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How the tutorial works

mix of video and life Zoom talks

my two longer tutorials are life, all other talks are videos 

discussions are life, audio/video encouraged

you can also submit questions in the chat 
dialogue, will be addressed in discussions 

useful during video lectures as speakers can read 
questions ahead of time 

tutorials vs. case studies



Program

9:00/15:00 Gregor Schöner Tutorial: 
Foundational concepts of DFT [40 life+15 disc]

10:10/16:00 Sophie Aerdker Case study: A 
DFT model of motor habituation [20 video+5]

10:30/16:30 Gregor Schöner Tutorial: 
Advanced concepts of DFT [40 life+15]

11:30/17:30 Mathis Richter Tutorial: 
Introduction to cedar [25 video+5]

12:00/18:00 Lunch/Dinner break [30 free]



Program
12:30/18:30 Jan Tekülve Tutorial: Sequence 
generation [30 video+10]

1:15/19:15 Raul Grieben Case study:  Visual 
search and scene memory [20 video+5]

1:45/19:45 Mathis Richter Tutorial: Grounding in 
DFT [30 video+10]

2:30/20:30 Aaron Buss Tutorial: Cognitive 
control [40 video+15]

3:30/21:30 Discussion and outlook [10 disc]

3:40/21:40 End



Foundational Concepts 
of DFT

Gregor Schöner
gregor.schoener@ini.rub.de
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What DFT is about… how 
cognition emerges from 

sensory-motor processes



attention/gaze

active perception/working 
memory

action plans/decisions/ 
sequences

goal orientation

motor control 

background knowledge

learning from experience

There is much cognition in real action



=> implied properties of the 
underlying neural processes 

graded state 

continuous time 

continuous/intermittent 
link to the sensory and 
motor surfaces 

from which discrete events 
and categorical behavior 
emerge

in closed loop

=> states must be stable



Embodiment hypothesis

cognition inherits the 
properties of embodied 
cognition

stability, internal closed 
loops => dynamics.. neural 
dynamics 

NOT: cognition necessarily 
involves movement 

this workshop: explore 
neural dynamic principles in 
higher cognition 



=embodied nervous systems 
with: 

effectors

sensors

a nervous system

a body

+ situated in a structured 
environment

=> behavior emerges

Braitenberg vehicles

source

sensory
system

body

nervous
system

motor
system

structured
environment



Emergent behavior: taxis

source structured
environment

intensity

activation

wheel
motion

activation

sensory
system

body

nervous
system

motor
system

intensity



heading
direction

turning rate
of vehicle

attractor

Behavior emerges 
from the attractor of 
a dynamical system
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model of 
environment 

heading
direction

heading
direction

differences in 
intensity
left-right

intensity

heading
direction

heading
direction

differences in 
intensity
left-right

intensity

heading
direction

turning rate
of vehicle

differences in 
intensity
left-right

source

differences in 
turning rate 
left-right wheel



source

intensity

activation

wheel
motion

activation

intensity

intensity

wheel
motion



intensity

wheel
motion

intensity

wheel
motion

differences in 
intensity
left-right

differences in 
turning rate 
left-right wheel

ωl = ω0 − cIl ωr = ω0 − cIr

Δω = − cΔI



heading
direction

differences in 
intensity
left-right

differences in 
intensity
left-right

differences in 
turning rate 
left-right wheel

heading
direction

turning rate
of vehicle

source

proof]



feedforward nervous system

+ closed loop through 
environment

=> (behavioral) dynamics

heading
direction

turning rate
of vehicle

attractor



two sources

mono-modal distribution

=> monostable dynamics

intensity

heading
direction

turning rate
of vehicle

source1 source2

source2source1

heading
direction



two sources

bimodal distribution 

=> bistable dynamics 

=> selection decision

intensity

heading
direction

turning rate
of vehicle

source1 source2

source2source1

heading
direction



intensity

heading
direction

turning rate
of vehicle

source1 source2

source2source1
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heading 
direction, φ

distance between sources

attractor

attractor

attractor repellor

capacity to make selection decisions = qualitative 
change of behavior 

=> emerges from an instability



“overt” decision stored in the 
vehicle’s physical state

intensity

heading
direction

turning rate
of vehicle

source1 source2

source2source1

heading
direction



“covert” decision?  

