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Abstract The upright body in quiet stance is usually mod-
eled as a single-link inverted pendulum. This agrees with
most of the relevant sensory organs being at the far end of
the pendulum, i.e., the eyes and the vestibular system in
the head. Movement of the body in quiet stance has often
been explained in terms of the “ankle strategy,” where most
movement is generated by the anklemusculature, whilemore
proximal muscle groups are only rarely activated for faster
movements or in response to perturbations, for instance, by
flexing at the hips in what has been called the “hip strategy.”
Recent empirical evidence, however, shows that instead of
being negligible in quiet stance, the movement in the knee
and hip joints is even larger on average than the movement
in the ankle joints (J Neurophysiol 97:3024-3035, 2007).
Moreover, there is a strong pattern of covariation between
movements in the ankle, knee and hip joints in a way that
most of the observedmovements leave the anterior–posterior
position of the whole-body center of mass (CoM) invariant,
i.e., only change the configuration of the different body parts
around the CoM, instead of moving the body as a whole. It
is unknown, however, where this covariation between joint
angles during quiet stance originates from. In this paper, we
aim to answer this question using a comprehensive model
of the biomechanical, muscular and neural dynamics of a
quietly standing human. We explore four different possible
feedback laws for the control of this multi-link pendulum in
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upright stance thatmap sensory data tomotor commands.We
perform simulation studies to compare the generated inter-
joint covariance patterns with experimental data. We find
that control laws that actively coordinate muscle activation
between the different joints generate correct variance pat-
terns, while control laws that control each joint separately do
not. Different specific forms of this coordination are compat-
ible with the data.
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1 Introduction

The human body in upright stance is mechanically unstable
(Winter et al. 1998;Morasso andSchieppati 1999). To remain
standing, the force generated by muscles along the body has
to be constantly adapted by actively modulating the neural
activation level based on the available sensory data. But lit-
tle is known about how this mapping from sensory data to
motoneural activation and ultimately to force generation is
structured.

Research on quiet stance has mostly focused on the ankle
joint. Analysis of the active responses to mechanical per-
turbation revealed that for small perturbations, most of the
response occurs in the ankle musculature, while for larger
perturbations, themuscle groups around the hips play a larger
role (Horak and Nashner 1986; Runge et al. 1999). These
response patterns have been referred to as “ankle strategy”
and “hip strategy,” respectively. More recently, the ankle
and hip strategies have been characterized as two modes of
whole-body motion (Alexandrov et al. 2005) rather than two
independent movement patterns. While less salient than the
ankle mode, the hip mode is still observable even in quiet
stance (Creath et al. 2005). Kiemel and colleagues have

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00422-017-0733-y&domain=pdf
http://orcid.org/0000-0002-3418-9345


Biol Cybern

shown that the two modes might come from a single neu-
ral control strategy (Kiemel et al. 2008, 2011). Converging
evidence for coordinated movements of multiple joints con-
tributing to posture comes from the discovery of Scholz and
colleagues that following a perturbation, the center of mass
recovers faster and more completely than combinations of
joint angles that do not affect the center of mass (Scholz
et al. 2007).

Models of balance control have largely conceived of
upright stance as the problem of controlling a single degree
of freedom, the ankle joint (van der Kooij et al. 1999; Peterka
2002; Kiemel et al. 2002; Oie et al. 2002;Maurer and Peterka
2005;Maurer et al. 2006). This “inverted pendulum” approx-
imation implicitly assumes that all other joints are sufficiently
stiff to be passively stabilized independently of the neural
controller. This is consistent with the observation that mus-
cles converging on the ankle are correlatedmost stronglywith
postural sway (Gatev et al. 1999). It has become increasingly
clear, however, that this approximation is not without prob-
lems. For one thing, there is as much movement in the knee
and the hip as in the ankle joint during quiet stance (Günther
et al. 2009, 2010). Moreover, different joints do not move
independently of each other (Kuo 2005; Hsu et al. 2007;
Pinter et al. 2008; Günther et al. 2011). In particular, Hsu et
al. showed that sway patterns that leave the center of mass
invariant occur more frequently than others. That observa-
tion was based on the concept of the uncontrolled manifold
(UCM), a geometric representation of these sway patterns in
joint space (Scholz and Schöner 1999).

But where does this structure in the covariance between
the joints come from?One possibility is that the covariance is
a result of active coordination between the joints by the cen-
tral nervous system (CNS). This would mean that the control
signal based on the sensory estimates of the body’s state in
space is distributed between the different joints along the
body. The specific details of this distribution would have to
depend to some degree upon the current state of the periph-
eral neural circuitry and the configuration of the muscles
and body. Another possibility is that the covariance between
the joints is simply the result of the biomechanical struc-
ture of the multi-link inverted pendulum. Due to differences
in inertia, modes of movement that leave the CoM invari-
ant are inherently more excitable than those that affect the
CoM (Alexandrov et al. 2005). It is conceivable that the brain
simplifies the control problem by mapping sensory informa-
tion about the body in space only to the ankle joint, possibly
using preselected muscle synergies (Torres-Oviedo and Ting
2007), while outsourcing the stabilization of the more proxi-
mal joints to the periphery. Such a low-dimensional controller
makes sense in light of the fact that most of the relevant sen-
sory data come from the visual and vestibular systems, which
provide information about the head in space, but not about
the joints.
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Fig. 1 Overview of the sensorimotor loop for balancing the body in
quiet, upright stance

