Advanced concepts of DFT

Gregor Schöner

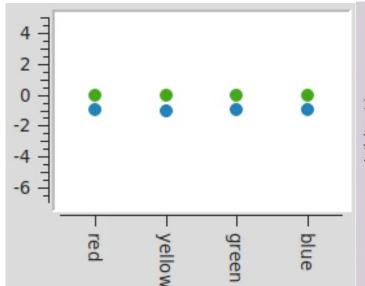
Dynamic fields of varying dimensionality

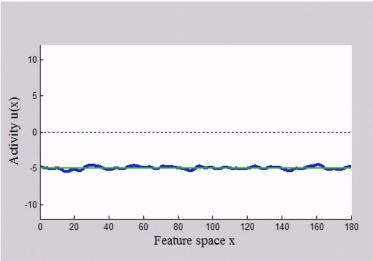
- O-dimensional: nodes, "on" vs "off" states
- I, 2, 3, 4... dimensions: peak/ blob states

3-dimensional

2-dimensional

I-dimensional

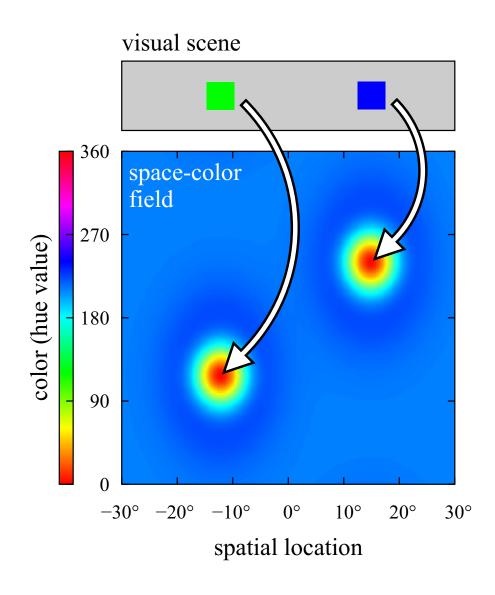




New cognitive functions emerge as dimensionality is varied

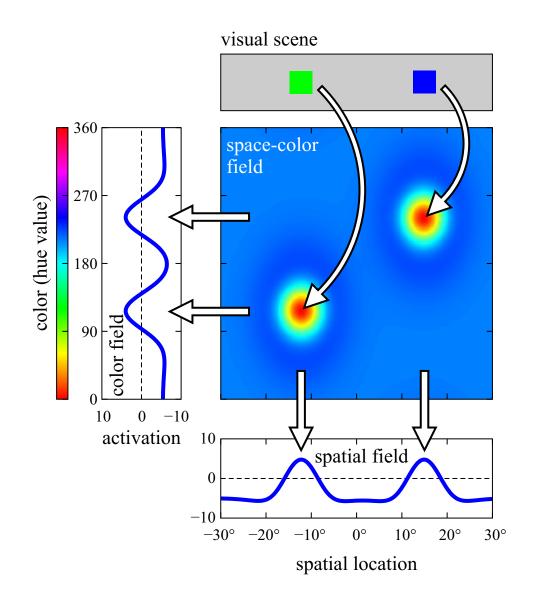
Binding

a joint representation of space and color



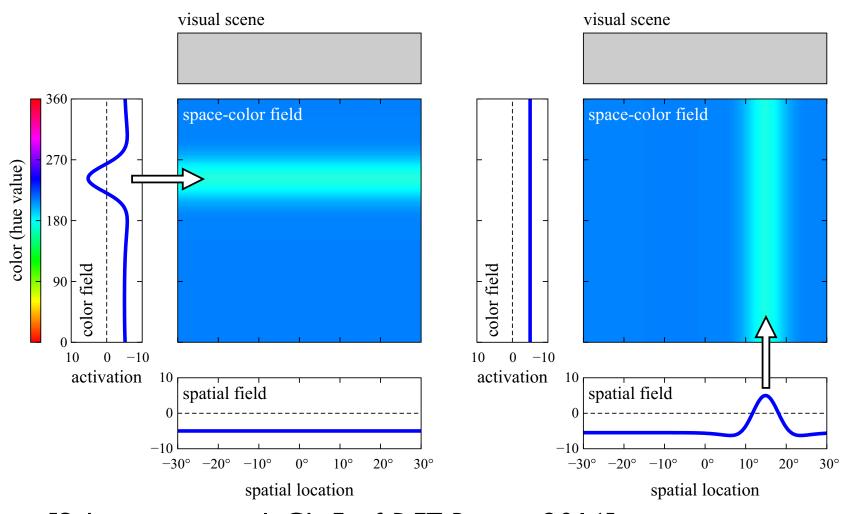
Extract bound features

- by projecting to lowerdimensional fields
- summing along the marginalized dimensions
- (or by taking the softmax)



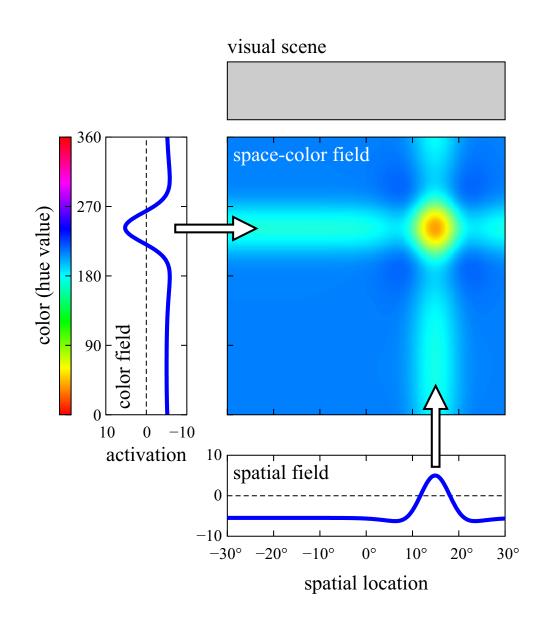
Assembling bound representations

projecting into higher-dimensional field by "ridge input"



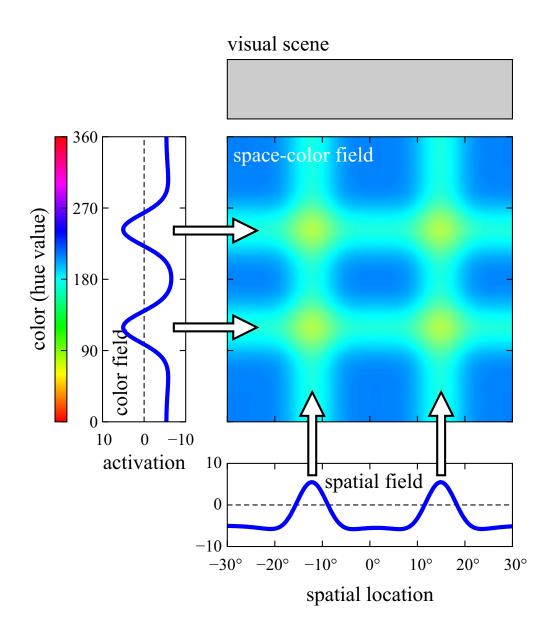
[Schneegans et al., Ch 5 of DFT Primer, 2016]

