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Abstract

In many situations, the human movement system has more degrees of freedom than needed to achieve a given movement
task. Martin et al. (Neural Comput 21(5):1371-1414, 2009) accounted for signatures of such redundancy like self-motion
and motor equivalence in a process model in which a neural oscillator generated timed end-effector virtual trajectories that
a neural dynamics transformed into joint virtual trajectories while decoupling task-relevant and task-irrelevant combinations
of joint angles. Neural control of muscle activation and the biomechanical dynamics of the arm were taken into account.
The model did not address the main signature of redundancy, however, the UCM structure of variance: Many experimental
studies have shown that across repetitions, variance of joint configuration trajectories is structured. Combinations of joint
angles that affect task variables (lying in the uncontrolled manifold, UCM) are much more variable than combinations of joint
angles that do not. This finding has been robust across movement systems, age, and tasks and is often preserved in clinical
populations as well. Here, we provide an account for the UCM structure of variance by adding four types of noise sources
to the model of Martin et al. (Neural Comput 21(5):1371-1414, 2009). Comparing the model to human pointing movements
and systematically examining the role of each noise source and mechanism, we identify three causes of the UCM effect, all
of which, we argue, contribute: (1) the decoupling of motor commands across the task-relevant and task-irrelevant subspaces
together with “neural” noise at the level of these motor commands; (2) “muscle noise” combined with imperfect control of
the limb; (3) back-coupling of sensed joint configurations into the motor commands which then yield to the sensed joint
configuration within the UCM.

Keywords Human motor control - Pointing movement - Redundancy - Kinematics - Dynamical systems - Uncontrolled
manifold

1 Introduction the classical “degree of freedom problem” that has been a

major theme in motor control at least since Bernstein (1967).

How are the many kinematic degrees of freedom (DoF) of
the human motor system and the muscles that actuate them
harnessed to achieve a particular movement goal? This is
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The problem arises because motor systems are redundant (or
abundant, see Gelfand and Latash 1998) for many tasks; that
is, there are typically more joints or muscles available than
needed to control a set of task variables like the position or
orientation of the hand in space.

It is not clear, a priori, that this is a problem for the cen-
tral nervous system (CNS) because, in principle, the neural
networks that generate and control movement could simply
be structured such that they provide one particular solution
among the many possible ones. It would then be merely a
problem for us, the scientists, to find out which solution that
is. But movement scientists nourish a long-standing intuition
and hypothesis that the DoF problem is a problem for the
CNS. This intuition is based on empirical evidence that the
CNS is flexible about which particular solution is employed
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under different conditions. Bernstein famously observed that
when the blacksmith wields the hammer, the hammer’s tra-
jectory is more reproducible than the body configurations
used to bring about that movement (Bernstein 1967). That
original report had problems (e.g., the different repetitions
of the movement were aligned for end-state rather than for
initial body configuration) and presupposed that the variance
of the hammer’s spatial position could be directly compared
to the variance in body configuration. But the underlying
notion bears out: Some combinations of degrees of freedom
are more variable than others and such differences relate
to the movement task. By embedding both the hammer’s
position and the body configuration in joint space, the differ-
ence in variance between different combinations of degrees
of freedom can be uncovered using the method of analy-
sis of the uncontrolled manifold (UCM, Scholz and Schoéner
1999). The empirical finding is that variance across repeti-
tions of a movement is larger in those directions in joint space
along which the hand position is invariant than in directions
along which the hand position varies. Such a structuring of
variance, the UCM signature of variance or “UCM effect”,
has been observed in many different settings, for many dif-
ferent effector systems, and for a number of task variables
in addition to the hand spatial position [reviewed in Latash
et al. (2007), see also recent examples by Papi et al. (2015),
de Vries et al. (2016), Greve et al. (2017), Tuitert et al.
(2017)]. The UCM signature of variance is often preserved in
clinical populations [e.g., Reisman and Scholz (2003)] and
observed early in development (Golenia et al. 2018). Under-
standing the origins of the UCM signature of variance is
therefore an important theoretical challenge.

So how does the DoF problem manifest itself at the level
of the neural processes that generate movement and drive
muscular activation? One idea is that movement plans are
generated by populations of neurons in terms of spatial “task”
variables like the hand’s movement direction (Georgopoulos
et al. 1986; Schwartz 2007). The time course of popula-
tion activation in motor cortex reflects, in that picture, the
time course of the planned movement of the hand in space
(Churchland et al. 2012). Theoretical models account neu-
ral processing at this task level through models of neural
oscillation that generate a virtual trajectory of the hand in
space (Martin et al. 2009; Rokni and Sompolinsky 2012).
The hypothesis is that this time course at the task level is
then transformed kinematically into a time course of motor
commands to the muscles.

In a previous theoretical analysis (Martin et al. 2009),
we examined some of the consequences of this hypothesis
that the DoF problem is solved through a kinematic trans-
formation. In the model, a virtual end-effector trajectory that
connects an initial to a target position of the hand was gener-
ated through an oscillatory dynamics, which remained active
for only a single cycle. The activation and deactivation of the
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oscillator were controlled by a competitive neural dynamics.
The virtual trajectory of the end-effector was transformed
into virtual trajectories of joint angles that specified motor
commands for the muscles converging on each joint. That
transformation included a kinematic pseudo-inverse, but also
made use of couplings among the virtual joint variables
that selectively stabilized those directions in joint space that
impact on the end-effector position.

In the analysis, we examined the implications of the pos-
tulated kinematic solution to the DoF problem in terms of
the mean joint trajectory. The model predicted, for instance,
arelatively large amount of self-motion, that is, of motion in
joint space that does not transport the hand in space. This
prediction was confirmed by comparison with data from
two experiments. We also compared different variants of
the hypothesis. For instance, combining an inverse dynamics
model that compensates for interaction torques with the same
kinematic solution to the DoF problem led to the prediction
of very little self-motion, too little to be experimentally valid.