=>“store” the state of that 
decision in an inner=neural 
state

source1 source2



=> neural dynamics

neural state: 
activation

activation dynamics

competition/
inhibition=> selection

source1 source2

u1

du1/dt

u2

du2/dt



neural fields

neural activation field 
represents the 
continuum of possible 
orientations

source1

dimension

activation

source2

orientation



neural dynamic 
architecture 
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Neural activation in the 
connectionist abstraction

activation state (membrane 
potential or spiking rate) 

summing inputs and 
generating output through a 
sigmoidal threshold function 

output = g (∑ (inputs))

inputs

output 

 Neural Dynamics 11

is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a 
set of changes in the input pattern do not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 

s1

u1

s3s2

g(u6)

u2 u3

u4 u5

u6

FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3, are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.

s1 s3s2

g(u6)

u1 u2 u3

u4 u5

u6

FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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Neural fields

neurons represent 
perceptual dimensions by 
virtue of the forward 
connectivity from the 
sensory surface

e.g., feature maps…

the discrete sampling by 
neurons does not 
matter: activation fields

activation
field

dimension

input from the
sensory surface

dimension



Neural fields

neural fields represent 
motor dimensions by 
virtue of their output 
connectivity to motor 
surfaces… => behavioral 
dynamics

e.g., through peripheral reflex 
loops

motor 
dimension, r

activation
field, u(r)

motor
state, r

dr/dt



Peaks of activation may represent
perceptual objects

activation

motion directionhorizontalposition
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Peaks of activation may represent
motor plans

movement
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Neural fields: Distributions 
of population activation

primary visual cortex

the potentially high-dimensional space of visual stimulus at-
tributes. The second step consisted of projecting the neural re-
sponses to “composite” stimuli assembled from two squares of
light at varied separations (Fig. 1B) onto this subspace by ana-
lyzing DPAs weighted with the responses to composite stimuli.
Distance-dependent deviations of the DPAs from the superposi-
tion of the corresponding elementary components reveal insight
into interaction processes within the representation of retinal
location at the population level. Such interaction may arise from
recurrent connectivity within the cortical area as well as from
recurrence within the network providing the sensory input. A
neural field model explicates how such mechanisms contribute to
the evolution of cortical activation within ensembles of neurons.

MATERIALS AND METHODS
Experimental setup
Animals and preparation. Electrophysiological recordings from a total of
178 cells were made extracellularly in the foveal representation of area 17
in 20 adult cats of both sexes. Animals were initially anesthetized with
Ketanest (15 mg/kg body weight, i.m.; Parke-Davis, Courbevoie, France)
and Rompun (1 mg/kg, i.m.; Bayer, Wuppertal, Germany). Additionally,
atropin (0.1 mg/kg, s.c.; Braun) was given. After intubation with an
endotracheal tube, animals were fixated in a stereotactic frame. During
surgery and recording, anesthesia was maintained by artificial respiration
with a mixture of 75% N2O and 25% O2 and by application of sodium
pentobarbital (Nembutal, 3 mg ! kg !1 ! hr !1, i.v.; Ceva). Treatment of all
animals was within the regulations of the National Institution of Health
Guide and Care for Use of Laboratory Animals (1987). Animals were
paralyzed by continuous infusions of gallamine triethiodide (2 mg/kg, i.v.
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Figure 1. A, Schematic illustration of the elementary stimuli (squares of light, 0.4 " 0.4°) presented at seven horizontally shifted positions within the
foveal representation of the visual field. B, Composite stimuli were assembled from combinations of the elementary stimuli and were presented at six
different separation distances of 0.4–2.4°. The left stimulus component was kept at a fixed nasal position. C, I llustration of the noncentered field
approach. Stimuli, indicated by the small gray square, were presented independent of the locations of the RFs of the measured neurons (schematically
illustrated by gray ellipses). The frame with the cross-hair illustrates the analyzed portion of the visual space (2.8 " 2.0). D–F, I llustration of the Gaussian
interpolation method to construct the DPA. D1, The grid of stimuli used (36 circles, each 0.64° in diameter) to measure the RF profile of each neuron
was centered on the hand-plotted RF (response plane technique). D2, The RF profile constructed from responses to this stimulus grid was smoothed (D3)
with a Gaussian filter (width, 0.64°). The RF center was determined as the location of the centroid of this smoothed RF profile. D4, The contribution
of each cell to the population representations was always centered on this location and was weighted with the current firing rate of the neuron, illustrated
as vertical bars of varying length. This weighting factor was normalized to the maximal firing rate of each neuron. E, The DPA was obtained by Gaussian
interpolation (width, 0.6°) of the weighted firing rates and by a subsequent convolution with an unweighted Gaussian (width, 0.64°). F, View of the
distribution of population activation using gray levels to indicate activation. The location of the stimulus is indicated by the small square outlined in black
together with the stimulus frame. In a second approach, one-dimensional DPAs were derived by means of an OLE; see Materials and Methods and
Figure 2C.
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Ûij
sup!sk , t" ! Ûi !sk , t" " Ûj !sk , t" (7)