Assembling bound representations



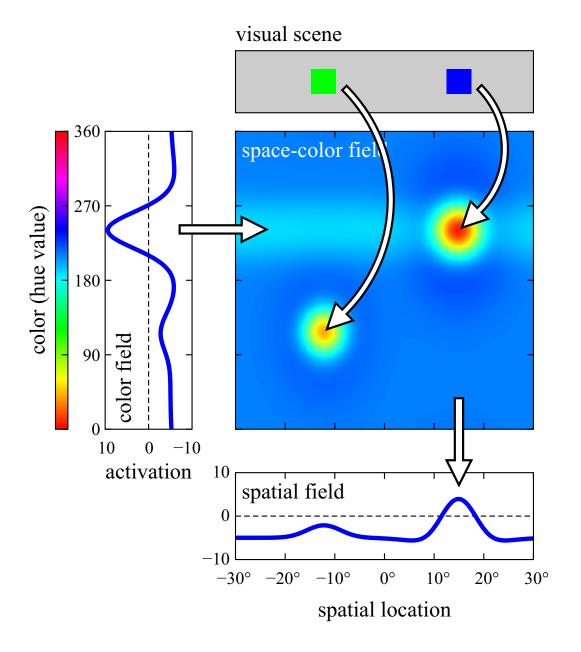
Assembling bound representations

- binding problem: multiple ridges lead to a correspondence problem
- => assemble one object at a time... sequentiality bottleneck!



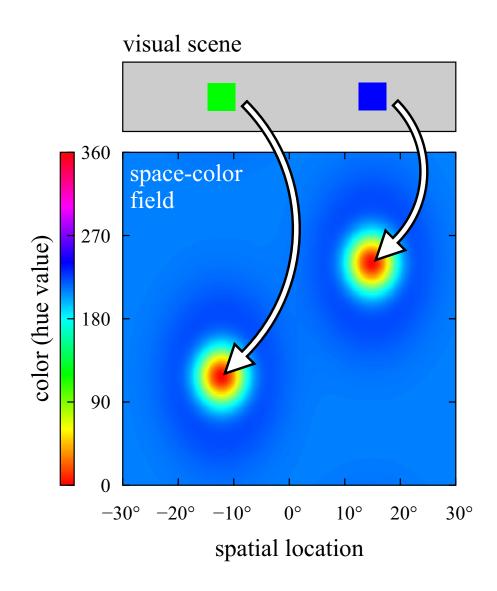
Visual search

=> Raul Grieben's case study



Binding by joint representations

- a "neuro-anatomical" form of binding
- => very costly

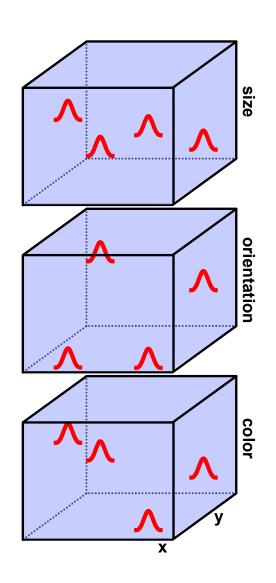


Binding by joint representations

- example: bind orientation, color, texture, scale, and 2D visual space => 6-dimensional field
- 100 neurons per dimension => 10¹² neurons ~ the entire brain!

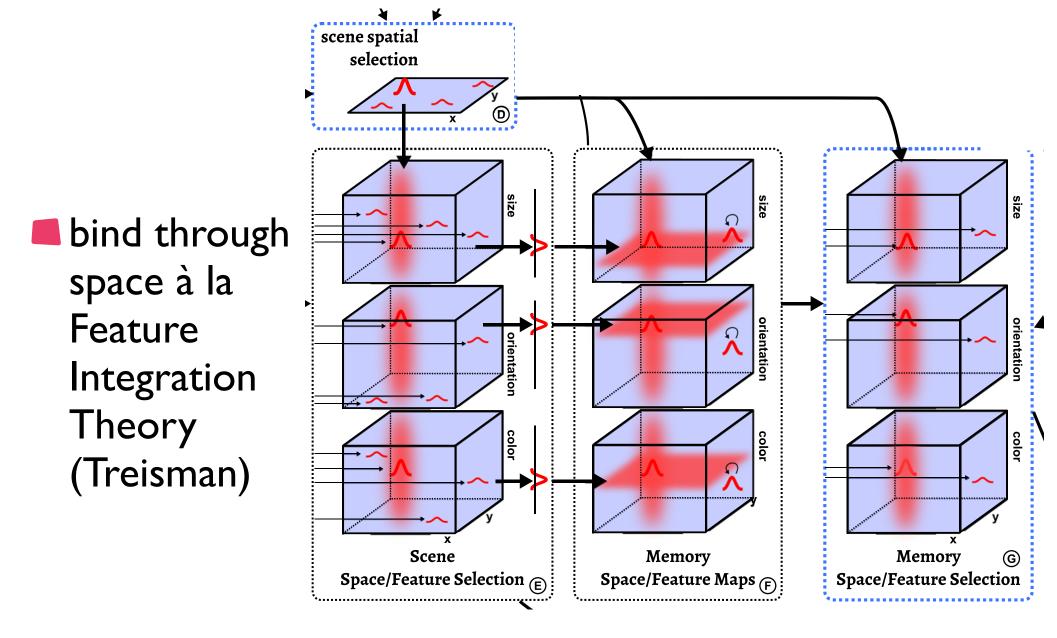
Binding through space

- separate 3 to 4 dimensional feature fields
- all of which share the dimension visual space (~all neurons have receptive fields)
- bind through space à la Feature Integration Theory (Treisman)