We examined the effect of mechanical perturbations that
induce motor-equivalent solutions to the DoF problem in
which, following the perturbation, a new combination of joint
angles is used to realize the same motor goal at the level of
the hand in space. Motor equivalence, we showed, requires a
form of “back-coupling” in which the motor command sent
to the muscles is updated based on the actual, sensed joint
configuration that emerges from the perturbed movement.

Random perturbations by neural or muscle noise were
not addressed in this earlier work, however, which did not,
therefore, establish an account for the UCM structure of vari-
ance. The present paper is aimed to do just that. Variability
is commonly interpreted as a signature of the control sta-
bility of movement (Latash et al. 2007). The structure of
variance in joint or muscle space is therefore thought to
reflect the control priorities of the CNS. But is that conceptual
understanding right? By injecting noise sources into different
component processes of the multi-DoF movement genera-
tion model (Martin et al. 2009) and systematically examining
their effect on the structure of variance in joint space, we pro-
vide an account for how the structure of control is reflected
in the structure of variance.

2 Model

Figure 1 provides a survey over the model, which has been
published earlier (Martin et al. 2009). The model is formu-
lated concretely for the planar four-degree-of-freedom arm
controlling a two-dimensional end-effector that was probed
experimentally (see Fig. 2). The model starts with a paramet-
ric description of movement plans that capture the outcome
of movement preparation, which is formalized as a neural
representation of the direction and extent of the hand’s move-
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Fig. 1 A survey over the model: Only the processes represented by
blue boxes are modeled. The scene representation and movement
preparation processes (gray boxes) are replaced by parameter values, but
have been modeled elsewhere (Zibner et al. 2011, 2015). An approx-
imate mapping onto structures of the CNS is sketched by the boxes
in light gray. Different forms of recurrent loops are indicated by red
arrows (color figure online)

Fig.2 Experimental setup and kinematics

ment in space. The processes through which a neural scene
representation of the movement environment may be derived
from visual information are described in other work (Zibner
et al. 2011), as are the processes needed to extract move-
ment parameters from such a scene representation (Erlhagen
and Schoner 2002; Zibner et al. 2015). The initiation and
termination of a discrete movement are modeled by a neu-
ral dynamic switching process (Schoner 1990; Richter et al.
2012). The three main parts of the model that relate directly to
the degree of freedom problem and contribute to the variance
structure of pointing movements are (1) the “timing” system
that generates a timed virtual trajectory in end-effector space
(Schoner 2002; Rokni and Sompolinsky 2012), (2) the “neu-
ral dynamics of the virtual joint trajectory” that transforms
the virtual end-effector trajectory into joint space (Schoner
1994; Martin et al. 2009), and (3) the “muscle-joint model”
that impacts on the biomechanical dynamics of the arm and
captures spinal feedback loops (Gribble et al. 1998). Noise
is injected into each of those modules as described below.

2.1 Neural dynamics of movement initiation and
termination

A movement is initiated by switching from the resting to the
movement state and terminated by switching back. These two
states are represented by dynamic neural nodes, u; and up,,
subject to the competitive neural dynamics

Tmlm = —Um +h + In — o (uy)
Tty = —ur +h + Iy — o (um) (D

with negative resting level, i, and sigmoidal nonlinearity,
o(u) = 1/(1 + exp[—100 u]). The input, Iy, is an external
“g0” signal. The input, 7, depends on the predicted state of
the end-effector such that it reactivates the resting state at the
end of the movement (see Martin et al. 2009, for details).

2.2 Timing dynamics

A movement is generated through a virtual velocity profile,
represented in end-effector space by the two-dimensional vir-
tual end-effector velocity vector, u = (u1, u3), and modeled
as a stable limit cycle of a Hopf normal form oscillator that is
topologically equivalent to a wide class of oscillating dynam-
ical systems (Perko 2001):

folui, zi) = (Z}; _O:h> (ui Z_iUl)

— apU? ((u,- — U+ z?) <“i ; Uf) O,

i

where z; is a second, auxiliary dynamical variable, and
i = 1, 2 spans the two dimensions of end-effector space. The
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parameter, wp, sets the frequency of the limit cycle oscilla-
tion, «y, its relaxation rate, and U; its amplitude. Note that
this limit cycle dynamics is only active while uy, is above
threshold, typically for a single cycle. When the u; is active,
a fixed point attractor at u = 0 arises instead. The complete
timing dynamics is given by

(2’) = o (um) fu(u, z) + o (ur) (:Z’) + Vo, 3)

1

where ¥, is time-correlated noise (see Sect. 2.5). This noise
term generates inhomogeneous variations of the time course
of the movement that induce variations of total movement
time, but go beyond a mere rescaling of the entire time
course.

2.3 Neural dynamics of the virtual joint trajectory

The virtual end-effector velocity, u, is low-pass filtered to
provide a signal, v, for the virtual end-effector acceleration

vV=—a(v—u) “)
that is transformed into a virtual joint acceleration vector,
A~ TTO) (V=) Q)

where J* indicates the Moore-Penrose pseudo-inverse of
the manipulator Jacobian matrix, J(6) = dp/d0, that relates
changes in joint configuration, 6, to changes in end-effector
position, p.

Asasecond-order dynamical system, this equation attracts
the virtual joint velocity, i, toward the direction in which it
produces the virtual end-effector velocity, v. Orthogonal to
this direction, the vector field of the dynamics is zero. In
this orthogonal direction, we add a contribution that couples
the real, time-delayed joint configuration, 84, back into the
virtual configuration

f~E(—BuET 0.~ 00) — BT G~ ) ~ETR). (6)

where 8 are gain factors and E(1) € R**? is the projection
matrix onto the orthogonal complement of the null space
of J(1). This “back-coupling” makes that the virtual joint
vector, A, yields to the real joint vector, 6, within the null
space of the end-effector position (see Martin et al. 2009, for
details).

The dynamics of the virtual joint velocity

=T (v —Ji)
+E (=B E" 0. = 00) — puET Gi=b) — BT 1) +v1,
%
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consists, therefore, of two orthogonal contributions, the first
lying in the subspace in which the virtual joint velocity moves
the end-effector (“task-relevant”), the second lying in the
subspace in which the virtual joint velocity does not move
the end-effector (“task-irrelevant”). v, is “neuronal noise”
(see Sect. 2.5).