of the time-resolved DPAs for two elementary stimuli si and sj with the
time-resolved DPAs of composite stimuli

Ûij
meas!sk , t" ! !

n#1

N

cn!sk" fn!si , sj , t". (8)

Ûij
meas (sk , t) is the extrapolated DPA that is based on replacing the rate

fn(si) in Equation 2 by the firing rates fn(si , sj , t) that are observed in
response to the corresponding composite stimulus.

RESULTS
Experimental results
Distributions of population activation of elementary stimuli
We constructed DPAs in response to a set of small squares of light
that only differ in their position along a virtual horizontal line and
that we termed elementary stimuli. The DPAs were defined in
visual space and were based on single cell responses from 178
neurons recorded in the foveal representation of cat area 17. To
obtain DPAs, we made use of two different approaches: (1) in a
two-dimensional Gaussian interpolation procedure, the RF cen-

ters were weighted with the normalized firing rate of each neuron
(Fig. 1D–F). Corresponding to the average RF profile of all
neurons recorded (compare Fig. 2A), the width of the Gaussian
was chosen uniformly to 0.6°; and (2) in addition, based on the
assumption that the representation of visual location can be
considered as a function of activation in parameter space, we
minimized the error for reconstructing one-dimensional distribu-
tions using the OLE procedure. This method is optimal in the
sense that it extracts the available information from the firing
rates under the condition of a least square fit.

As a reference, we calculated DPAs in the time interval be-
tween 40 and 65 msec after stimulus onset corresponding to the
peak responses in the PSTHs. Both approaches yielded equiva-
lent results. The DPAs were monomodal and centered onto each
respective visual field position. For each stimulus, Figure 2B
depicts the two-dimensional DPAs of all seven elementary stimuli
constructed by Gaussian interpolation. Figure 2C shows the OLE-
derived one-dimensional DPAs. The spatial arrangement of ac-
tivity within these distributions implies that neurons in primary
visual cortex contribute as an ensemble to the representation of

C

position [deg]