In this paper, we attempt to answer this question about
the source of the multi-joint covariance structure in quiet,
upright stance using a detailed model of the whole sensory-
motor loop of postural control as outlined in Fig. 1. The
model estimates the state of the body in space from the avail-
able sensory data, generates appropriate descending motor
commands, integrates these descending commands into the
spinal reflex loops and takes into account the dynamics of the
resulting muscle activation and of the biomechanics of the
body. The body is modeled as a three-link inverted pendulum
in the sagittal plane, with rotational joints at the ankle, knee
and hips, as shown in Fig. 2. During quiet stance, balance
in the sagittal plane is more challenging than in the frontal
plane, so we restricted our analysis to this direction. For the
mapping from sensory estimates of the body’s state in space
to descending motor commands, we propose four different
hypotheses for possible control laws with varying degrees of
coordination between the joints.

2 The model

Figure 1 shows the overview of the model. Most compo-
nents used in the model are well established, understood and
empirically validated. Each of these is briefly summarized
and referenced in the following sections.We thendescribe the
different hypotheses for the control law that maps estimates
of the body’s state in space to descending motor commands.

Throughout themodel section, the subscript j refers to the
three degrees of freedom, in the order of 1 = ankle, 2 = knee
and 3 = hip. Dependencies of model terms on time, t , have
been omitted to simplify notation where appropriate.
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Fig. 2 Sagittal plane model of
the body in quiet, upright stance
as a three-segment inverted
pendulum with rotational joints
at the ankle, knee and hip

2.1 The plant

In this section, we describe the model of the muscles that
actuate the body and their peripheral neural control, as well
as the biomechanics, that together form the plant in the nar-
row sense. We also characterize the sensory systems that
provide estimates of the body’s state in space. All of these
components are well established in the literature, although
their integration in a complete model of the sensorimotor
loop of upright balance control is novel.

2.1.1 Muscle model: the stretch reflex

The tonic stretch reflex activates motoneurons in response
to proprioceptive information from afferent muscle spin-
dles that are sensitive to muscle length and rate of change.
Descending motor commands modulate the reflex loop by
shifting the threshold length of the reflex. According to the
equilibrium-point hypothesis of motor control, this modu-
lation of threshold length is the only interaction between
the higher motor areas and the spinal circuitry that gener-
ates motoneural activation and ultimatelymuscle contraction
(Feldman 1972).

We adopt this hypothesis as an approximate description
of spinal motor control (see, e.g., Raphael et al. (2010) for a
more detailed model, the complexity of which was beyond
the scope of our study). We further simplify the description
by lumping all muscles converging on a joint into a single
agonist–antagonist pair (Feldman 2011). We use the elabo-
rated, nonlinear model of the equilibrium-point hypothesis
described by Gribble et al. (1998). The activation levels of

the motoneuron pools for the agonist, EAG, j , and antagonist,
EAN, j , muscle groups acting on joint j , are determined by

EAG, j = exp
[
αE

(
θ̂ j − λ j + ρ j + μ(̂θ̇ j − λ̇ j )

)]+ − 1,

EAN, j = exp
[
−αE

(
θ̂ j − λ j − ρ j + μ(̂θ̇ j − λ̇ j )

)]+ − 1.

(1)

The half-linear function [·]+ retains only the positive portion
of the argument. The proprioceptive signals from afferent
muscle spindles at time t ,

θ̂ j (t) = θ j (t − dreflex) + ηθ ,
̂̇θ j (t) = θ̇ j (t − dreflex) + ηθ̇ ,

(2)

are delayed, noisy copies of the joint angle, θ j , and joint
velocity, θ̇ j , where dreflex is a time delay and η∗ is time-
correlated noisemodeling the variability of neural processing
(see below). The parameters λ j and λ̇ j are neural represen-
tations of the stretch reflex threshold length and its rate of
change, and ρ j determines the co-contraction of the agonist–
antagonist muscle pair. We assume that during quiet stance,
the threshold length λ j is represented locally in the spinal
cord, while its rate of change λ̇ j is determined in the brain
and sent to the spinal cord as a descending motor command
(see Fig. 1) and that the co-contraction command, ρ j , is con-
stant and small. For the model, this implies that λ̇ j is the
input variable for the spinal reflex loops, while λ j is deter-
mined by numerical integration of the stochastic signal λ̇ j

(see Sect. 2.3). The velocity dependence of the stretch reflex
is modeled as relative to the rate of change, λ̇ j , of the thresh-
old length (Lussanet et al. 2002). The values of the constant
parameters αE and μ were adapted from Laboissière et al.
(1996) and Micheau et al. (2003).

The total motoneural activation, E j , for the lumped
agonist–antagonist pair at the j th joint is the sum

E j = (−EAG, j + EAN, j
)
ηm, (3)

where ηm is multiplicative white noise with mean μm = 1
(Faisal et al. 2008).

To account for the physical limits of force generation in
muscles, we introduced a boundary, Emax, for the motoneu-
ron activation, EAG and EAN. Beyond the point where the
combined activation of the proprioceptive pathways pushes
the motoneuron activation to within 75% of that boundary,
we modeled the motor neuron activation through a hyper-
bolic function that is shallower than the exponential function
used outside that region (Eq. 1).