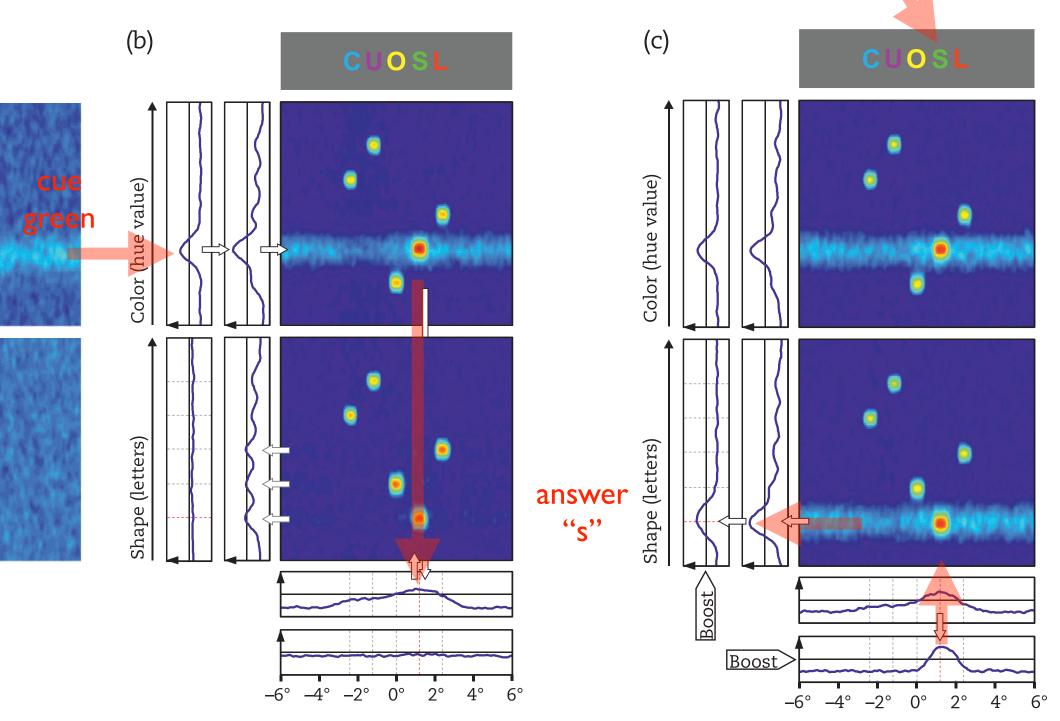


[Grieben et al. Attention, Perception & Psychophysics 2020]

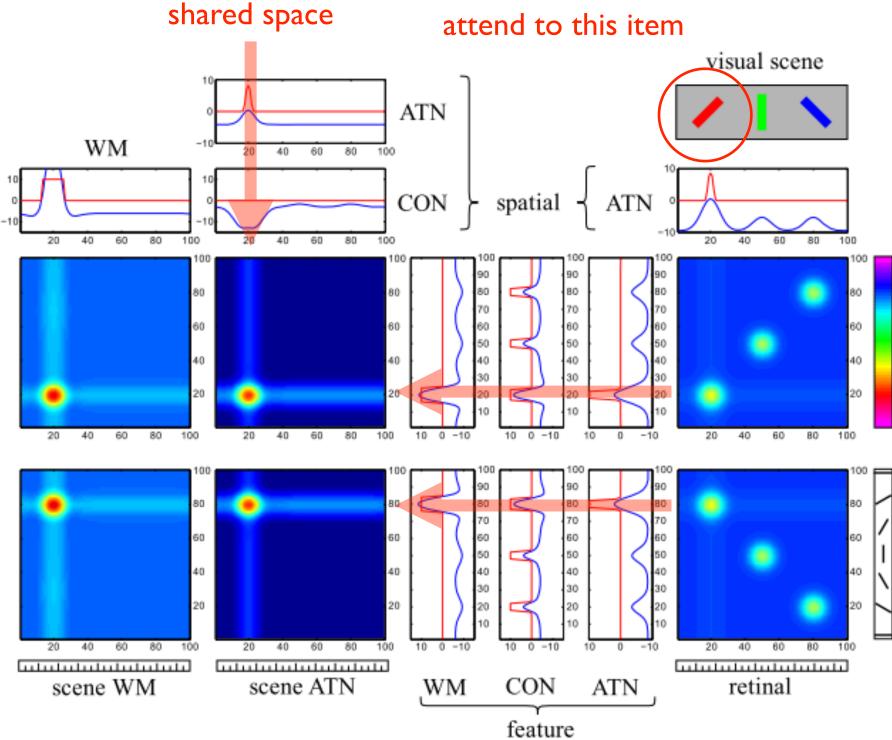
Binding through space



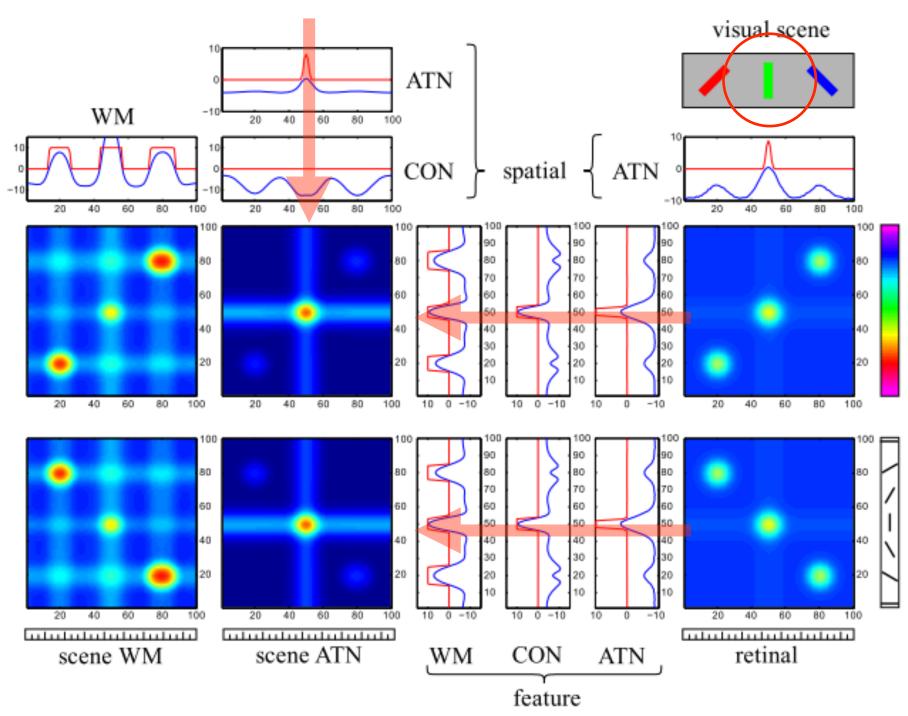
[Grieben et al. Attention, Perception & Psychophysics 2020]



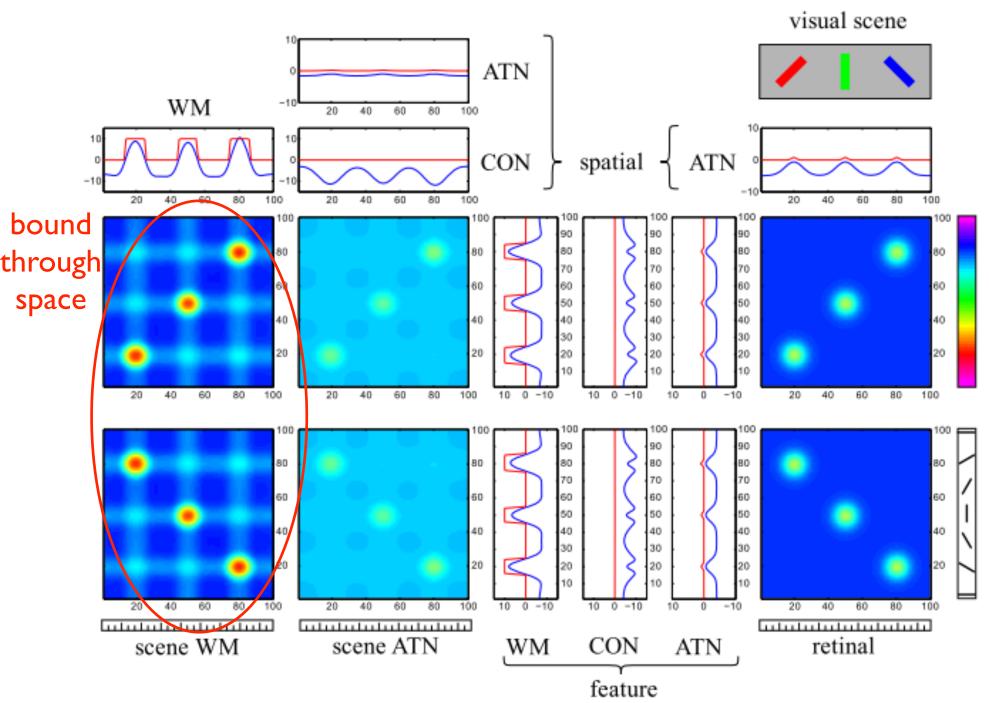
[Schneegans et al., Ch 5 of DFT Primer, 2016]