a
c
ti
v
ia

ti
o
n

3.84˚

A

40 - 65 ms
40 - 65 ms

0.4˚

B

Figure 2. A, Average RF, corresponding to the tuning for location, of all 178 recorded neurons. Based on the peak responses in the PSTHs (40–65 msec
after stimulus onset) each RF profile was smoothed by convolution with a Gaussian in two dimensions (width, 0.64°). RF centers were derived by
calculating the centroid of each profile (compare Fig. 1D3). For summation, the smoothed profiles were added with respect to their RF centers. The SD
was 0.6° (calculated for that part of the resulting average RF profile, which exceeded half of the maximal amplitude). This value of average RF width
matches the typical RF sizes found in area 17 of the cat (Orban, 1984). The vertical arrow indicates the spatial extension in terms of visual field
coordinates. B, Population representations of the elementary stimuli computed as two-dimensional DPAs over visual space after Gaussian interpolation
(compare Fig. 1). The construction was based on the activity of 178 neurons. DPAs were computed in the time interval between 40 and 65 msec after
stimulus onset corresponding to the peak responses in the PSTHs. The activation level is shown in a color scale normalized to maximal activation
separately for each stimulus (calibration bar at bottom right). Red indicates high levels of activation. The frame outlined in white depicts the area of the
visual field investigated as described in Figure 1C. In addition, the stimulus is shown as a square outlined in white. Note that for each stimulus the focal
zone of activation is approximately centered on the stimulus location. C, DPAs derived by means of an OLE for all seven elementary stimuli used. DPAs
were assumed as Gaussian profiles centered on each respective stimulus position. As in the interpolation procedure, neural activity was integrated
between 40 and 65 msec after stimulus onset. The width of the estimated Gaussian was chosen 0.6° to match the average RF width (tuning curve) of all
neurons measured (compare Fig. 2A). The maxima of the OLE-derived distributions were aligned accurately on the position of each stimulus.
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visual field location, although the RF of each neuron might be
broadly tuned to stimulus location.

For extrapolation, DPAs were obtained by replacing the neural
activity observed in other time intervals or in response to com-
posite stimuli.

Temporal evolution of the DPAs of elementary stimuli
The main emphasis of this study was to explore cortical interac-
tion processes. It appears conceivable that such processes can be
traced during the entire temporal structure of neuron responses
because of differences of time constants of excitatory and inhib-
itory contributions (Bringuier et al., 1999) and because of time-
delayed feedback (Dinse et al., 1990). Accordingly, as an impor-
tant prerequisite, time-resolved DPAs were constructed for a
number of subsequent time intervals after stimulus onset using
the firing rates within each time slice as weights. Figures 3 and 4

illustrate the temporal evolution of the DPAs from 30 to 80 msec
after stimulus onset for two selected elementary stimuli. There is
a remarkable spatial coherence of activity within the ensemble.
The gradual build-up and decay of activation were quite uniform
across the distributions of all elementary stimuli.

On average, the DPAs constructed by Gaussian interpolation
reached maximal level of activation 54 ! 4 msec after stimulus
onset as compared to 53 ! 5 msec for the OLE-derived DPAs
(see Fig. 9B). To quantitatively assess the accuracy with which the
DPAs represent the location of the elementary stimuli position
during the entire time course of responses analyzed (30–80
msec), we compared the position of the maximum of each DPA to
the respective stimulus position. Figure 5 plots these constructed
positions against the real stimulus positions. Results from both
reconstruction methods revealed that the DPAs represent stimu-

30 - 40 ms 40 - 50 ms 50 - 60 ms 60 - 70 ms 70 - 80 ms

0.4˚

Figure 3. Two-dimensional DPAs of adjacent elementary stimuli (top and bottom) derived by Gaussian interpolation. The DPAs were obtained for
consecutive intervals of 10 msec duration covering the period from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2 B. Each example
was normalized separately. As for the OLE-derived DPAs (compare Fig. 4), the distributions grow and decay gradually, and their maximum is always
located near the position of the stimulus. Although the two stimuli are at neighboring locations, differences of the spatial representations are apparent
throughout the time course of the response. For all elementary stimuli, the average latency of maximal activation was 54 ! 4 msec.
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Figure 4. The temporal evolution of two OLE-derived DPAs of the same elementary stimuli (A, B, vertical lines indicate position) as shown in Figure
3. The DPAs are depicted in 10 msec time intervals covering the period from 30 to 80 msec. The distributions grow and decay, gradually reaching
maximum activity at 53 ! 5 msec (average of all seven elementary stimuli) after stimulus onset. The position of the maximum of each distribution closely
approximates the stimulus position of the elementary stimulus throughout the time course of the neural population response, yet less accurately in the
late time epoch.
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Neural fields: Distributions 
of population activation

motor cortex
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Autonomous generation of activation

activation that arises or persists 
in the absence of input

e.g. during movement generation

e.g. in working memory 

e.g. in sequences generation 

=> requires (strong) recurrence

=> implies time 

output(t)

input(t)

output(t+1) 



