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How the tutorial works

M mix of video and life Zoom talks

B my two longer tutorials are life, all other talks are videos

M discussions are life, audio/video encouraged

M you can also submit questions in the chat
dialogue, will be addressed in discussions

B useful during video lectures as speakers can read
questions ahead of time

M tutorials vs. case studies



Program

M 9:00/15:00 Gregor Schoner Tutorial:
Foundational concepts of DFT [40 life+15 disc]

M 10:10/16:00 Sophie Aerdker Case study: A
DFT model of motor habituation [20 video+5]

M 10:30/16:30 Gregor Schoner Tutorial:
Advanced concepts of DFT [40 life+15]

B | 1:30/17:30 Mathis Richter Tutorial:

Introduction to cedar [25 video+5]

M 12:00/18:00 Lunch/Dinner brea

< [30 free]



Program

M |2:30/18:30 Jan Tekiilve Tutorial: Sequence
generation [30 video+10]

M |:15/19:15 Raul Grieben Case study: Visual
search and scene memory [20 video+5]

M |:45/19:45 Mathis Richter Tutorial: Grounding in
DFT [30 video+10]

M 2:30/20:30 Aaron Buss Tutorial: Cognitive
control [40 video+15]

M 3:30/21:30 Discussion and outlook [10 disc]
M 3:40/21:40 End
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What DFT is about... how

cognition emerges from
sensory-motor processes




There is much cognition in

attention/gaze

active perception/working
memory

action plans/decisions/
sequences

goal orientation
motor control
background knowledge

learning from experience

real action




=> implied properties of the
underlying neural processes

B graded state
B continuous time

B continuous/intermittent
link to the sensory and
motor surfaces

M from which discrete events
and categorical behavior
emerge

in closed loop

=> states must be stable




Embodiment hypothesis

cognition inherits the
properties of embodied
cognition

stability, internal closed
loops => dynamics.. neural
dynamics

NOT: cognition necessarily
involves movement

this workshop: explore
neural dynamic principles in
higher cognition




Braitenberg vehicles

B =embodied nervous systems
with:

B effectors

B sensors

B a nervous system

M a body

M + situated in a structured
environment

B => behavior emerges

ﬁ source

structured
environment

)« sensory
system

| nervous
| system

<« body

= =] system




Emergent behavior: taxis
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Aturning rate
of vehicle

>

heading
direction

® feedforward nervous system

attractor

B + closed loop through
environment <3

B => (behavioral) dynamics 7



B two sources

B mono-modal distribution

B => monostable dynamics
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source source, )
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B two sources
heading
B bimodal distribution direction

B => bistable dynamics

B => selection decision
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M capacity to make selection decisions = qualitative
change of behavior

B => emerges from an instability

A heading
direction, ¢ attractor

attractor repellor

attractor

>

distance between sources
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M =>“store” the state of that ./
decision in an inner=neural
(2 )

state ><

M “covert’ decision?




=> neural dynamics

A C|U|/dt

M neural state:
activation

M activation dynamics

B competition/
inhibition=> selection

AN

sourceI ﬁ ﬁ source2



neural fields ) activatinon
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sensory surface
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architecture
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Neural activation in the
connectionist abstraction

o inputs
M activation state (membrane

sl¢ 51 51
potential or spiking rate) \ i J @) @

M summing inputs and ﬁ ?
generating output through a QRO
sigmoidal threshold function

Ag(u)

1 f ' output 9(us)
J output = g ( Z (inputs))
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Neural fields

, input from the
sensory surface

B neurons represent
perceptual dimensions by
virtue of the forward

connectivity from the
sensory surface

B e.g., feature maps...

dimension

. activation

. . field
B the discrete sampling by
dimension

neurons does not e
matter: activation fields




Neural fields

A activation
field, u(r)

motor

dimension, r
)

M neural fields represent
motor dimensions by
virtue of their output |
connectivity to motor
surfaces... => behavioral
dynamics I

B e.g, through peripheral reflex
loops

A\ 4




Peaks of activation may represent
perceptual objects
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Peaks of activation may represent
motor plans
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Neural fields: Distributions
of population activation

® primary visual cortex

30 - 40 ms 40 - 50 ms 50 - 60 ms 60 - 70 ms 70 - 80 ms

ESl 5.9 k=

[Jancke et al
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Neural fields: Distributions
of population activation

B motor cortex

Distribution of population activation =
2 tuning curve * current firing rate

neurons
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Autonomous generation of activation

