result color “blue”. At t1, the change to a cyan color occurs in
the scene and the observed change color is projected into the
result color role field. Due to the stronger connection strength
from the perceptual fields and selective inhibitory coupling,
the peak at the cyan position destabilizes the blue peak. The
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Fig. 7. Recall of a belief with a yellow result color. The learned connections
are the same as shown in Figure 6
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Fig. 8. Belief rejection: Belief, B2, predicts result color “blue”, but instead
“cyan” was observed. The detected change in the result field leads to the
deactivation of B2, and the eventual commitment of B5.

color change in the result field is detected by the CoD transient
detector, which, in turn, inhibits all beliefs for a brief period
of time, counteracting the excitatory boost from the commit
node, ucom.

Once inhibition from the CoD vanishes at point, t2, the
activation boost from ucom is strong enough to activate the
previously uncommitted belief, B5, which can then be asso-
ciated with the new color mixing rule.

V. DISCUSSION

We have presented a network of neural dynamic fields that
endows a robotic agent with the capability to form, activate,
and reject beliefs in a simulated task environment. During
belief learning, activated concept nodes become associated
with a neural-dynamic belief node through a reward-modulated
Hebbian learning rule. Activating beliefs is achieved by a
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neural match operation that is similar to the resonance prin-
ciple of ART [18], combining the learned reciprocal con-
nections with homogeneous global inhibition. Because the
learned associations reside at the level of concepts, they
afford generalization of the learned contingencies to slightly
different environments. The rejection of a candidate belief
occurs autonomously through the neural representation of
a condition of dissatisfaction (CoD). That representation is
triggered when a mismatch between perceived and predicted
sensory representations of concepts is detected. The CoD
inhibits the candidate belief and thus frees neural support for
an alternative belief from inhibition which then proceeds to
learn the new belief.

The neural-dynamic belief system is embedded in a larger
network of neural dynamic fields that controls a robotic agent.
That network generates stable representations of intentional
states of four elementary psychological modes (perception,
memory, intention-in-action, and prior intention). Transitions
between intentional states occur through instabilities induced
by the neural CoS or CoD representations. It is from such
transitions between different intentional states that the agent’s
behavior emerges. The stable representation of actions and per-
ceptions support working memory that provides an interface to
the belief network. Using beliefs in action and learning beliefs
both are insensitive to the duration of a behavioral episode,
providing robustness.

The complete architecture was demonstrated in a simple
toy scenario, in which an agent explores different color mix-
ing combinations, acquires beliefs about color mixing rules,
activates these beliefs to achieve desired resulting colors, and
rejects beliefs if the resulting color do not match prediction.
The scenario was minimalistic to promote conceptual clarity,
the “concepts” certainly being trivial, their power of general-
ization unimpressive, and the possible actions being trivialized.
Quantitative evaluation of the learning process may not be
worthwhile at this stage.

Our emphasis was primarily to demonstrate that appropriate
process infrastructure enables fast and robust belief learning.
It is plausible that neural infrastructure of this kind exists. For
instance, a model of cortical and basal-ganglionic processes for
learning serially ordered behaviors has similar prior structure
[22]. Schrodt and Butz [23] have explored rule learning in a
scenario similar to ours and argue for its neural plausibility.
We believe that the problem of autonomously learning beliefs,
rules, or contingencies from experience is best framed as
the problem of how the underlying architectures of neural
processes are structured (rather than as a problem of finding
special learning rules).

Apart from the obvious scaling question, there are many
fronts on which we would like to see this work expanded. An
important one is to address more complex desires, perhaps
even abstract ones like the desire to learn new things about
the world [24].
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