Neural dynamics

time is not discrete (spiking is 
asynchronous) 

=> neural dynamics… of the 
activation state, u

“-u” term inherited from 
membrane dynamics: source of 
stability

·u(t) = − u(t) + h + input(t) + g(u(t))

u 

du/dt 

resting
level, h

input strength



Neural dynamics of fields
Localized peaks of 
activation as stable states 

from regular pattern of 
within-field 
connectivity=interaction

local excitation/global 
inhibition stabilize peaks

peaks arise/disappear in 
dynamic instabilities

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

S(u)

u

τ ·u(x, t) = − u(x, t) + h + s(x, t)

σ(u)

u

x�x�

�(x�x�)

+∫ dx′ w(x − x′ ) g(u(x′ , t))



=> Dynamic 
Field Theory

dynamicfieldtheory.org

http://dynamicfieldtheory.org
http://dynamicfieldtheory.org


Attractors and their instabilities

input driven solution 
(sub-threshold) 

self-stabilized solution 
(peak, supra-threshold)

selection / selection 
instability 

working memory / 
memory instability 

boost-driven detection 
instability

detection 
instability

reverse
detection 
instability

Noise is critical
near instabilities



Learning in DFT

Learning is change of behavior based on 
experience 

experience is driven by activation patterns 

behavior is generated by neural dynamics

=> Learning is change of the neural 
dynamics driven by activation patterns



Sensitization and habituation

simplest non-associative learning in simple 
stimulus-induced responses 

sensitization: experience lowers the threshold for 
eliciting a behavior

habituation: experience increases the threshold for 
eliciting a behavior 

=> Sophie Aerdker’s case study



The memory trace

facilitatory trace of 
patterns of activation

in excitatory field: leads to 
sensitization 

in inhibitory field: leads to 
habituation

dimension, x

activation, u(x)

dimension, x

memory 
trace, umem(x)



The memory trace

dimension, x

activation, u(x)

dimension, x

memory 
trace, umem(x)

τ ·u(x, t) = − u(x, t) + h + s(x, t) + ∫ dx′ w(x − x′ ) g(u(x′ , t)) + umem

τmem
·umem(x, t) = − umem(x, t) + g(u(x, t))

τmem
·umem(x, t) = 0

if there is no supra-
threshold activation 
anywhere in the field



=> the memory trace reflects the 
history of detection decisions
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Memory trace ~ 
first-order Hebbian learning

increases local resting level 
at activated locations

~ the bias input in NN 

boost-driven detection 
instability amplifies small 
bias => important role in 
DFT

dimension, x

activation, u(x)



Regular (second-order) Hebbian learning

projections among fields 
(or from sensory input to 
field) evolve according to 
the Hebb rule

dimension, x

activation, u1(x)

dimension, y

activation, u2(y)

Sandamirskaya DNFs and cognitive neuromorphic architectures

which the agent aims to achieve through contact with the envi-
ronment. For instance, “locate a red object” is a typical perceptual
intention, “turn 30 degrees to the left” is an example of a motor
intention. x is a perceptual or motor variable, which characterizes
the particular intention; S1(x, t) is an external input which acti-
vates the intention. This input may be sensory (condition of initi-
ation) or motivational (task input) (Sandamirskaya et al., 2011).
uCoS(y, t) is the condition-of-satisfaction DNF, which receives a
localized input from the intention DNF through a neuronal map-
ping W(x, y) (as introduced in Section 2.3). This input makes
the CoS DNF sensitive to a particular part of the sensory input,
S2(y, t), which is characteristic for the termination conditions of
the intended perceptual or motor act. The mapping W(x, y) may
be learned (Luciw et al., 2013). When the CoS DNF is activated,
it inhibits the intention DNF by shifting its resting level below the
threshold of the forgetting instability.