2.4 Muscle and biomechanical dynamics

The virtual joint vector, A(¢), represents the descending motor
commands that modulate muscle activation in the spinal
cord. Muscle force generation is modeled based on Gribble
et al. (1998), simplified by neglecting the dynamics of force
buildup (“calcium dynamics”) and the delays in the stretch
reflex. The torque generated by four virtual muscle groups

T = K- (exp([Kn - 6 = 21" = 1)

— exp([Kni - (=6; + 21" = 1)
+ ol - asinh(@; — A;) + fen - 6; ®)

contains contribution of agonist muscles, Af = A — Co,
and antagonist muscles, k;” = A; + Co, whose motor com-
mands are offset by a constant co-contraction command, Co.
The semi-linear threshold function is signified by [...]T. Joint
angles are designated as 6;, and joint velocities as ;. There
are both linear, Kj, and nonlinear stiffness parameters, Ky,
as well as two types of viscosity, upi,1. See the appendices
in Martin et al. (2009) for detailed arguments for the various
approximations.

The effects of multi-articulatory muscles are emulated by
including off-diagonal elements in the impedance matrix, Z,
that distributes muscle torques T = (771, .. ., T4) onto active
joint torques, Tyy:

m=Z'T+Wmv (9)

where 1, is a vector of time-correlated motor noise (see
Sect. 2.5).

The biomechanics of the arm moving in the horizontal
plane are modeled with four degrees of freedom, representing
rotational motion of the sternoclavicular, shoulder, elbow,
and wrist joints. The forward kinematic mapping relating
joint movements to movements of the pointer was derived
using the screw theory framework (Murray et al. 1994). The
equation of motion
M6é + C6 = T, (10)
relating active joint torques, Ty, to joint accelerations, ] , was
derived following the Lagrangian approach.
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2.5 Noise

Movement is variable. When the same movement task is per-
formed repeatedly, the variability across trials reflects the
balance between stabilization mechanisms and sources of
noise. It is generally assumed that different sources of noise
contribute (Schoner and Kelso 1988). Force generation by
muscles is noisy and has been shown to be a major factor
in movement variability (van Beers et al. 2004). The neural
processes driving movement generation are prone to random
fluctuations characteristic of all neural activity (Stein et al.
2005).

To examine the impact of noise on movement variability,
we model noise sources at three levels. (1) “Timing noise”:
The generation of the timing signal at the end-effector is
subjected to noise (see Eq. 3). (2) “Neural noise”: The trans-
formation to a virtual joint trajectory is subjected to noise
(see Eq. 7). (3) “Muscle noise”: Muscle force generation is
assumed noisy (see Eq. 9). Noise is modeled as additive,
time-correlated (Ornstein-Uhlenbeck) stochastic contribu-
tions, ¥ (¢), to the respective dynamics:

Ty ==Y +ny L (11)

where ¢ is Gaussian white noise, 7y the correlation time,
and ny noise strength. Noise at the higher levels of move-
ment planning was considered, but found to have minimal
influence on the trial-to-trial variability of the executed move-
ment trajectory and was thus dropped from consideration.
Because our model generates relatively fast and thus largely
ballistic movements, sensory noise and online updating were
neglected.

A fourth source of variance is the variation in the initial
end-effector position and joint configuration across trials that
is observed in the experiment. The three sources of noise
listed above do not account for that variance. We modeled
variance of the initial joint configuration by adding a random
vector drawn from a uniform distribution to the initial virtual
joint configuration and then letting the system relax to the
fixed point of system while the timing signal was at rest
(Eq. 3).

2.6 Parameter values

The only parameters adjusted to fit data in this paper are the
strengths of the noise sources. These were adjusted by hand
to achieve appropriate orders of magnitude of the resultant
variance. In some simulations, noise sources were selectively
set to zero to demonstrate their role.

All other model parameter values were taken from Martin
et al. (2009, listed in the appendices of that paper). We use
the “reference parameter set” that was found in that paper
to account for a large set of experimental signatures. We did

not adjust these parameter values to account for the variance
data. In some simulations, we set particular terms to zero to
probe their effect. This is explained for each simulation.

3 Experimental and simulation methods

We obtained a set of movement data from three participants
to compare the model to experiment. Our goal was qualitative
comparison to assess which features of the data were robust
and reproducible and could thus be meaningfully expected
to be matched by the model. Fitting the individual datasets
is not consistent with the strategy for choice of parameter
values (see above).

3.1 Experimental protocol

Experiments on human movement were performed by one of
the authors (VM) at the laboratory of our late colleague Dr.
John Scholz at the University of Delaware. Three volunteers
between 21 and 35 years of age volunteered to participate
in this study. Participants gave informed consent. All three
participants were right-handed and used their right arm to
reach the targets.

Participants sat on chair with a high backrest. Trunk move-
ments were restrained by a chest harness that was firmly
attached to the backrest of the chair. Subjects wore a hand
brace containing a stylus that was aligned with the extended
index finger. The table height was adjusted so that the right
arm rested on it horizontally when in the starting position.

Participants performed reaching movements from three
different starting locations to two different targets (see Fig. 2).
Targets T1 and T2 were positioned at 90% arm length along
two lines passing through the right acromion process at
angles of £ 40° to the side. Starting locations S1 and S2 were
7.8 cm anterior from the sternum and the right acromion, and
starting location S3 was at 50% arm length along a line pass-
ing through the right acromion, rotated 20° rightward. The
initial arm configuration was marked for each movement, and
subjects were asked to replicate this configuration as closely
as possible between repetitions. Four different combinations
of starting and target locations were used: M1: S1 — TI,
M2: S2 — T1, M3: S2 — T2, and M4: S3 — T2. Subjects
performed 25 repetitions in each condition in randomized
order.