[Schneegans et al., Ch 8 of DFT Primer, 2016]



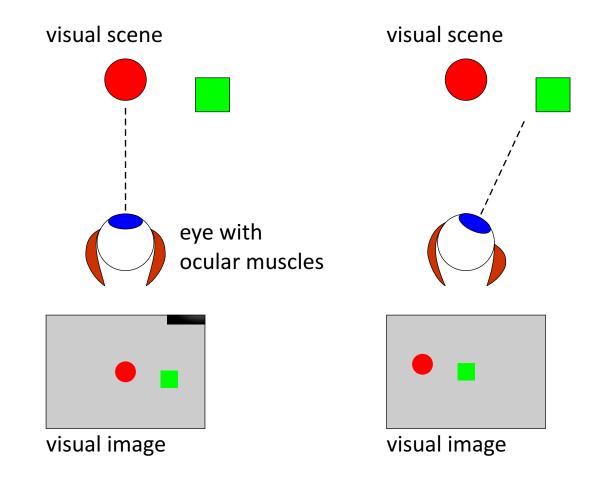
[Schneegans et al., Ch 5 of DFT Primer, 2016]



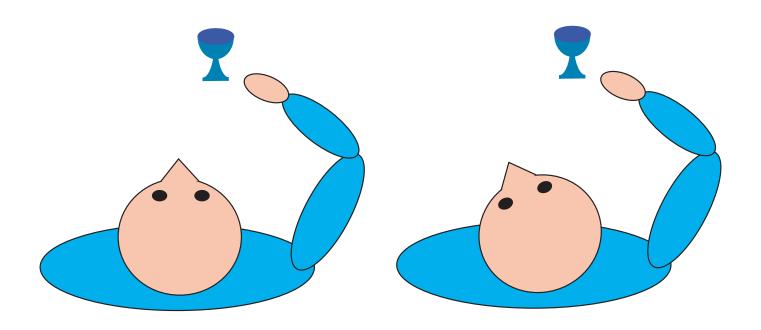
[Schneegans et al., Ch 5 of DFT Primer, 2016]

Indamental element of sensori-motor, but also of mental operations!

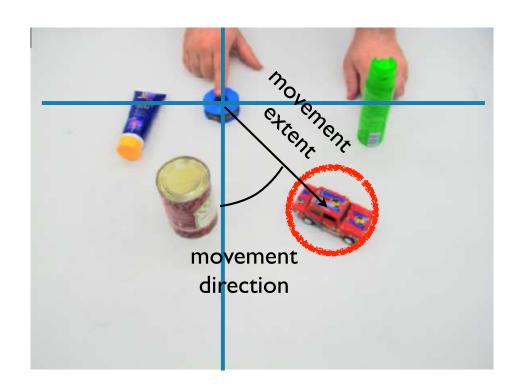
eye movement: from retinal to body-centered representation (e.g. for reaching)



eye movement: from retinal to body-centered representation (e.g. for reaching)



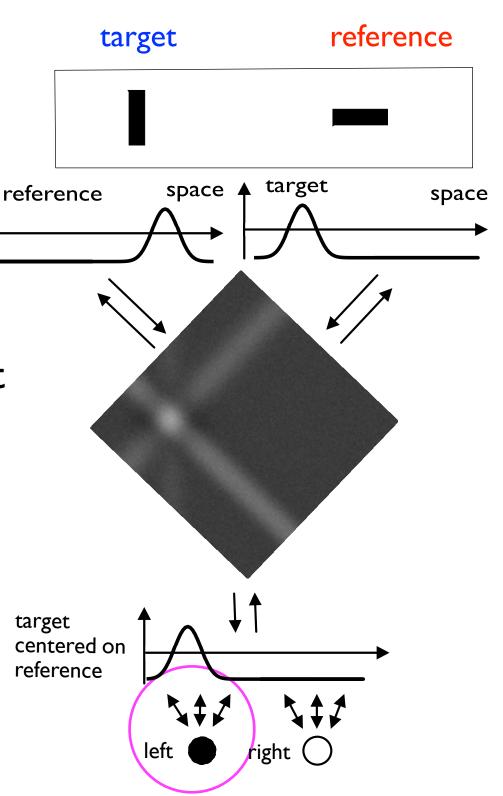
hand movement: from body-centered to hand-centered representation



relational concepts: from visual space to frame centered in reference object

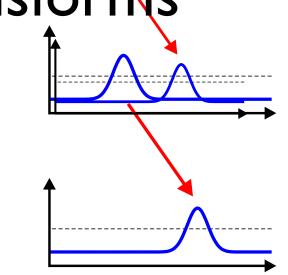
e.g. "vertical object to the left of horizontal object"

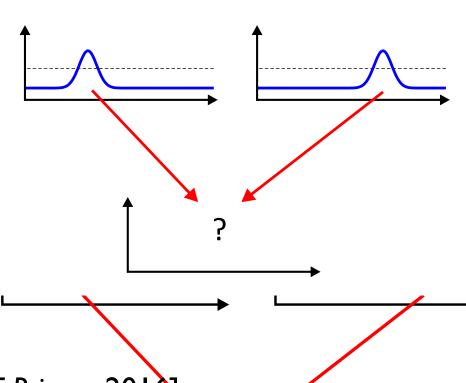
=> Mathis Richter's tutorial



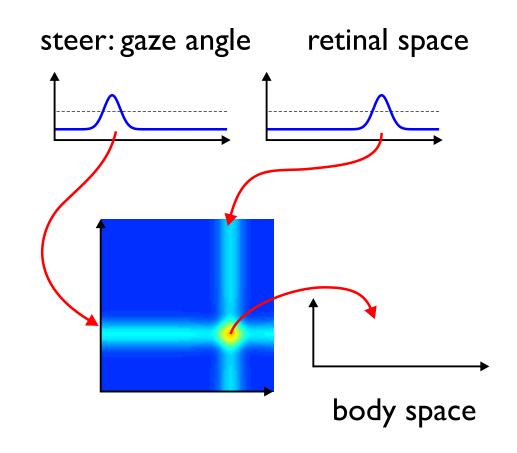
fixed mapping: neural projection in a neural network