ẼAG/AN = c1(EAG/AN + c2)
−1 + c3. (4)
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Wechose the parameters, ci , such that this function converges
to Emax for large activation levels and connects smoothly to
the exponential function at the crossover levels of activation.
The maximal motoneuron activation was set to Emax = 10,
which results in a maximal ankle torque similar to the max-
imal isometric ankle torques observed in humans (Hasson
et al. 2011). Because the regime of very large activation lev-
els was never reached during simulations of quiet stance, this
modification of the model at high activation levels served
only to test hypothetical extreme cases in which we pushed
the system toward falling (see Sect. 4). In these cases, limit-
ing the maximal activation level made it harder for the model
to remain upright.

2.1.2 Muscle model: torque generation

Muscle–tendon complexes generate joint torque both from
active contraction and from passive viscoelastic properties.
Given a level of motoneural activation, E , the torque gener-
ated bymuscle contraction at a joint depends on the size of the
muscle, described by the physiological cross-sectional area
(PCSA), and on the moment arm that transforms force into
torque. We capture these two characteristics by the muscle
distribution matrix, A, that relates the vector of motoneu-
ral activation for each joint, E , to the vector of steady-state
active joint torques,

T̃act = AE . (5)

Several important muscles in the leg, such as the gastroc-
nemius and the hamstrings, are biarticular. This plays an
important role for the stiffness characteristics of a mus-
culoskeletal system (Franklin and Milner 2003) and is
incorporated into our model by the off-diagonal elements in
the muscle distribution matrix, A (Rozendaal and Van Soest
2008). We used values for the PCSA provided by Ward et al.
(2009) and moment arms from Van Soest et al. (2003) to
estimate this matrix of parameters as

A =
⎛
⎝
10.94 1.1 0
0 7.43 1.2
0 0.94 9.10

⎞
⎠ Nm. (6)

The instantaneous torque, Tact, lags behind the steady-
state torque T̃act due to calcium kinetics. Following Gribble
et al. (1998), we model the time course of torque generation
as a critically damped second-order low-pass filter,

τ 2mT̈act + 2τmṪact + Tact = T̃act, (7)

with relaxation time, τm = 15ms.
The contributions of the passive elastic properties of the

muscle-tendon complex to joint torques were modeled as
sums of exponentials

Tela, j = ea j0+∑
a ji θi − eb j0+∑

b ji θi + c ji , (8)

following Riener and Edrich (1999), where a ji , b ji and c ji
model how the passive torque at the j th joint depends on the
state of the i-th joint. For the knee joint, an additional expo-
nential term accounts for the steep increase in torque when
the knee is fully extended. The passive viscous properties of
muscles and joints were modeled as a simple linear damper
element, in vector notation

Tvis = −Bθ̇ , (9)

where the matrix of parameters

B =
⎛
⎝
25 2.51 0
0 16.98 2.74
0 2.15 20.80

⎞
⎠Nm s rad−1 (10)

was chosen to be proportional to the muscle distribution
matrix A. Because damping comes primarily from mus-
cle properties through their force–velocity characteristic, we
assumed that damping is distributed across joints andmuscles
analogously to how stiffness is (as modeled by the stiffness
matrix A).

The total instantaneous torque vector, T , generated by the
muscles and tendons is the sum

T = Tact + Tela + Tvis (11)

of active contraction and passive viscoelastic contributions.

2.1.3 Biomechanical dynamics

We model the body as a three-link inverted pendulum in the
sagittal plane, with joints at the ankle, knee and hip, as illus-
trated in Fig. 2. Using the joint angles, θ j , as generalized
coordinates, the equation of motion is given in vector nota-
tion as

M(θ)θ̈ + C(θ, θ̇ )θ̇ + N (θ) = T, (12)

where M is the inertia matrix, C represents the Coriolis and
centrifugal forces, N is the vector of gravitational forces and
T is the vector of external torques generated by muscles and
tendons. The dynamic quantities M(θ), C(θ, θ̇ ) and N (θ)

were determined byLagrangian dynamics using screw theory
(Murray et al. 1994). The required anthropometric data were
estimated based on body height h = 1.80m and mass m =
80 kg using standard techniques (Winter 1990).

The forward kinematic equations specify the anterior–
posterior position, p, of a point on the upper segment that
represents the head position in space. The orientation, o, of
the trunk segment around the medial–lateral axis can also be
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calculated. Taking the derivative with respect to time yields
formulas for the velocity, ṗ, and acceleration, p̈, of the head.

2.1.4 Sensory signals estimating the kinematic state of the
body in space

Different sensory systems provide information about the
kinematic state of the body in space, most notably vision,
the vestibular system and proprioception. We assume that
the CNS combines these sensory streams to form estimates
of different variables that are relevant to the stabilization of
upright stance, in particular, the velocity, ṗ, and acceleration,
p̈, of the anterior–posterior head position, p, and the orien-
tation, o, of the trunk around the medial–lateral axis with
respect to the vertical. These estimates are modeled as:

̂̇p(t) = ṗ(t − dbrain) + η ṗ,

̂̈p(t) = p̈(t − dbrain) + η p̈,

ô(t) = o(t − dbrain) + ηo. (13)

The delay parameter, dbrain, accounts for the processing time
required to form these neural estimates. Neural processing
noise is modeled as time-correlated noise, η∗.