Participants were asked to reach for the target with the tip
of the stylus as accurately as possible, but in one continu-
ous movement without pausing or correcting for misses. The
movement time was determined during test trials in which
participants were instructed to move as quickly as possi-
ble. During the actual experiment, participants were asked
to maintain this movement time, which was on the order of
500ms for all participants. Movement time was measured
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and trials were repeated if the movement time deviated by
more than 5% from the target movement time. Participants
were able to practice movements under these instructions
prior to data collection with verbal feedback from the exper-
imenter on spatial and temporal accuracy.

Five reflective markers of 1.5cm diameter were placed
on the suprasternal notch, just below the lateral tip of the
acromion, the lateral epicondyle of the humerus, the radial
styloid process of the wrist and the tip of the handheld sty-
lus. Additional markers were placed at the center of the each
target. Kinematic data from these markers were recorded
using a VICON-370 motion capture system at a sampling
rate of 120 Hz. The data were filtered using a two-directional,
fourth-order butterworth low-pass filter with a cutoff fre-
quency of 5Hz.

3.2 Simulations

To simulate the model, the stochastic differential equations
were solved numerically in MATLAB (MathWorks, Inc),
using the stochastic Euler method with a time step of 2ms
(Kloeden and Platen 1999). The trajectories obtained from
repeated numerical simulation of the model were analyzed
using the same procedures as those applied to experimental
data.

3.3 Time normalization

To estimate variance of movement trajectories across repeti-
tions, trajectories were normalized in time between move-
ment initiation and termination. Such time normalization
uses a homogeneous rescaling of the time course of all move-
ment trajectories to eliminate variation in movement time.
To normalize the time, we first calculated the end-effector
velocity by numerical differentiation. For each repetition,
movement initiation was defined as the point in time at which
the end-effector velocity first reached a threshold of 1% of
its peak value. Movement termination was defined as the
time when v dropped below 3% of its peak value. The time-
normalized trajectories were resampled to 100 data points
using spline interpolation.

The estimates of movement onset and termination are a
first possible source of error, which may have different effects
on estimates of variance at different moments in time. In
particular, the same misalignment in time has a larger effect
on the variance of end-effector position at larger movement
speeds. Therefore, position errors along the main movement
axis will be larger near peak velocity in the middle of the
movement and smaller at low speeds early and late in a
movement. Timing-induced position errors orthogonal to the
main movement axis, on the other hand, depend upon the
curvature of the path, which tends to be bimodal. We refer
to these different axes movement extent, defined as “end-
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Fig. 3 Effect of temporal misalignment (blue) and deviation from
homogeneous rescaling in time (purple) on a reference end-effector tra-
jectory (green). Panel A shows movement extent, i.e., movement along
the axis between the start and end positions. Panel B shows movement
direction, i.e., movement orthogonal to extent. Panel C shows the errors
(deviations from reference trajectory) induced by such timing issues
(color figure online)

effector position along the line from the start to the target
position”, and movement direction, defined as “end-effector
position orthogonal to the line from the start to the target
position.”

The effect of time normalization errors is illustrated
schematically in Fig. 3, comparing a reference end-effector
trajectory (green line in Panel A and B) with a copy of
itself shifted in time to model misidentification of move-
ment onset and termination (blue line in Panel A and B).
The error induced by time normalization, i.e., the difference
between the two trajectories, is bell-shaped for movement
extent (solid blue line in Panel C) and bimodal for movement
direction (dashed blue line in Panel C). A deviation from the
assumption of homogeneous rescaling leads to similar errors,
as shown by the red lines in Panel C. Here, time was warped
nonlinearly by adding an quadratic error term that leaves
movement onset and termination times invariant but warping
the time in between. This characteristic time dependence of
the errors induced by the two forms of timing misalignment
is relevant when examining time courses of variance.

3.4 Structure of variance in joint space

To analyze the structure of variance within the four-
dimensional joint space, we used two methods of analysis, the



Biological Cybernetics (2019) 113:293-307

299

method of the uncontrolled manifold (UCM) and a method
based on principle component analysis (PCA).

UCM The UCM method compares variance in task-relevant
and task-irrelevant directions in joint space. Originally intro-
duced in Scholz and Schoner (1999), mathematically refined
formulations of the UCM method of analysis of variance have
been published (Schoner and Scholz 2007; Yen and Chang
2010; Verrel 2011; Campolo et al. 2013), so that only a brief
sketch need be provided here. For any potential task vari-
able ¢ = f(0), let Jp = % be the Jacobian matrix that
represents locally how the task variable, ¢, depends on joint
angles, 0. Let E)| and E | be the orthogonal projection matri-
ces onto the null space of J4 and its orthogonal complement.
Given a sample covariance matrix S, the variance along and
orthogonal to the UCM is estimated by the traces

1 ey 1 —~~
Vi=—t(E[SE)) and Vi =—u(EIZEL),
ki ko

(12)

where k| and k; are the dimensions of the task-irrelevant
and task-relevant subspaces. Task variables can be exam-
ined separately. In particular, we examine the task variables
movement extent and movement direction. For each move-
ment condition and at each point of normalized time, we
calculate the sample covariance matrix around the mean and
then the UCM measures given in Eq. 12.

PCA While the UCM method of analysis tests particular
hypotheses about task variables that structure variance, an
alternative is to first estimate the structure of variance in a
data-driven way (e.g., using principle component analysis,
PCA) and then interpret the observed structure relative to
different hypotheses.! In many studies, there are not enough
data to perform such a data-driven search for the structure
of variance. The simple nature of the present experiment
enables us to obtain 25 repetitions of each movement, so that
data-driven analysis is feasible. In the model, the number of
repetitions is unlimited, of course. We can use the data-driven
approach to observe how the structure of variance depends
on different components of the model (see the next section).
Providing a second, convergent method of analysis to char-
acterize the structure of variance in joint space can serve to
consolidate the empirical and theoretical results.

We performed such an analysis for the endpoint of
the movement. The covariance matrix in joint space was
constructed across movement repetitions, and a PCA was

! Note that this is a different use of PCA than that made in a large
number of other publications (e.g., Daffertshofer et al. 2004; Tresch
et al. 2006). Here, we analyze strictly the variance across repetitions of
the same movement at a fixed point in time and for a fixed movement.
In those other approaches, variance across time and across tasks is often
included or even made the main focus of analysis.

performed (Daffertshofer et al. 2004). This yields an ordered
set of basis vectors of joint space in which each basis vector
captures the maximal amount of remaining variance.