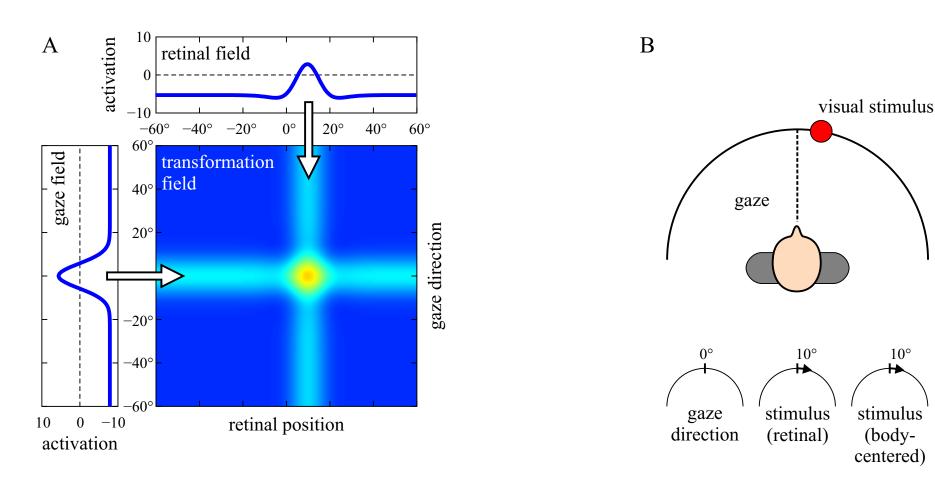
- x=gaze direction
- x=hand position
- x=position of reference object

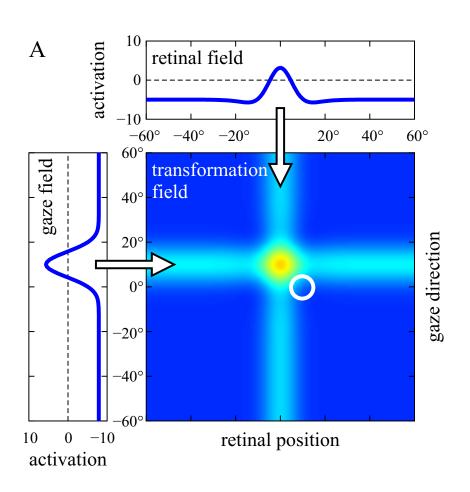


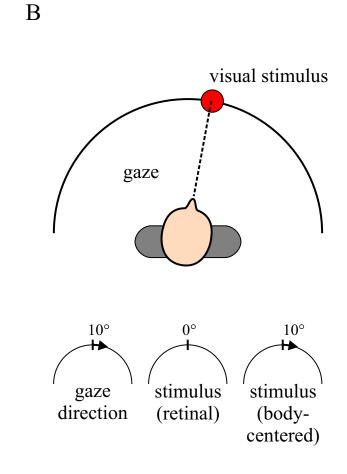


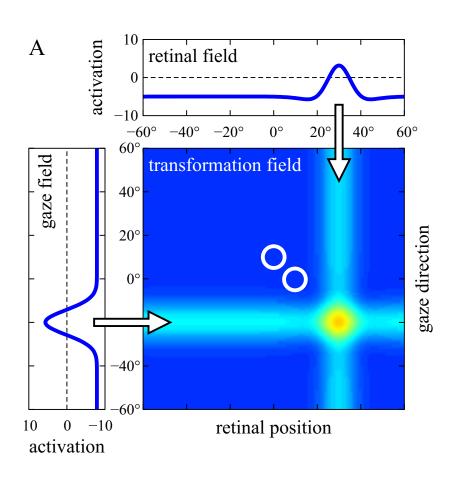
- a joint representation of
 - the space to be mapped
 - the steering space
- bind the two spaces
- project out to transformed space