The DNF structure of an elementary behavior (EB) further
stabilizes the behavioral state of the neural system. Thus, the
intentional state of the system is kept active as long as needed to
achieve the behavioral goal. The CoS autonomously detects that
the intended action is successfully accomplished and inhibits the
intention of the EB. Extinction of the previously stabilized inten-
tion gives way to the next EB to be activated. With this dynamics,
the exact duration of an upcoming action does not need to be
represented in advance (and action durations may vary to a large
degree in real-world environments). The intentional state will
be kept active until the CoS signals that the motor action has
reached its goal. This neural-dynamic mechanism of intention-
ality enables autonomous activation and deactivation of different
modalities of a larger neuronal architecture.

Since the intention and the CoS are interconnected DNFs,
their WTA implementation may be achieved as described in
Section 2.3.

2.6. LEARNING IN DFT
The following learning mechanisms are available in the DFT
framework.

2.6.1. Memory trace of previous activity
The most basic learning mechanism in DFT is the memory trace
formation, also called preshape. The memory trace changes the
subsequent dynamics of a DNF and thus is considered an ele-
mentary form of learning. In neural terms, the memory trace
amounts to local increase in excitability of neurons, which may
be counterbalanced with homeostatic processes.

Formally, the preshape is an additional layer over the same
dimensions as the associated DNF. The preshape layer receives
input from the DNF, which is integrated into the preshape
dynamics as an attractor that is approached with a time-constant
τl/λbuild, Equation (11). This build-up constant is slower than the
time-constant of the DNF dynamics. When there is no activity in
the DNF, the preshape decays with an even slower time-constant,
τl/λdecay in Equation (11).

τlṖ(x, t) = λbuild

(
− P(x, t) + f

(
u(x, t)

))
f
(
u(x, t)

)

−λdecayP(x, t)
(

1 − f
(
u(x, t)

))
. (11)

Here, P(x, t) is the strength of the memory trace at site x of the
DNF with activity u(x, t) and output f

(
u(x, t)

)
, λbuild and λdecay

are the rates of build-up and decay of the memory trace. The
build-up of the memory trace is active on sites with a high pos-
itive output f

(
u(x, t)

)
, the decay is active on the sites with a low

output. The memory trace P(x, t) is an additive input to the DNF
dynamics.

The memory trace formation can be used to account for one-
shot learning of object categories (Faubel and Schöner, 2009),
representation of visual scenes (Zibner et al., 2011), or action
sequences (Sandamirskaya and Schoner, 2010b).

In a neuromorphic WTA implementation, the memory trace,
or preshape, may be interpreted as the strength of synaptic
connections from the DNF (or WTA), u(x, t), to a “memory”
population. This “memory” population activates the preshape
by transmitting its activation through the learned synaptic con-
nections, P(x, t). Learning of the synaptic connections amounts
to attractor dynamics [as in the first parenthesis of Equation
(11)], in which the pattern of synaptic connections approaches
the pattern of the DNF’s (WTA’s) output. This learning dynamics
may also be implemented as a simple Hebbian rule: the synap-
tic weights which connect active sites of the DNF (WTA) with
the memory population are strengthened. Another possible inter-
pretation of the preshape as a change in the resting levels of
individual nodes in the DNF (WTA) is harder to implement in
neuromorphic WTA networks.

2.6.2. Learning mappings and associations
When the memory trace dynamics is defined within a structure
with a higher dimensionality than the involved DNFs, the pre-
shape dynamics leads to learning of mappings and associations.
The dynamics of an associating map is similar to the memory
trace dynamics, Equation (12).

τẆ(x, y, t) = ε(t)
(

− W(x, y, t) + f (u1(x, t)) × f (u2(y, t))
)
. (12)

The weights function, W(x, y, t), which couples the DNFs u1(x, t)
and u2(y, t) in Equation (12), as well as in Equations (4, 5),
has an attractor at the intersection between positive outputs of
the DNFs u1 and u2. The intersection is computed as a sum
between the output of u1, expanded along the dimensions of the
u2, and the output of the u2, expanded in the dimensions of the
u1, augmented with a sigmoidal threshold function (this neural-
dynamic operation is denoted by the × symbol). The shunting
term ε(t) limits learning to time intervals when a reward-
ing situation is perceived, as exemplified in the architecture in
Section 3.