To test the hypothesis that variance is compressed in direc-
tions in which the task variable varies, we examined the
degree of alignment of basis vectors with the task manifold
by computing the angles between the two-dimensional task
manifold and each of the two main principal components.

4 Results

4.1 Variance of end-effector trajectories and role of
alignment errors

Figure 4 illustrates the paths of the end-effector for a typical
participant and for the model simulations. The experimental
movement paths are slightly curved, depending on movement
direction. Overall, these features are well reproduced by the
model, although the curvature for movement 4 (see Fig. 2) is
in the wrong direction. The velocity profiles show the char-
acteristic bell shape of pointing movements (Morasso 1981;
Flash and Hogan 1985). The experimental velocity profiles
exhibit high variability in onset and termination, highlight-
ing the need for time normalization. Movement time in the
model is not varied.

The variance of the end-effector trajectories is illustrated
in Fig. 5. To compute variance across repetitions, time was
normalized. End-effector variance is broken down into vari-
ance in movement direction and movement extent for two
movements (1 and 3) and one participant. Variance of move-

Experiment Model

Fig. 4 Top: end-effector paths from different trials of the four move-
ments for a typical participant (left) and multiple simulation runs of the
model (right). Sample profiles are shown on bottom, unnormalized for
the participant (left), while movement time does not vary for the model
(right)
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Fig.5 End-effector variance for the model (top) and experiment (bot-
tom) separately for the extent (blue) and direction (red) components
(color figure online)

ment extent is strongly bell-shaped with a peak near the peak
velocity of the movement. Variance of movement direction
is generally much smaller than variance of movement extent.
Variance obtained from the model matches the experimen-
tally observed pattern.

To study how timing variability and misalignment impact
on end-effector variability, we ran two kinds of simulations.
In one, we added uniformly distributed random noise to
the movement initiation and termination times. This emu-
lated misalignment of different trials. Figure 6 shows the
end-effector variance from the trial misalignment simulation
study, where random perturbations of movement initiation
and termination were the only source of variability, separated
into movement direction and extent. As expected based on
the results from the simple example in Fig. 3, the movement
extent variability induced by trial misalignment is strongly
bell-shaped. For the movement direction hypothesis, the
effect is much smaller, with a bimodal shape containing a
significant dip around peak velocity. At movement initiation
and termination, there is almost no variability, as expected in
the absence of other noise sources. Together, the simulations
in Figs. 6 and 5 indicate that alignment errors contribute to
end-effector variance, but are not the only, or even a necessary
element capable of explaining the structure of end-effector
variance.

In the second class of simulations, we induced variance of
timing that was inhomogeneous in time by strongly increas-
ing the strength of the timing noise, ¥, (from 0.008 to 0.05,
see Eq. 3). All other noise sources were set to zero. Figure
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Fig. 6 Illustration of the effect of trial misalignment on end-effector
variance in the model for movement 1
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Fig. 7 End-effector variance obtained from simulation when a strong
timing error is the only noise source in the model (Movement 6)

7 shows the effect on end-effector variance of inhomoge-
neous timing variance. With time normalization (left), the
bell-shaped modulation of end-effector variance in move-
ment extent is observed, while movement direction shows
a smaller effect. The variance of the end-effector after the
movement ends does not return to zero, making the bell shape
asymmetrical. This is due to the fundamental lack of sta-
bility of the timer (oscillator) along its phase, so that drift
occurs over time. When time is not normalized (right panel
of Fig. 7), that monotonic increase of variance due to phase
drift is clearly visible. Note that now there is no bell shape of
variance in either component, clearly pointing to the origin
of that shape in sources of noise (misalignment and neu-
ral/muscle noise) other than timing noise itself.

Clearly, time normalization is partly responsible for the
strong modulation of end-effector variance with time, induc-
ing a bell-shaped profile, especially for the extent component,
that reflects the direction in end-effector space along which
movement actually occurs. There is not way, however, that
time normalization can be avoided, however, as we need to
compare matching moments in time across trials and that
entails aligning trials by on- and offset. Fortunately, the
model is able to capture the modulation of variance even
when misalignment is neglected.
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Fig. 8 Trajectories of the four joint angles across trials for one move-
ment of one participant

4.2 Variance in joint trajectories

Figure 8 overlays the joint angle trajectories of all trials
for one exemplary participant and movement. Variability of
shoulder and elbow joint trajectories appears to be larger
in mid-movement, consistent with a somewhat bell-shaped
profile of joint trajectory variance. The trajectory of the ster-
noclavicular joint is close to flat and has little variance.
Variability of the wrist joint trajectory is large overall and
visibly larger near the end of the movement than at the begin-
ning.

Average joint angle variance of movement 4 is plotted
across normalized time in Fig. 9 for all three participants and
for the model simulations. This figure illustrates differences
in joint trajectory variability across participants. Some fea-
tures emerge as common traits. Many joint variance profiles
are roughly bell-shaped, with a distinctive peak of variance
in mid-movement. This is similar to the temporal profiles
of end-effector variance (for movement extent, see Fig. 5),
suggesting that some of the mid-movement variability might
be due to time normalization as discussed previously. A dis-
tinct feature is that for most joints, variance increases over
time and remains larger at the end of the movement than at
the beginning. This stands in contrast to the variance of end-
effector trajectories, in which no such increase was observed
(see Fig. 5). This suggest that joint angle variance increases
in those directions of joint space that does not affect the
end-effector variance, i.e., along the task-equivalent mani-
fold, but not in other directions of joint space. Note that the
model captures these features that are robust across partici-
pants.