M activation that arises or persists input(t)
in the absence of input ¢

M e.g. during movement generation
M e.g.in working memory output(t)

M e.g.in sequences generation

B => requires (strong) recurrence
output(t+1)

B => implies time



Neural dynamics

M time is not discrete (spiking is
asynchronous) A input strengeh

B => neural dynamics... of the :\M

A du/dt

activation state, u

resting

B “-u” term inherited from fevel, b
membrane dynamics: source of
stability

u(t) = — u(t) + h + mput(?) + g(u(r))



Neural dynamics of fields

B Localized peaks of

activation as stable states

® from regular pattern of
within-field
connectivity=interaction

B |ocal excitation/global
inhibition stabilize peaks

M peaks arise/disappear in
dynamic instabilities

tu(x,t) = —u(x,t) + h+ s(x, 1)

+ de’w(x —x") g(u(x', 1))

N

" activation field u(x)

local excitation: stabilizes

m peaks against decay

global inhibition: stabilizes

eaks against diffusion
“\N .
/ N\ |nput
N e - ~

—

dimension, x

X=X




OXFORD SERIES IN DEVELOPMENTAL COONITIVE NEUROSCIENCE

=> Dynamic
Field Theory

B dynamicfieldtheory.org Dynamic Thinking

A PRIMER ON DYNAMIC FIELD THEORY

Gregor Schoner, John P. Spencer, and the DFT Research Group

OXTORD


http://dynamicfieldtheory.org
http://dynamicfieldtheory.org

Attractors and their instabilities

M input driven solution

reverse
(sub-thresho d) ldetection Tdetection
- . in ili - T
M self-stabilized solution instability instability

(peak, supra-threshold)

M selection / selection
instability

® working memory /

memory instability Noise is critical

M boost-driven detection near instabilities

instability



Learning in DFT

B Learning is change of behavior based on
experience

B experience is driven by activation patterns

B behavior is generated by neural dynamics

M => Learning is change of the neural
dynamics driven by activation patterns



Sensitization and habituation

M simplest non-associative learning in simple
stimulus-induced responses

B sensitization: experience lowers the threshold for
eliciting a behavior

B habituation: experience increases the threshold for
eliciting a behavior

B => Sophie Aerdker’s case study



The memory trace

T activation, u(x)

M facilitatory trace of

patterns of activation dimension, x

>

M in excitatory field: leads to
sensitization t memory

trace, Umem(X) ¥

Q dimension, X

® in inhibitory field: leads to
habituation




The memory trace

ti(x, 1) = — u(x,t) + h+ s(x, 1) + JdX’W(x —x) gu(x’, 1) + U

T activation, u(x)

dimension, x

>

Trembmem X, ) = — U o (X, 1) + g(u(x, 1)) | memory
trace, umem(x)Y

if there is no supra- dimension. x
TmemPmem@> 1) = 0 threshold activation N\

m

anywhere in the field



=> the memory trace reflects the

history of detection decisions

activation



Memory trace ~
first-order Hebbian learning

Mincreases local resting level
at activated locations activation, u(x)

B~ the bias input in NN

dimension, X

B boost-driven detection
instability amplifies small

bias => important role in
DFT




Regular (second-order) Hebbian learning

activation, u | (x)

dimension, x
>

M projections among fields
(or from sensory input to  activation, u(y)

field) evolve according to
the Hebb rule

dimension, y
)

W, 7,0 = ) = Wy, ) + £ (6, 0) x sy, 1)

[Sandamirskaya, Frontiers Neurosci 2014]



Regular second-order Hebbian learning

activation node, u |

O

Bimportant in DFT for
projections from zero-

dimensional nodes to activation
fields 4 field, uy(y)

B => concepts . .
dimension, y




DFT models

M as neural process models of cognition

Mvary in how complete the link to the sensory
motor surfaces is
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DFT models that account for
behavioral or neural data

B by mapping states of the model onto behavioral

or neural responses

17 Cond. 2a, y = 40.09x - 25.02, r> = 0.983
800 ~

o Cond. 2b, y=32.84x + 30.17, r>= 0.998
= Cond. 3a, y=38.52x + 19.57, r*= 0.975

o Cond. 3b,y=33.03x + 63.15, r* = 0.992

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Set Size

[Grieben et al. Attention,
Perception & Psychophysics

(2020)]
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DFT models in robotic demonstration
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DFT models

M Sophie Aerdker/Aaron Buss: field states are
mapped onto perceptual/motor states

B Raul Grieben/Mathis Richter: sensor generates
Input

M Jan Tekulve: activation drives motor system