This learning mechanism is equivalent to a (reward-gated)
Hebbian learning rule: the cites of the DNFs u1 and u2 become
coupled more strongly if they happen to be active simulta-
neously when learning is facilitated by the (rewarding) sig-
nal ε(t). Through the DNF dynamics, which builds localized
activity peaks in the functionally relevant states, the learning
dynamics has the properties of the adaptive resonance net-
works (ART, Carpenter et al., 1991), which emphasize the
need for localization of the learning processes in time and in
space.
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below 8, explaining why the slope between set sizes 4 and 8
was steeper than for higher set sizes. Finally, that RTs were
overall shorter than in Experiment 1 likely reflects that the
visual cue in Experiment 2 could be processed before the
onset of the search array.

Comparison with the model

We simulated condition 2 of Experiment 2 by supplying
the model with a sequence of visual inputs according to
the presentation order in that condition. Model parameters
were identical to those for simulations of Experiment 1. The
resulting model RT means and fitted slopes are shown in
Fig. 18, along with those from the simulation of condition
3 of Experiment 1 (see Fig. 14). Performance in conditions
1 and 3 of Experiment 2 would be identical to conditions
1 and 3 in Experiment 1, so that we did not run these
simulations again and used the results from the previous
simulation.

For set sizes 8, 14, and 18, the difference of slopes
between the two conditions is consistent with the slope
difference observed in Experiment 2 (both near zero), thus
showing no inhibition effect. As concerns the model, this
results from the reset of SWM when a visual transient is
induced by the disappearance of the preview array. The
model also replicates the slightly steeper slopes over set
sizes 4, 6, and 8 seen in condition 3 of Experiment 2. It
does not, however, capture the slope of condition 2 for these
lower set sizes. This is due to the fact that, even though the
array is partly memorized, the model does not perform pure
in-memory search in the absence of a visual scene, because

Fig. 18 Mean reaction times for the different conditions as a function
of set size produced by the model in Experiment 2. Error bars indicate
±1 standard error of the mean. The results of condition 3 comes from
Fig. 14. For better comparability we used the same starting point of
measurement as in Experiment 1. As in Fig. 14, the overall magnitude
of model reaction times was scaled for comparison with human data

search mode in the model is triggered only in the presence
of a visual scene.

General discussion

We have presented an account of interactions between
visual working memory and visual search using a combined
approach of computational modeling and behavioral exper-
iments. Our first goal in this study was to provide a neural
process model of visual search that accounts for established
findings in this field (for reviews, see Carrasco (2011),
Wolfe and Horowitz 2017) but additionally incorporates a
mechanism for scene working memory. This allows us to
explore possible interactions between these two systems
in a biologically plausible model. The behavioral litera-
ture over the past two decades has clearly established that
working memory influences visual search in various ways,
but many details of their interactions are still controversial
(for reviews, see Hollingworth, 2012a, Donk, 2006; Olivers
et al., 2006).

The model we propose employs various mechanisms of
visual processing that have been established in previous
work, and brings them together into a fully integrated
neural-dynamic architecture implemented in the framework
of DFT. The feedforward path of the model is closely related
to the saliency map model (Itti & Koch, 2000), a standard
model of visual attention and visual search that realizes key
aspects of feature integration theory (Treisman & Gelade,
1980). We modeled color, orientation, and size as basic
visual features, since these have been shown to be effective
in guiding visual search (Wolfe & Horowitz, 2017).