4.3 UCM analysis of variance

To formalize the intuition that the variance of joint angle tra-
jectories conserves the end-effector trajectory, we employ

Subject 1 Subject 2 Subject 3 Model

T2

Fig. 9 Joint angle variance computed across trials as a function of
normalized time for movement 4 for each participant and for the model.
Joint angles are color-coded as in Fig. 8

the UCM method of analysis. The results are shown in
Fig. 10 for all four movements, all participants, and the
model. The participants differ in the absolute levels of the
different components of variance, but three main features
that are invariant across participants and movements emerge.
First, V| at movement termination is similar or slightly
smaller than V| movement onset. This component of vari-
ance has a peak in mid-movement, which is of medium size
for the task variable movement direction and pronounced
for the task variable movement extent. Second, V) is sub-
stantially higher at movement termination than at movement
onset, with a medium-sized peak in mid-movement. Third,
V) is generally larger than V,, with the exception of sub-
ject 3 in mid-movement for the movement extent variable,
where V| temporarily exceeds V). Because movement extent
captures the direction along which the hand is moved,
the peak of variance in V) reflects the peak in variance
of the hand’s position along its path, indicating that this
increase in variance is largely due to time normalization (see
Fig. 7).

These three major characteristics are reproduced very well
by the model. Note that other features are not consistent
across movements and participants. For instance, the orthog-
onal variance of the task variable direction is more strongly
modulated in time for movements 1 and 2 than for move-
ments 3 and 4 and that modulation is not well captured by
the model. The stronger modulation is due to the more curved
movement paths of movements 1 and 2 (Fig. 4), which create
stronger modulation of movement direction, and—through
misalignment—an increase of orthogonal variance of direc-
tion in the middle of the movement. The model does not
reproduce the curved paths so well, perhaps because control
is too stiff in the model overall.

4.4 PCA approach to discovery of structure of
variance

To probe inter-joint coordination further, we employ PCA of
the joint angle variance at the movement termination. Fig-
ure 11 shows for each participant, and each movement, the
proportion of total variance that is explained by consecutively
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Fig. 10 UCM analysis of variance for all three participants (columns
1-3) and for the model (column 4), as well as for all four movements
(rows). In each case, the solid lines are variance parallel to the UCM
and the dashed lines are variance orthogonal to the UCM. The UCM

Subject 1 Subject 2 Subject 3

Fig. 11 Proportion of variance in joint space at movement termination
explained by consecutively adding principles components across all
three participants and each movement (color-coded). The dotted line
indicates a 90% level as a visual guide (color figure online)
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is computed either relative to the task variable movement extent (blue
lines) or to the task variable movement direction (purple lines) (color
figure online)

adding principle components (PCs). The first two compo-
nents explain most of the variance in all cases.

The angles between each PC and the UCM for the task
variable end-effector position in space are listed in Table 1.
Consistent with the UCM analysis, these angles are near
0° for the first two PCs and near 90° for the remain-
ing two PCs. So the PCA approach to discovery of the
structure of variance is in close agreement with the UCM
hypothesis testing approach. Below, we will use this anal-
ysis to study the causes of the structure of variance in the
model.
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Table 1 Angles between the four principal components obtained at
movement termination and the UCM for the task variable end-effector
position

Movement PCl1 PC2 PC3 PC4
1 24 0.8 87.8 88.5
2 2.4 4.4 82.2 87.3
3 1.4 3.8 86.8 87.6
4 4.9 33 84.1 89.1

4.5 What causes the UCM effect?

The model enables us to identify possible causes of the UCM
structure of variance by varying model components and doc-
umenting their influence on the structure of variance.

Role of noise sources Figure 12 shows the results of apply-
ing the PCA approach to data from model simulations. Model
simulation results obtained from the reference parameter set
(left panel) are generally similar to the experimental data
(Fig. 11). When “neuronal noise” in the transformation of
the timing signal to the virtual joint trajectory (see Sect. 2.5)
is the only source of variance (middle panel), then the vari-
ance generated by the model is not highly structured. The
first principal component explains only & 50% of the total
variance, substantially less than in the experimental data for
subjects 1 and 2. When “muscle noise” is the only source of
variance (right panel), the structure of variance is closer to
the experimentally observed pattern for these two subjects.
For subject 3, the first PC explains less variance compared
to subjects 1 and 2, though still more than for the model
without neuronal noise. It seems likely that a combination of
the two noise sources, with reduced neuronal noise strength
compared to the reference parameter set, would fit data from
this subject better, but explaining inter-subject variability is
beyond the scope of this study. The “timing noise” has a
very weak effect on joint variance, so that its influence on
the structure of variance is difficult to establish.

Muscle Noise

-

Neuronal Noise

Two Noise Sources
) —

=

Fig. 12 Proportion of variance in joint space at movement termination
explained by consecutively adding principle components across for each
movement (color-coded) for the model. Three variants of the model are
compared. The dotted line indicates a 90% level as a visual guide (color
figure online)

Persistence of initial variance One striking feature of the
UCM analysis is that even at the beginning of the movement,
there is already some structure of variance consistent with
the UCM of the end-effector position (Fig. 10). This struc-
ture of variance reflects how the arm is initially configured
by participants to place the hand at the desired starting loca-
tion. In the model, we can study to which extent this initial
structure of variance is preserved throughout the movement
and contributes to the structure of variance over time.

In the model, the initial variance of end-effector and joint
configuration was modeled by adding a noise term to the
initial configuration and then simulating the model in the
resting state for a while (see Sect. 2.5). When we remove this
mechanism from the simulations, initial variance is indeed
zero as seen in Fig. 13. By comparing this simulation with
the corresponding simulation that includes variance of the
initial configuration (movement 1, top right in Fig. 10), we
make the following observations. First, the UCM structure
of variance still emerges in the absence of initial variance.
So the UCM structure is not caused by the initial structure
of variance alone. Second, for the UCM component, initial
variance adds variance throughout the movement. At the end
of the movement, UCM variance for both task variables is
0.078 rad? with and 0.058 rad? without initial variance, a dif-
ference of 0.020rad?. The initial UCM variance is 0.036 rad2,
so some of the initial UCM variance is preserved across the
movement. Third, the components of variance orthogonal
to UCM are increased by initial variance early during the
movement, but that increase does not persist. Thus, at the end
of the movement, orthogonal variance for movement extent
(red dashed) is 0.0073 rad? both with and without initial vari-
ance. For orthogonal variance of movement direction (blue
dashed), it is 0.012rad? in both conditions.