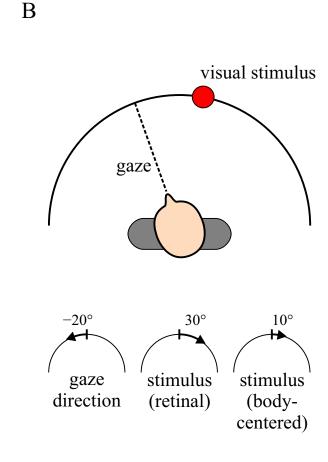


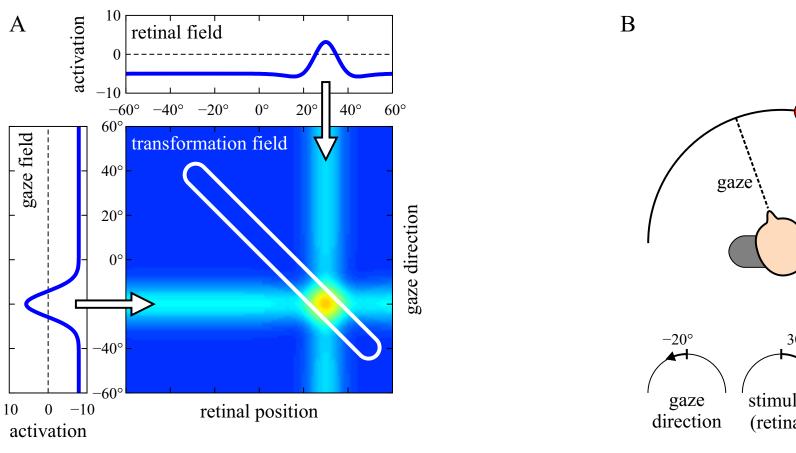


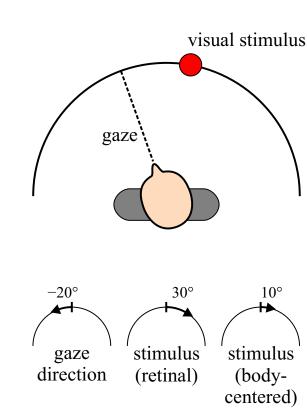


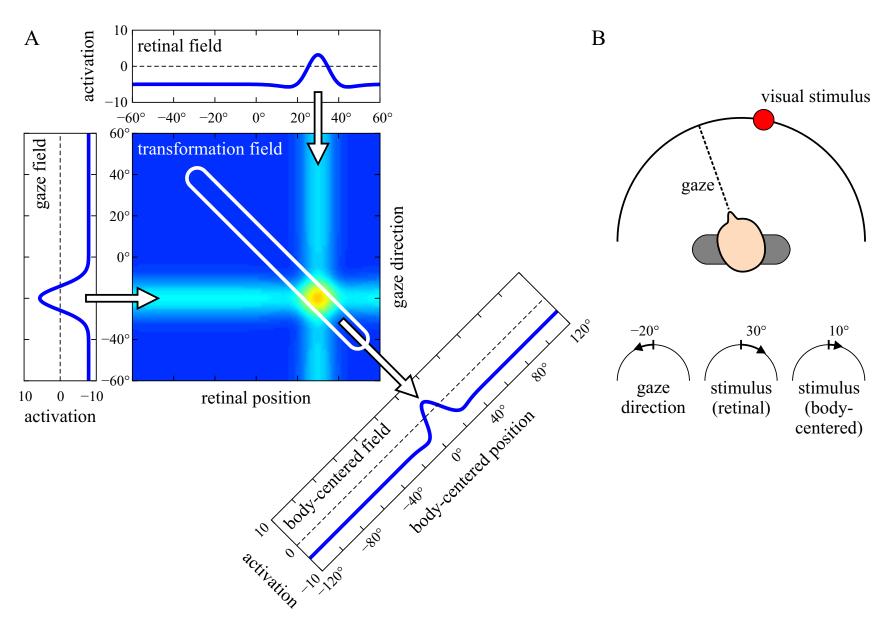




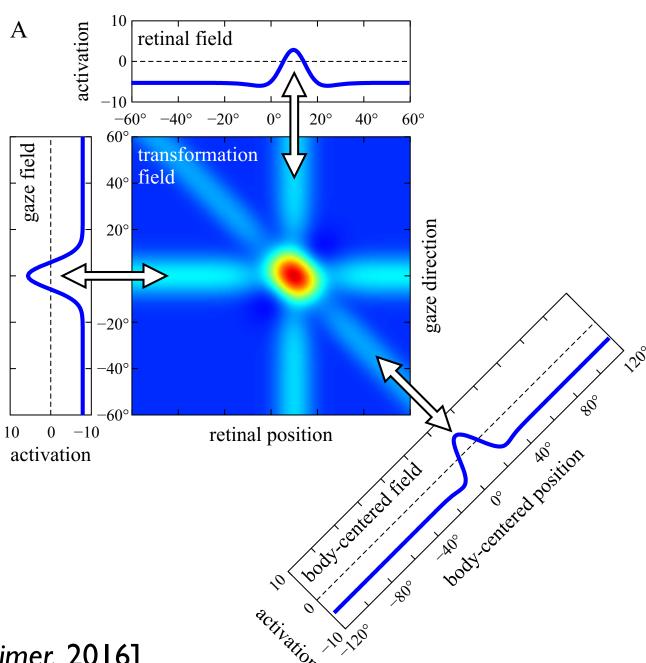




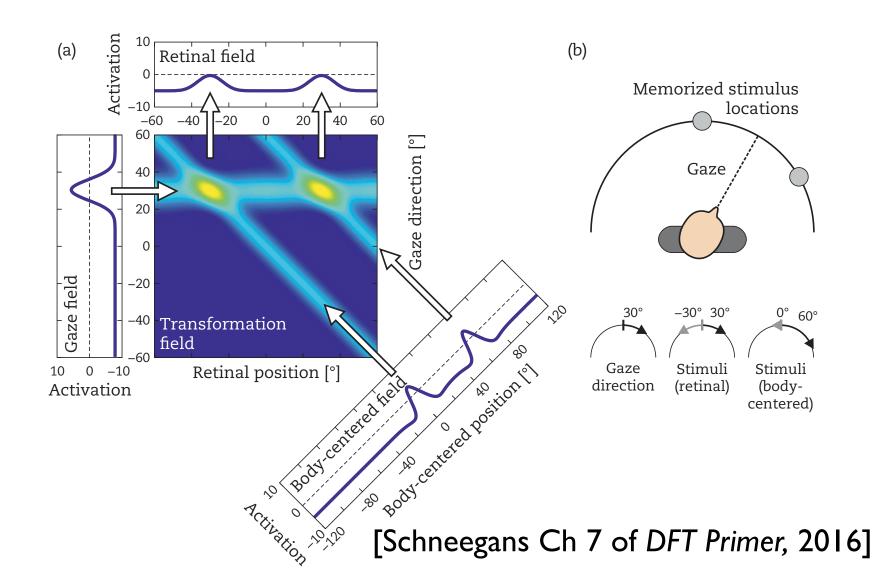




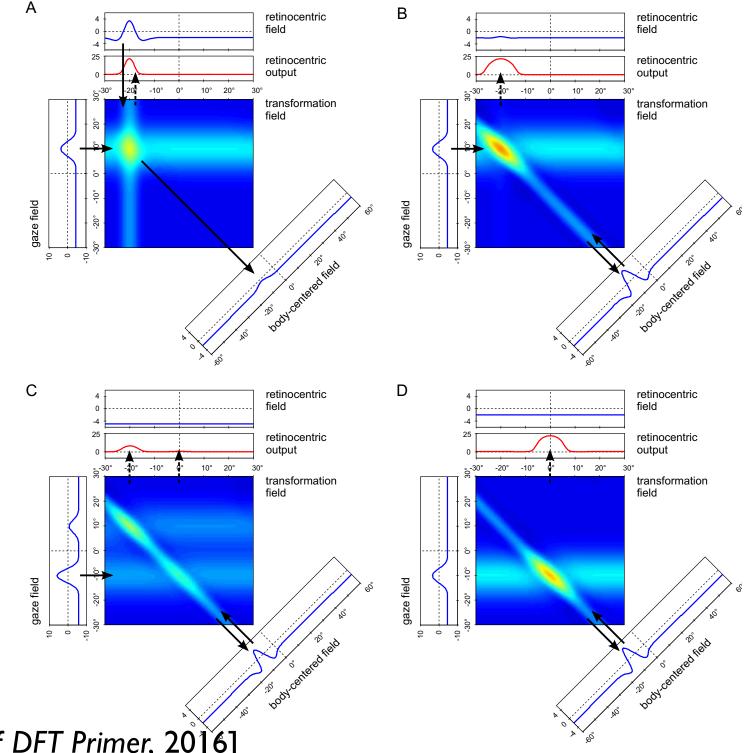
- bi-directional coupling
- enables new functions



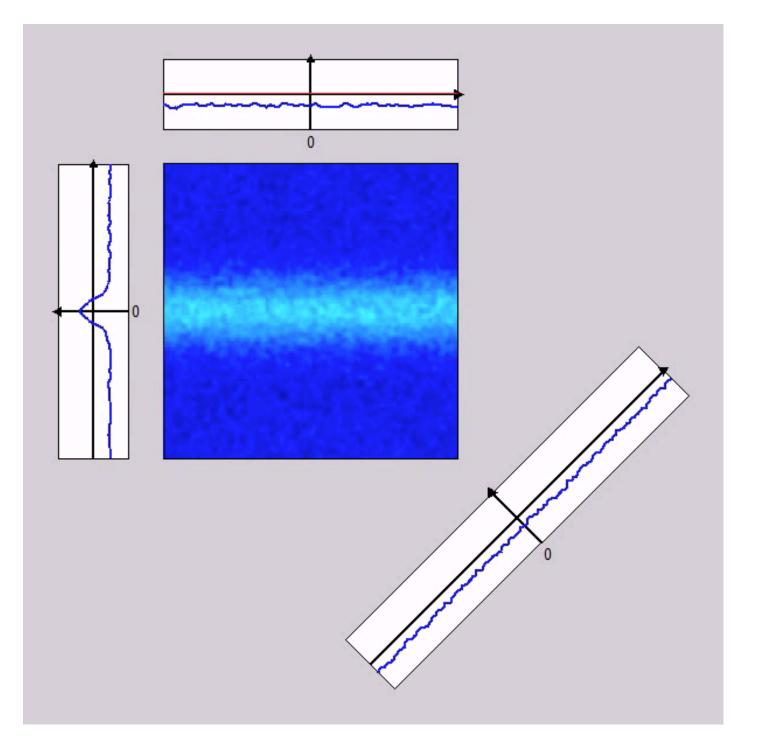
predict retinal image from memorized scene