We model two different sensory conditions, eyes open
(EO) and eyes closed (EC). As we assumed vision to be one
of the sensory modes feeding into the estimate of the kine-
matic state of the body in space,we interpreted the removal of
vision as a decrease in accuracy of state estimation.Wemod-
eled this by increasing the magnitude of the sensory noise,
η ṗ, η p̈ and ηo (see Table 1 at the end of this section for
details).

2.2 Control law

The brain controls muscle activation by modulating the
thresholds, λ, of the activation laws of each muscle–joint
system (Eq. 1). To stabilize upright stance, the brain must
shift the threshold lengths of all joints according to a con-
trol law that takes the sensed deviations from the upright
state (Eq. 13) as input. This control law must trans-
form signals about the body in space to descending motor
commands.

We build a model of this control law in two steps. We first
postulate feedback terms, f , based on sensory estimates of
the body’s state in space designed to stabilize the body in
space. This follows models used in the literature that do not
addressmultiple degrees of freedom (Peterka 2002). The sec-
ond step is to transform these feedback terms into descending
motor commands, λ̇, that modulate the spinal reflex loops.
The critical element in this step is the synergistic forward
network mapping the low-dimensional feedback to multiple
degrees of freedom.

2.2.1 Controlling the body in space

A control law stabilizing the body in space generates control
signals at the level of the variables ṗ, p̈ and o. We define
feedback terms, f p and fo, for control laws at this level based
on the sensory estimates,̂̇p, ̂̈p and ô, estimating the kinematic
state of the body in space (Eq. 13),

f p = −α ṗ̂̇p − α p̈̂̈p, fo = −αoô ∈ R, (14)

Table 1 All parameter values
used for the simulation
experiments

dreflex 30ms Spinal stretch reflex time delay

dbrain 120ms Time delay for sensory estimation in the brain

αE 12 rad−1 Stretch reflex form parameter

ρ 0.01 rad Co-contraction command

μ 0.1 s Stretch reflex velocity gain

τm 15ms Time constant of the calcium kinetics low-pass filter

αη 5 s−1 Ornstein–Uhlenbeck process inverse correlation time

σθ 0.002 rad Muscle spindle activation noise (position)

σθ̇ 0.005 rad s−1 Muscle spindle activation noise strength (velocity)

σ ṗ 0.007/0.01m s−1 Head velocity estimation noise strength (EO/EC)

σ p̈ 0.03/0.032m s−2 Head acceleration estimation noise strength (EO/EC)

σo 0.025/0.032 rad Trunk orientation estimation noise strength (EO/EC)

σλ̇ 0.001 rad s−1 Neural processing noise

σm 0.01 rad Signal-dependent motor noise

α ṗ 12 rad−1 s−2 Head velocity gain

αo 40 rad−1 s−3 Trunk orientation gain
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where the constants, α∗, are gain parameters. The acceler-
ation gain was chosen to depend upon the velocity gain as
α p̈ = 2ζ

√
α ṗ with a damping ratio of ζ = 0.5.

These feedback signals could be used to create a damped
harmonic oscillator for the head movement state, ṗ. For
instance, in the absence of noise, processing delays and other
perturbations, setting

...
p = f p would regulate the headmove-

ment to ṗ = 0, stopping all movement.1 Inverted pendulum
models of postural control that neglect muscle dynamics
directly use such feedback signals to specify torques at the
level of the ankle joint (e.g., van der Kooij et al. 1999; Peterka
2002; Kiemel et al. 2002; Oie et al. 2002;Maurer and Peterka
2005;Maurer et al. 2006), usually including proportional and
derivative terms.

2.2.2 Transformation into descending motor commands

The challenge here is that the available sensory estimates
about the body in space and the feedback terms based on
these are one-dimensional, while the descending motor com-
mands are multi-dimensional, with one component each for
the ankle, knee and hip joints. In the following, we develop
four hypotheses for how this one-to-many mapping might be
structured.

A. Ankle strategy with co-contraction at proximal joints
This control scheme assumes an ankle strategy, mapping the
body-in-space feedback to the ankle joint, setting λ̇1 = f p.
Stability at the knee and hip joints is achieved by increasing
the local stiffness via co-contraction of the relevant mus-
cles, modeled by setting the co-contraction parameter to
ρ2,3 = 0.15 rad and assuming a constant activation threshold
parameter, i.e., λ̇2,3 = 0.

B. Ankle strategy with local feedback control of proximal
joints
In this second control scheme, we assume that the spinal
reflex loops at each joint are actively modulated based on
proprioceptive feedback about the state of that joint, but still
not integrated into multi-joint coordination.

λ̇ j = −αθ (θ̂ j − θ
(ref)
j ) − αθ̇ θ̇ j (15)

for j = 2, 3, where α∗ are gain parameters and θ
(ref)
j is a

joint angle reference. For the ankle joint, the body-in-space
feedback is added to this local feedback,

λ̇1 = −αθ (θ̂1 − θ
(ref)
1 ) − αθ̇ θ̇1 + f p. (16)

1 Note that this is a harmonic oscillator in the state variable v = ṗ, so
the acceleration of the state variable is v̈ = ...

p .