Our model is consistent with key aspects of guided search
(Wolfe, 2007), in that it employs top-down guidance of
visual attention by a featural cue (see also Hamker 2005),
for an earlier neural-dynamic implementation of this mech-
anism). Since guidance depends on the metric differences
between target and distractors (Duncan & Humphrey, 1989;
Friedman-Hill & Wolfe, 1995; Wolfe, 1998), our model
proposes a simple normalization mechanism of neural acti-
vation, which is based on the number of cued features and
therefore scales naturally for higher feature conjunctions
(Nordfang & Wolfe, 2014). This mechanism also produces
the qualitative differences between single-feature and con-
junction search in the model.

A key feature of the DFT model is that it performs
a sequential processing of the visual scene, selecting
individual items through spatial attention (comparable to
the attentional bottleneck proposed in guided search). This
sequential process is realized as an integral part of the neural
dynamics, and emerges from transitions between different
stabilized states within the neural populations without any
algorithmic control structures outside of the neural model.

[Grieben et al.  Attention, 
Perception & Psychophysics 

(2020)]
[Markounikau et al, PLoS 

Comp Biol (2010)]the constant retino-cortical time delay in our model, the simulated
and measured signal onsets were aligned in all stimulus conditions.
Our model thus has the advantage of capturing the timing of VSD
signal onsets more accurately (see Figure 3).

Possible extensions of our NF model
The model responses to both the flashed bar and LM condition

fitted the observed VSD measurements. In contrast, for the single
flashed and the moving squares the model revealed a discrepancy
to the VSD data in the extent of lateral spread. One reason for this
effect is our simple Gaussian smoothing that we used as a model
for the retino-cortical processing. Increasing the kernel width ssu

resulted indeed in a wider activity spread, but the tested widths
were inappropriately large to match the common experimental

findings. As another straightforward solution, we increased the
widths of the coupling kernels wuu and wvu, however, the grid
search did not find models with an accurate fit for such wider
kernels.

For the flashed square, prolonged activity was observed
compared to the data. Importantly, tuning the gains guu, guv,
and gvu, the resting potentials hu and hv, and the steepness of the
transfer function bu and bv using evolutionary optimization
eliminated the discrepancy (see Figure 3).

Finally, the flashed and moving square stimuli evoked model
responses that were lower in amplitude than that measured. As
stated in ‘‘Relation to alternative large-scale model’’, using a
normalization method [25,30,44–47] in the retino-thalamic
processing step could be a suitable solution to adjust the

Figure 7. Model and VSD responses to moving squares with different speeds. Same conventions as in Figure 2. Stimulus speeds were: (A) 4,
(B) 8, (C) 16, and (D) 32 deg/s. At lower levels of activity the spread of activity was uniform across all conditions (greenish colors). In contrast, at high-
amplitudes (80% of maximal activation, red colors), the speed of propagation increased linearly with speeds: 0.004, 0.009, 0.02, 0.04 m/s. The
individual correlation coefficients computed between the simulated and measured responses were 0.83, 0.92, 0.82, 0.83 for the square moving at 4, 8,
16, and 32 deg/s, respectively.
doi:10.1371/journal.pcbi.1000919.g007
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DFT models in robotic demonstration

[Knips et al., Frontiers 
Neurorobotics (2017)]

Kreiser et al. Sequence Learning in a Neuromorphic Device

FIGURE 12 | Learning a sequence of cued locations with a robot. (Top, left) The output of the Dynamic vision Sensor (DVS) camera of the robot: events from rows of

the DVS over time. Regions with high activity correspond to horizontal positions of locations, cued with a laser pointer. (Top, right) Plastic synapses after learning.

Dark red dots are synapses with high weights (only synapses from ordinal populations to the content DNF are probed here). (Middle) Spiking activity of neurons on

the ROLLS chip during the robotic sequence learning experiment, in which sequence of three locations was learned (A-C-B) and reproduced by turning to center

respective location in the field of view of the robot’s DVS (the mapping from position in the camera’s FoV and angle of rotation was hard-coded here for simplicity).

(Bottom) Snapshots of the experiment from an overhead camera. See main text for details.

Frontiers in Neuroscience | www.frontiersin.org 13 November 2018 | Volume 12 | Article 717

[Kreiser et al., Frontiers 
Neuroscience (2018)]
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