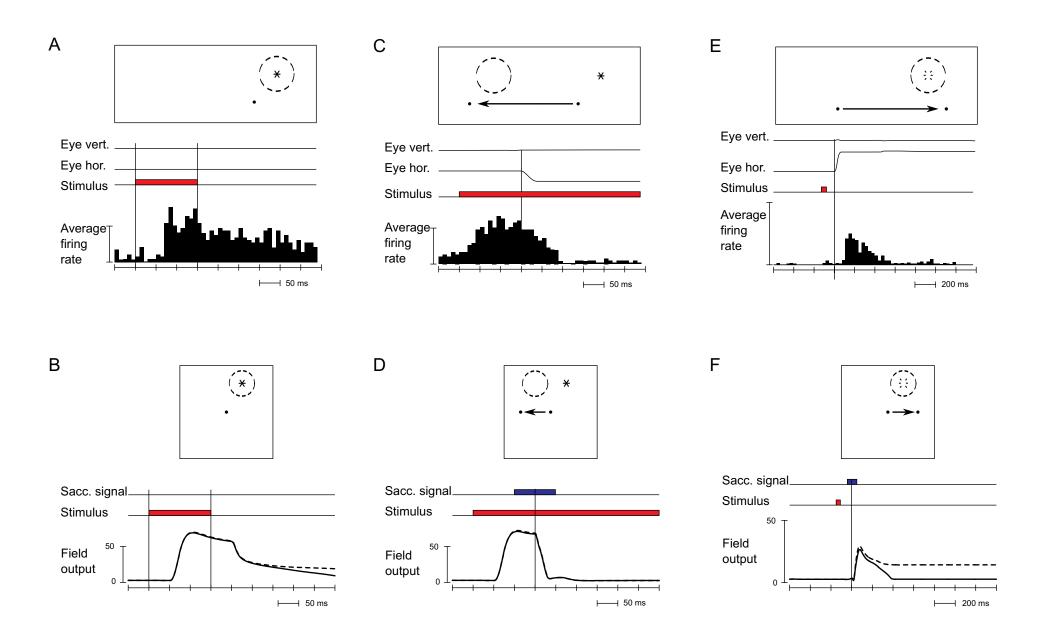
Spatial remapping during saccades



Spatial remapping during saccades



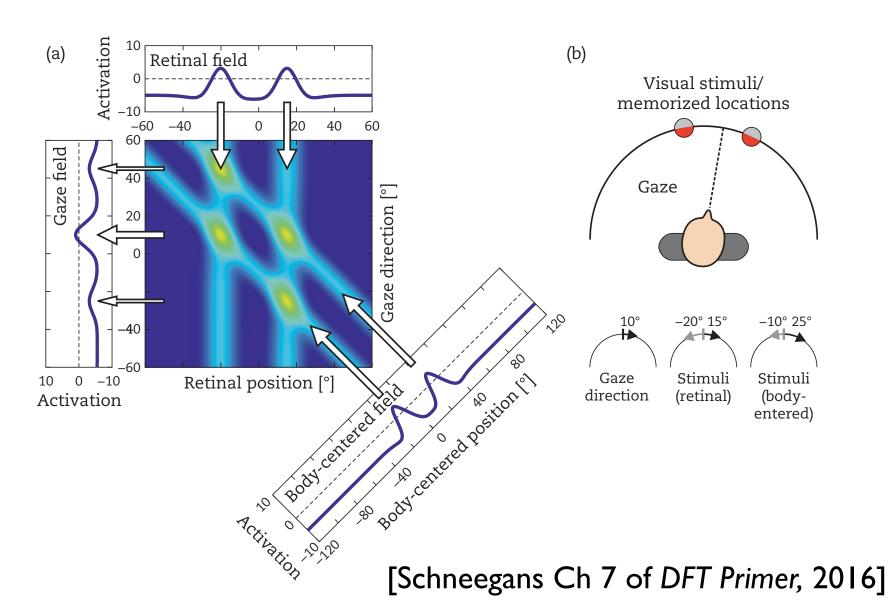
[Schneegans, Schöner Biological Cybernetics 2012]



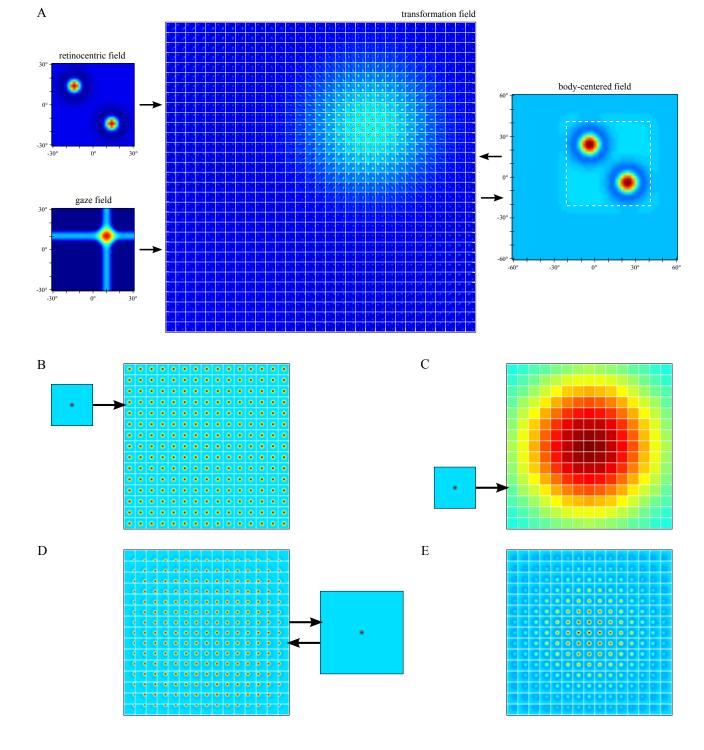
=> accounts for predictive updating of retinal representation