C. Ankle strategy with multi-joint coordination
The third control approach incorporates the ankle strategy
into a coordination scheme. The first step is to transform
the body-in-space feedback into a multi-dimensional signal,
which we do by setting

Fp = J̃p
+
f p ∈ R

3, (17)

where J̃p =
(

∂p
∂θ1

0 0
)
is the Jacobian matrix relating

changes in the ankle joint angle, θ1, to changes in p, and the
( )+ indicates the Moore–Penrose pseudo-inverse (Siciliano
and Khatib 2008). The additional dimensions allow us to
also incorporate trunk orientation feedback without affecting
the center of mass. We do this by defining the joint-level
orientation feedback as

Fo = J̃+
o

(
fo
0

)
∈ R

3, (18)

where

J̃o =
(
Jo
Jc

)
∈ R

2×3 (19)

is the augmented Jacobian for the given constraint (Siciliano
1990) and Jc, Jo ∈ R

1×3 are the Jacobians of thewhole-body
center of mass, c, and the trunk orientation, o. The joint-level
feedback terms from head position and trunk orientation are
integrated by simple summation

F = Fp + Fo (20)

into a combined kinematic joint-level feedback term F for
both sub-tasks.

The second step is to transform kinematic joint-level feed-
back, F , into descending motor commands, λ̇. We assume
that theCNShas learned tomodulate the feedback commands
to the muscle–joint systems to compensate for the inertia of
the linked body segments and the viscoelastic properties of
the muscles and is able to modulate the feedback command
to account for them.

λ̇ = R−1A−1MF + ηλ̇ ∈ R
3. (21)

Multiplying the feedback signal with the inertia matrix,
M , amounts to assuming that joints facing larger inertial
moments receive larger motor commands. Multiplication
with the inverse of themuscle distributionmatrix, A, amounts
to assuming that muscles that are more effective in generat-
ing joint torques (due to their lever arm or their size) receive
less activation. The matrix

R = R(θ̂ ,̂̇θ, λ, λ̇) = ∂E(θ̂ ,̂̇θ, λ, λ̇)

∂λ
(22)
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relates changes of the activation threshold, λ, to changes of
the motoneural activation, E . Multiplying with its inverse
ensures that muscles that are in a steep portion of their activa-
tion characteristic receive a weaker command than muscles
that are in a flatter portion of their activation characteris-
tic. The term ηλ̇ represents neural processing noise in the
descending signals.

By using the inertia matrix, M , in Eq. 21, we assume
that the CNS has an internal model about the distribution
of mass in the current body configuration. This is a reason-
able assumption, because in normal movement generation,
interaction torques are usually canceled out almost perfectly
with essentially no time delay (Winter 1995). In contrast, we
do not assume an internal model of the gravitational torques
acting on each joint. This would be a much stronger assump-
tion, which is not necessary, as shown by our results. Using
A and R in the control law assumes that the CNS knows the
distribution of muscles along the body, which is a constant,
and the current neural activation, which amounts to assuming
that an efference copy of the motor command is available.

D. Distributed strategy with multi-joint coordination
The last control scheme we analyze also employs multi-
joint coordination, but instead of mapping the body-in-space
feedback only to the ankle joint, it is distributed among
all available joints according to a principle of minimum
intervention in joint space (Todorov and Jordan 2002). This
implies that the joint-level feedback, Fp, used to enact a
desired feedback on the body-in-space level, f p, should be as
small as possible in joint space, which is achieved by using
the least-squares pseudo-inverse solution of the full Jacobian,
setting

Fp = J+
p f p ∈ R

3. (23)

The orientation feedback term, Fo, and transformation from
joint-level feedback to descending motor commands are the
same as defined in the previous control scheme (Eqs. 18 and
21).

2.3 Modeling neural processing noise

To probe the stability of the modeled process, we have
added noise terms at different levels. These are meant
to capture neural processing noise. Fluctuations in neural
populations are characterized by spatiotemporal correla-
tions captured by Ornstein–Uhlenbeck processes (Smith
2010; Ricciardi and Sacerdote 1979; Lánský and Sacerdote
2001). Mathematically, an Ornstein-Uhlenbeck process can
be obtained by numerically solving the stochastic differential
equation

η̇t = −αηηt + ξ (24)

in time, where η is the resulting time-correlated noise, 1/αη

is its correlation time and ξ is Gaussian white noise. We
modulate the noise magnitude by scaling the variance of ξ∗
to a parameter σ∗, where the asterisk denotes the different
noise terms.

2.4 Parameter values

The model parameters describing muscle physiology and the
stretch reflexes in the spinal cord are constrained by the
experimental literature. Some parameter settings represent
simplifications to avoid themodel becoming overly complex,
e.g., a single value dreflex for the delay of proprioceptive feed-
back at the ankle, knee and hip joints, although the actual time
delays are different (Latash 1993).

The free parameters that could be adjusted to fit the
statistical properties of the sway trajectories were the
feedback gains α ṗ, α p̈ and αo and the noise magnitudes
σθ , σθ̇ , σ ṗ, σ p̈, σo, σλ̇ and σm . These parameters were tuned
by hand to reproduce the geometrical and temporal character-
istics of experimental sway trajectories in quiet stance. The
tuning process consisted of an iterative grid search approach,
where we started with a grid that covered the physiologi-
cally feasible range for each parameter, simulated the model
with this parameter set with N = 6 repetitions. Then we
compared the resulting variance measures V‖ and V⊥ in the
uncontrolled manifold (UCM) basis of the CoM, head posi-
tion and trunk orientation as described in “Methods” section
with the experimental results and picked the parameters set-
tings with the best fit. This process was repeated until either
the simulation results were roughly similar to the experi-
mental data, or until the grid search yielded no options to
markedly improve the fit quality. The resulting parameter set
was used as the best fit for each control approach and sim-
ulated N = 48 times in the simulation study (see Sect. 3.1
below). The resulting parameter values are summarized in
Table 1.