Role of back-coupling Back-coupling is responsible for
updating the virtual joint trajectory to yield to the real joint
trajectory within the UCM. This mechanism was introduced
to account for the emergence of motor-equivalent joint con-
figuration in response to external perturbations (Martin et al.

Vi Vi
== Ext.
— == Dir.

Fig. 13 UCM structure of variance across time for a simulation of
movement 1 in which the initial variance of end-effector and joint con-
figuration has been removed (solid line: V|, dashed line: V| ) compared
to the top right simulation in Fig. 10
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Fig. 14 UCM variance obtained from the model when back-coupling
is removed (right column) when the sole noise source is “neural noise”
(top) or “muscle noise” (bottom). (Solid lines for V|, dashed lines for
V1, blue for extent, red for direction hypothesis) (color figure online)

2009). Noise is a source of perturbation, so we must estab-
lish how back-coupling affects the structure of variance in
otherwise unperturbed movements. To do that, we compare
the results of the model with back-coupling turned on and
off: Fig. 14 contrasts simulations of the regular model with
back-coupling (left column) with simulations in which the
back-coupling terms in the model were set to zero (8 = 0
in Eq. 6). Because back-coupling might interact differently
with neuronal noise and motor noise, the comparison is made
separately when only “neural noise” or only “muscle noise”
is applied to the model.

In the task-relevant subspaces, variance remains more or
less unaffected by both back-coupling and noise source and
retains its characteristic shape. In the task-irrelevant sub-
spaces, back-coupling interacts differently with neural than
with muscle noise. When neuronal noise is the main source
of variability (top row), back-coupling limits the growth of
UMC variance toward the end of the movement. When mus-
cle noise is the main source of variability (bottom row),
back-coupling has the opposite effect of increasing UCM
variance toward the end of the movement.

Role of decoupling In the space of virtual joint velocities, the
two subspaces of the linearized UCM and its orthogonal com-
plement are decoupled at each point in time, as described by
Eq. 7. The descending timing signal is directed only into the
space orthogonal to the UCM, and back-coupling is directed
only into the UCM subspace. We can probe the role of this
decoupling by replacing back-coupling by a damping term
within that UCM subspace. This effectively provides stabil-
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The UCM effect is effectively destroyed for the task variable
“movement extent.” The UCM effect is strongly reduced for
the task variable “movement direction”, persisting only in
the second half of the movement.

5 Discussion

We have shown how the UCM signature of variance may
emerge from the processes of movement generation. These
include (1) a process for generating the time course of the
movement as a virtual end-effector trajectory, (2) a dynami-
cal system that transforms the virtual end-effector trajectory
into motor commands for the muscle-joint systems by decou-
pling those combinations of degrees of freedom that move the
end-effector from those combinations that do not, (3) and a
neural dynamics of muscular control that generate torques
in response to descending motor commands and proprio-
ceptive feedback. This process model had been developed
earlier (Martin et al. 2009) to account for a wide range
of kinematic properties of multi-degree-of-freedom reach-
ing movements, including the self-motion observed in such
systems as well as motor equivalence when a perturbation
prevents the arm from reaching the configuration specified
by descending commands. Motor equivalence, in particular,
required an update of the motor command in response to pro-
prioceptive signals in which the motor command “yields” to
the current kinematic state of the limb, essentially the oppo-
site of feedback control, which we named “back-coupling.”
We also showed in that earlier work that the perfect inverse
dynamics predicts too little self-motion, which supported the
overall architecture of the proposed model that is based in
virtual kinematic trajectories.

To account for the structure of variance in joint space,
we systematically explored four sources of variability. We
studied in detail the role of “muscle noise”, that is, of vari-
ance in the force levels generated by muscles given the same
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motor command. We also studied in detail the role of “neu-
ral noise”, that is, of variance in the motor commands that
drive the muscle-joint systems. Random perturbations at the
level of the timing of the end-effector virtual trajectory were
examined, but had limited influence on the structure of vari-
ance in joint space. Finally, the variability of the initial joint
configuration for each reaching movement was studied.

By comparing with experimental data, we were able to
establish three accounts. (1) The overall UCM structure
of joint configuration variance assessed by three features
(Sect. 4.3, Fig. 10) was captured very well by the model.
The account for the pattern across different movements and
across time is perfectly adequate given the variation across
participants. (2) The peak of variance in the direction per-
pendicular to the UCM around the time of peak end-effector
velocity can largely be attributed to misalignment of differ-
ent trials during time normalization and inhomogeneities in
the time structure (Figs. 5, 6, and 7). (3) The UCM structure
of joint configuration variance at the beginning of the move-
ment was shown to be not the only source of UCM variance
(Fig. 13). Given that UCM structure of variance is created by
neural and muscle noise, the fact that this induced variance
is preserved across trials when participants reset their limb
to an initial end-effector position is natural in light of our
earlier account for motor equivalence (Martin et al. 2009):
When the arm is moved back to the starting position, the
motor commands specified for each muscle-joint system are
adjusted by back-coupling, enabling different initial postural
states that reflect different motor-equivalent outcomes of that
movement back to the starting position.

The process model of movement generation enabled us
to explore the extent to which particular components of the
model and particular sources of noise cause the UCM struc-
ture of variance. We identified three potential causes.

(1) The decoupling of the motor commands across the
two subspaces parallel and orthogonal to the UCM induces a
UCM signature in the structure of variance. This decoupling
is formalized in the model by directing the descending virtual
end-effector velocity to the subspace that is orthogonal to
the UCM in Eq. 5, while the subspace parallel to the UCM
receives no descending input (vector field zero except for
back-coupling, see below). Note that the individual motor
commands to different muscle-joint systems must be coupled
in a particular way in order to achieve such decoupling.