[Schneegans, Schöner Biological Cybernetics 2012]

estimate gaze by matching scene to memorizes scene



Scaling



Scaling

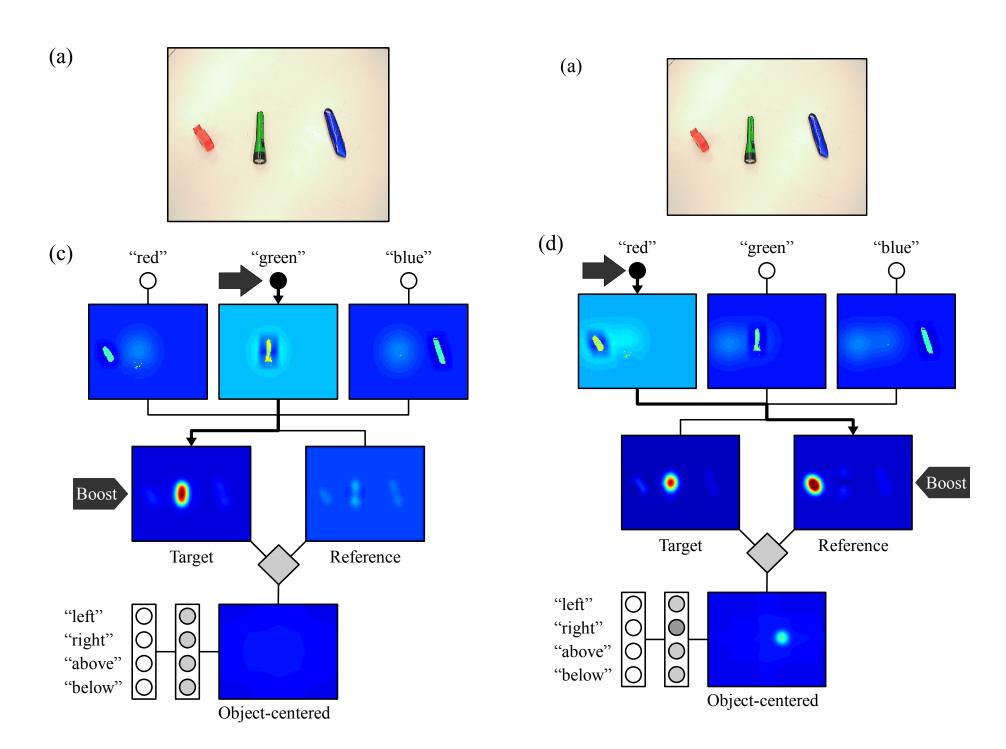
- joint representation of steering and transformed space ~ 4 dimensions
- binding through space... enables transforming only space!
- => coordinate transforms are linked to the sequentiality bottleneck!

DFT architectures

- why are the peaks and their instabilities preserved as we couple fields into architectures?
- stability => structural stability=robustness
- = invariance under change of the dynamics

DFT architectures

- controlling the instabilities of fields in an architecture is a source of flexibility
- example: architecture for perceptual grounding of spatial relations
- (=> tutorial by Mathis Richter)



[Lipinski et al: JEP:LMC (2011)]

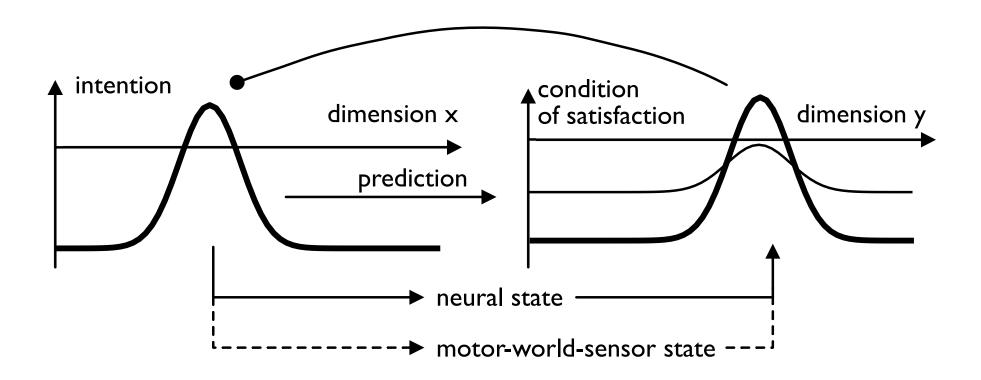
DFT architectures

- enabling a field go through the detection instability or not homogeneous input (boost)
- reweighs the effective coupling in an architecture
- ~gating

Sequence generation

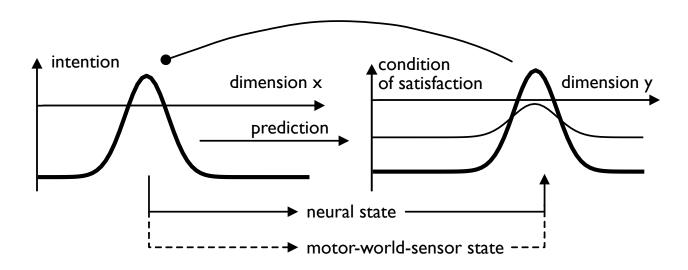
how would such boosts arise autonomously, from within the architecture?

Condition of satisfaction



Condition of satisfaction

- detection instability in CoS as prediction and input match
- reverse detection in intention field
- reverse detection in CoS field
- => active transient



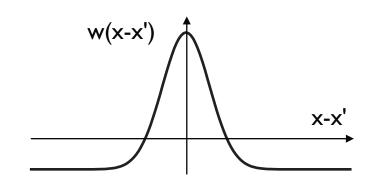
[Sandamirskaya, Schöner, Neural Networks 2010]

Sequence generation

=> Jan Tekülve's tutorial

How do DFT architectures compare to DNN architectures ?

in DFT: commitment to localist representation, in which regular form of interaction enables continuum of attractor states



- => low-dimensional spaces
- (Hopfield networks have attractors that exploit distributed representations, but weights are specific for each attractor)

How do DFT architectures compare to DNN architectures?

- Attractors and their instabilities enable
 - architectures
 - binding, coordinate transforms
 - autonomous sequential processing
- => toward neural processes accounts for higher cognition

How do DFT architectures compare to DNN architectures?

- Output/classification layer of DNN often invoke "winner takes all" localist representations..
 - => could be the interface to DFT
 - high-dimensional distributed representation would be the efficient discrimination machine that works while highdimensional input is present
 - while low-dimensional localist DFT representation would be the neural dynamic cognition machine that works autonomously not dependent on ongoing input
- => DFT as neural account for symbolic processing?

DFT vs VSA

- Vector-symbolic architectures (VSA) are a theoretical alternative
 - high-dimensional distributed representations as vectors that are symbols
 - afford combination (information processing) while preserving the original vector
 - classical version is not neurally feasible
 - and creates the symbol grounding problem at encocding

DFT vs VSA

- Neural engineering framework (NEF) is proposed as a possible neural implementation of VSA
 - vectors represented by (small) populations of spiking neural networks
- But: to preserve original vectors, connectivity in architectures is very special
 - connectivity takes into account the original encoding
 - => non-local dependence of connectivities on each other... that may not be compatible with neural principles

Summary

- DFT is based on the hypothesis that the dynamics of neural populations = privileged level of description for neural process accounts of behavior and thinking
- units of representation are attractors in lowdimensional activation fields that can be linked to the sensory/motor surfaces
- stability => robustness, enables architectures
- through binding, coordinate transforms, and sequence generation to higher cognition