3 Methods

Our results are based on simulations that capture qualitative
properties of the model and detailed, quantitative compar-
isons to experimental data.

3.1 Simulations

Themathematicalmodelwas simulated inMATLABby solv-
ing the set of stochastic differential equations numerically.
We employed the stochastic Euler method with a time step of
2ms. The initial kinematic state of the body was taken from
Van Soest et al. (2003) as
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θ(0) =
⎛
⎝

−0.1
0.2

−0.2

⎞
⎠ , θ̇ (0) = 0. (25)

This resulted in an initial center of mass position of c ≈ 3 cm
anterior to the ankle joint. The initial values of the thresh-
old parameters λ were chosen such that the sum of passive
and active torques exactly canceled out the gravitational
torques at each joint. For a fixed θ , the force–length rela-
tionship (Eq. 1) is monotonic in λ and thus invertible, so λ(0)

is uniquely determined by Eq. 25 and the initial constraint
θ̈ (0) = 0 and can be calculated as

λ j =
{ sgn E j

αE
log

(|E j | + 1
) + θ j − sgn E jρ : |E j | > e2αEρ − 1

1
αE

asinh
( E j

2 e−αEρ
) 1

αE
+ θ j : else.

(26)

The initial conditions of all sensor estimateswere set to the
actual values of the estimated variables. All variables were
assumed to be constant for t < 0. The first 5 s of each trial
were disregarded to avoid possible artifacts from these fixed
initial settings.

For each of the four control hypotheses described in
Sect. 2.2.2, we simulated N = 48 trials. For the versions
using co-contraction and local feedback control, we had to
remove the neural processing delays inEqs. 2 and 13, because
these strategies failed to enable upright stance in the presence
of delay (so clearly, these alternatives are not viable, but we
want to see their effect on the UCM structure of variance).

3.2 Empirical data

To compare the model to empirical data, we reanalyzed an
experimental data set of quiet stance in which ten human
participants stood upright with their arms folded on a normal
support surface for 5min (Hsu et al. 2007), either with eyes
open (EO) or closed (EC). Nine infrared markers with 1cm
diameter were attached to the subjects’ body (for details,
please refer to Hsu et al. (2007)). The marker positions were
recorded using a VICON optical motion measurement sys-
tem (Oxford Metrics) at 120Hz. For comparison with the
model, we transformed the marker data into joint angles for
the ankle, knee and hip joints.

The present model encompasses stabilizing feedback on
a short and medium time scale. Drifts over a long time scale
might still lead to configurations that are unstable.We assume
that the CNS has additional mechanisms to identify and
counter these slow drifts, but these are not part of the current
study. For that reason, we partitioned the experimental data
into shorter episodes of 30 s each. Each trial yielded 8 such
episodes, the first one starting 10 s after trial start and each
subsequent one startingwhere the previous one stopped. This

resulted in a total of 240 episodes from 10 subjects with 3
trials each, both for the EO and the EC condition.

3.3 Data analysis

We analyzed the structure of sway variance in joint space
of both the experimental and the simulated joint trajecto-
ries in quiet stance using the uncontrolled manifold (UCM)
approach (Scholz and Schöner 1999). The UCM is a statis-
tical tool for the hypothesis-based analysis of variance in a
multi-dimensional data set. It is based on the idea that the
CNS stabilizes those aspects of the motor system that are
relevant for a given task, while leaving other aspects com-
paratively free. For instance, in a reaching movement, the
CNS would monitor and control the position of the hand
more strictly than the position of the elbow. High levels of
control are associated with low levels of variance, so this
idea of selective stabilization implies that the variance of
task-relevant variables is low relative to the variance of task-
irrelevant variables.

This notion leads to testable hypotheses about the struc-
ture of the covariance between different degrees of freedom
(DoF) of the motor system in repetitive tasks. If it is true,
then the task-relevant variance is expected to be significantly
smaller than the task-irrelevant variance. The task-irrelevant
variance can be defined as the variance parallel to the UCM,
corresponding to the movements that do not affect the task
variable. Similarly, the task-relevant variance is defined as
the variance orthogonal to the UCM, corresponding to the
movements that do affect the task variable.

We refer to variance parallel to the UCM as V‖ and to
variance orthogonal to the UCM as V⊥. Formally, these two
magnitudes can be estimated by calculating the projections of
the sample covariancematrix �̂ onto the null space of the task
Jacobian J and its orthogonal complement. The projection
matrices E‖ and E⊥ can be obtained by a singular value
decomposition of J . The magnitude of the variance in each
subspace is estimated by the traces

V‖ = 1

k‖
tr

(
ET‖ �̂E‖

)
and V⊥ = 1

k⊥
tr

(
ET⊥�̂E⊥

)

(27)

of the projected sample covariance matrices, normalized by
the dimension k‖, k⊥ of the subspaces. A more detailed
and technically refined description of how to calculate these
measures has recently been presented in Yen and Chang
(2010). For statistical analysis, the variance measures were
log-transformed (Verrel 2010). As first stated by Müller and
Sternad (2003) and analyzed in detail byVerrel (2011), UCM
effects can result both from covariation between elemental
variables and from differences in their marginal variances
(see also commentary by Schöner and Scholz (2007). To
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disambiguate these two sources of structure, we also ana-
lyzed a decorrelated data set, using the randomizationmethod
(Müller and Sternad 2003).