The most direct evidence that decoupling causes a UCM
signature of variance comes from the manipulation illustrated
in Fig. 15 in which decoupling was perturbed by introducing
a damping in the subspace parallel to the UCM. That damp-
ing stabilizes zero joint velocity in that subspace, disrupting
the coordination among joints that decouples the two sub-
spaces. Removing decoupling completely destroys the UCM
effect with respect to the movement extent hypothesis, that is,
the UCM induced by the position of the end-effector along

its path to the target. It strongly reduces the UCM effect
with respect to the movement direction hypothesis, the UCM
induced by the deviation of the end-effector from its path to
the target.

(2) The UCM structure of variance is caused, in part, by
imperfect control, that is, failure to compensate perfectly for
“muscle noise.” Specifically, the shape of the variance dis-
tribution in four-dimensional joint space that emerges from
neural noise and decoupling alone is not sufficiently elon-
gated along the UCM and compressed in the orthogonal
directions, compared to the empirically observed structure
(Figs. 11 and 12). In addition to neural noise, “muscle noise”
generating random perturbation at the level of control is
required for the model to capture that structure.

Muscles and their peripheral feedback control do not con-
trol the limb perfectly, so that it deviates from the joint
configuration trajectory that the descending motor com-
mands prescribe. We previously provided evidence for this
claim by accounting for the sizable portion of self-motion
observed in reaching with redundant degrees of freedom
(Martin et al. 2009) and contrasting that observation to the
very small amount of self-motion predicted with the model
perfectly controls the descending commands. What we find
here is that those random torque combinations that happen
to affect the end-effector are resisted against more strongly
than other random torque combinations that happen to lie in
the UCM and do not affect the end-effector.

How does this happen? Some of the deviations from the
descending motor command induced by muscle noise lie in
the space orthogonal to the UMC. They are counteracted by
the peripheral feedback loop that the muscle control model
captures. Other deviations lie in the space parallel to the
UCM. They are also counteracted by the peripheral mus-
cle control. But at the same time, back-coupling updates the
motor commands in this space toward the actual configu-
ration. This leads to the virtual configuration following the
random fluctuations induced by muscle noise to some degree,
diminishing the extent to which muscle control counteracts
those deviations.

(3) This role of back-coupling in causing the UCM struc-
ture of variance is highlighted by Fig. 14. With back-coupling
in place, and under the influence of muscle noise alone (bot-
tom left), the UCM component of variance increases over the
course of the movement. When under the same conditions,
back-coupling is eliminated, the UCM component of vari-
ance no longer increases significantly over the course of the
movement. The remaining UCM effect is largely due to the
structure of variance in the initial condition.

In response to neural noise, the opposite pattern emerges.
Without back-coupling, because the vector field in the direc-
tion aligned with the UCM is zero, neural noise strongly
drives variance in that direction. The observed increase in
variance over time (Fig. 14, top right) reflects diffusion in that
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marginally stable direction in the space of motor commands.
Back-coupling limits the extent to which this diffusion in the
motor command is effective in driving variance of the joint
configuration: As the motor command drifts away from the
realized joint configuration, back-coupling pulls the motor
command back to the realized configuration.

Together, we see how the coupling structure at the level
of the motor commands and back-coupling combine to pro-
duce the UCM structure of variance. Variance within the
motor commands is structured by the coupling that selec-
tively stabilizes directions orthogonal to the UCM. Variance
within the torque vectors that generate movement is selec-
tively stabilized along directions orthogonal to the UCM by
the peripheral feedback loops, while back-coupling partially
removes that stabilizing effect within the UCM.

A related form of back-coupling has been postulated by
Latash et al. (2005) to account for drifts within the UCM
observed in isometric multi-finger force production tasks.
That model shares with ours the structure of dynamic cou-
pling among force generating units. That coupling structure
generates compensatory changes in other units, when any
given unit deviates from its mean state through “neural”
noise conceived similarly as our neural noise. That model is
strongly reduced compared to ours as the modeled isometric
tasks are much simpler than point-to-point arm movements.
The Jacobian is constant, for instance, no timing signal is
required, and the muscle model can be omitted. As a result,
this model does not address the other sources of the UCM
structure of variance.

Another potential cause of the UCM structure of variance
would be structure in the noise sources themselves. Goodman
and Latash (2006) postulated, for instance, that the sources
of noise that act within the UCM are larger in variance than
the source of noise that act within the orthogonal comple-
ment. This makes it possible to generate the UCM structure
of variance from a feed-forward control model. It may appear,
however, that such an account merely shifts the problem to
understanding where the difference in variance of the noise
sources comes from.

Reaching, as we modeled it here, is ballistic in the sense
that the overall movement parameters (direction, amplitude,
and duration of the end-effector movement) are assumed
fixed from the beginning of the movement. This is a common
approximation that captures fast pointing or reaching move-
ments quite well. Essentially, the time for feedback about the
end-effector trajectory leading to updates of the motor plan is
too short to be effective (but see Pruszynski et al. 2011). Such
feedback is possible for slow movements, however. The other
extreme limit case may be upright stance, in which typical
sway frequencies of around 0.2 Hz imply a movement time of
5s. Postural sway is dominated by feedback about the body’s
(or the head’s) kinematic state in space. In such feedback sys-
tems, a fifth potential cause of the structure of variance has
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recently been described by Reimann and Schoner (2017).
Assume that one degree of freedom (say the ankle in upright
stance) causes a deviation of the relevant end-effector (here
the body in space) from its set point. When that deviation is
picked up by sensory systems, the feedback control system
generates a compensatory movement plan that opposes that
deviation. That motor plan is distributed to all the degrees of
freedom in some form of inverse kinematics or kinetics. So,
not only the degree of freedom originally causes the devi-
ation, but also all other degrees of freedom are engaged in
compensatory control, leading to a UCM structure of vari-
ance.

In summary, we have seen that a simplified, but still dif-
ferentiated process model of movement generation enables
us to pinpoint four different sources of the structure of vari-
ance: decoupling, motor noise, back-coupling, and transient
suppression of variance. Such an analysis may be helpful in
interpreting a host of experimental studies and may promote
a research agenda of tracking changes of the structure of
variance with learning (Kang et al. 2004) and development
(Greve et al. 2017).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
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