4 Results

We first present a comparison of the different control
hypotheses. In the following, we focus on hypothesis (D)
using distributed control with multi-joint coordination. All
results presented in Sect. 4.3 and later are from this version.

4.1 Standing upright

The model was capable of stabilizing the simulated body
against fluctuations from sensory estimation errors, neural
processing noise and the destabilizing effects of gravity.
Figure 3 illustrates this in a sample simulation showing
trajectories of the joint angles and the anterior–posterior
CoM in the eyes open condition. Sample trajectories from
a single human trial (EO) are also presented for visual
comparison. In this example, control scheme D was used
for the transformation into descending motor commands
(c. Sect. 2.2.2).

Figure 4 shows the time course of the torque at the ankle
joint from the same simulation. The ankle torque is separated
into active torque, Tact, generated by muscle contraction, and
passive torques, Tela and Tvis, that arise from the elastic and
viscous properties of the muscle–joint system. The gravita-
tional torque −N is also plotted, its sign inverted for easier
comparison. The sample trajectories illustrate that the level
of passive elastic torque is substantial and sometimes exceeds
the magnitude of the active torque, but its modulation in time
is minimal.
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center of mass position from one model simulation (colored) and one
human trial (gray), using control scheme D
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Fig. 4 Trajectories of the torques acting on the ankle joint from the
samemodel simulation as in Fig. 3. The total torque T from the muscle-
tendon system is the sum of torque from activemuscle contraction (Tact)
and passive elastic and viscous (Tela, Tvis) torques
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Fig. 5 Results of the UCM analysis with respect to the anterior–
posterior CoM for the human data (left) and themodel simulations using
four different control hypotheses. a Ankle strategy with co-contraction
at proximal joints.bAnkle strategywith local feedback control of proxi-
mal joints. cAnkle strategy with multi-joint coordination. dDistributed
strategy with multi-joint coordination

4.2 Comparison between the control schemes

To analyze the geometrical structure of the sway patterns in
the three-dimensional joint space spanned by the ankle, knee,
and hip angles, we performed UCM analysis with respect to
the anterior–posterior CoMposition for the data generated by
the model with each of the four different control hypotheses.
Figure 5 shows the results in comparison to experimental
data. Both the ankle strategy with co-contraction (A) and
with local feedback (B) result in covariance patterns where
there is substantially more variation in joint angle combi-
nations that affect the CoM (V⊥) than in directions that
leave the CoM invariant (V‖). This changes radically with
the introduction of active coordination between the joints.
For both the ankle strategy with active coordination (C) and
the distributed strategy (D), V‖ is substantially larger than
V⊥, which is the same pattern found in the experimental
data.
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4.3 Joint angle variance: structure

To analyze the covariance structure of the data generated by
themodel and compare it to the human data inmore detail, we
also performed aUCManalysis with respect to the head posi-
tion and trunkorientation on the rawand the decorrelated data
(see Sect. 3.3), for both the eyes open (EO) and eyes closed
(EC) condition. Figure 6 shows the results for the human data
and the distributed strategywithmulti-joint coordination (D).
The top panel shows the two components of variance along
(V‖) and orthogonal (V⊥) to the corresponding UCM, com-
paring model with experimental data. Larger variance within
the UCM than orthogonal to the UCM is observed under all
conditions and for all three task variables in the experimen-
tal data. This means that there is substantially more sway
in directions that leave the CoM, head position or trunk ori-
entation invariant than in directions that do affect these task
variables. Themodel simulations reproduce this effect.When
vision is removed, both components of variance increase in
magnitude. This increase was statistically significant in the
empirical data (see Table 2) and is also reproduced by the
model.

The results for the decorrelated data are shown in the
bottom panel of Fig. 6. The difference between the two
components of variance is strongly reduced. A small UCM

0.6

Va
r. 

pe
r 

D
oF

 (
ra

d2
·1

0-
4 )

CoM position

EO EC
0.6

human model human model human model

head position trunk orientation

raw
 data

decorrelated

Fig. 6 Mean variance per DoF of the joint angles over 30 s of quiet,
upright stance, in theUCMspace relative toCoMposition, headposition
and trunk orientation as task variable. Experimental data are averages
across subjects. The top panel shows the raw data, for the bottom panel
the data was decorrelated. Error bars show the standard error

Table 2 ANOVA results for EO versus EC

EO versus EC p-value F

Head position V‖ <0.001 18.24

V⊥ <0.001 54.65

CoM position V‖ <0.001 18.48

V⊥ <0.001 54.59

Trunk orientation V‖ <0.001 18.18

V⊥ <0.001 43.96

effect is still present in the decorrelated data set for CoM
and head position, indicating that a portion of the difference
in variance between the two subspaces is due to differences
in variability of the underlying variables rather than to their
covariation. Again, the model matches the data closely. For
trunk orientation, the UCM effect disappears completely in
the decorrelated data in both theory and experiment. This is
a necessary effect, which is due to the properties of trunk
orientation as a task variable (Verrel 2011).

4.4 Joint angle variance: magnitude

How does the model capture overall variance in joint space?
While single subjects can have highly reproducible personal
movement patterns, the inter-subject variability between
these patterns is often much larger. Rather than trying to fit
an “average participant,” we first need to analyze the vari-
ance within the population empirically. For each of the ten
experimental subjects, Fig. 7 shows the average magnitude
of the variance of ankle, knee and hip angles over 30 s of
quiet stance (N = 24 episodes per subject, error bars show
the standard error). For each participant, variance is shown
for the eyes open (EO) and eyes closed (EC) conditions.
Clearly, the distribution of variance across the three joints is
very diverse across participants. Within a subject, however,
the pattern of joint variance is more coherent across the two
conditions. It seems that each participant has a characteristic
pattern of joint variance.

To analyze these subject-specific patterns statistically, we
first normalized the joint excursion variance data using a
Box–Cox transformation (Sakia 1992). Then we fitted a
repeated measures model to the normalized data, using the
function fitrm in the MATLAB Statistic and Machine Learn-
ingToolbox.On this repeatedmeasuresmodel,we performed
a two-way MANOVA with subject and condition as factors.
This revealed a significant effect of subject (F = 18.0; p <

0.0001) and condition (F = 12.4; p < 0.0001). Note that
we can analyze subject as a factor here because there are
multiple (N = 24) observations for each subject, whereas
in standard applications there is only one observation per
subject.
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But is this effect due to the differences in the shape of
each subject’s variance pattern, or due to the differences in
magnitude between the subjects? To answer this question,
we transformed the data into independent components rep-
resenting the shape and the magnitude of the joint angle
variance. The magnitude was defined as the length of the
joint angle variance vector. The shape was represented by
the stereographic projection of the remaining unit length
vector onto a plane. Again, we normalized the data using
the Box–Cox transform and fitted repeated measures models
and then performed a two-way MANOVA on the shape and
a two-way ANOVA on the magnitude variable. For magni-
tude, both subject (F = 32.2; p < 0.0001) and condition
(F = 23.0; p < 0.0001) showed significant effects. For
the shape variable, however, subject showed a significant
effect (F = 22.0; p < 0.0001), while condition did not
(F = 1.35; p = 0.25).

The effect of vision is thus primarily a change in the over-
all magnitude of sway. When vision is removed, the overall
magnitude of the sway increases, while the relative amount
ofmotion in each joint remains the same. Themodel captures
this effect, as illustrated in Fig. 8, showing the average joint
angle variance of the simulation data in both EO and EC
conditions. To compare the magnitude, the average across
subjects for the experimental data is also shown.

4.5 Falls when a feedback loop is severed

To gain better understanding of the nature of the control prob-
lem, we opened the control loop in two different ways and
observed the resulting fall trajectories. The first way was to
remove the descending motor commands, setting λ̇(t) = 0,
while leaving the low-level spinal reflexes intact (compare
Fig. 1). The second way was to make the motoneural acti-
vation, E , constant except for noise, effectively removing
all control, but leaving the passive properties of the muscle–
tendon systems intact.

Both alterations resulted in falls in the model simulations.
The left side of Fig. 9 illustrates the effect of opening the
outer feedback loop. At first, the body is partly stabilized

2s 3s 4s 4.5s 1s 1.5s 2s 2.2s

4.52 Time (s)

50cm

C
oM

jo
in

t 
an

gl
es

2.21 Time (s)

10cmC
oM

jo
in

t 
an

gl
es ankle knee hip

60

only reflex feedback purely feedforward

Fig. 9 Effects of removing the feedback dynamics. Data are from sin-
gle trials with the outer feedback loop severed, i.e., only the reflexive
feedback left intact (left), and with purely feedforward control, i.e., all
feedback removed (right). The top panels show the trajectories of the
joint angles and the CoM until balance has clearly been lost. The bot-
tom panels illustrate this by showing the sequential change of body
configurations

by the spinal feedback and does not move much. The gains
of the spinal feedback loops are not sufficient, however, to
counter the destabilizing effects of gravity.After about 3 s, the
body starts falling forward.All joint angles increase under the
gravitational pull, until the body hits the floor. The center of
mass shows the same movement pattern as the joint angles.2

The right side of Fig. 9 shows a simulation in which the
spinal reflex feedback loop was opened. Instead of toppling
over at the ankle with all joint angles decreasing, the body
folds: The knee angle starts to increase, while ankle and hip
angle decrease, resulting in a folding movement. The center
of mass movement is much smaller than when only the outer
feedback loop is severed. Clearly, without spinal feedback,
the muscles do not react to motor commands in a meaningful
way and thus do not resist the pull of gravity.

These two distinct patterns of falling are systematic in
the model—with purely feedforward muscle activation, the
body folds and collapses. With intact spinal reflex loops but
purely feedforward descending commands, the body remains
stretched, but topples over in anterior or posterior direction
at the ankle, the joint with the lowest passive stiffness. To
examine this phenomenon in detail, we simulated N = 1000
trials in both conditions. For each trial, we tracked over
time whether the body was still stretched or was folding.
We defined a state as “folding” when at least two joints had
changed in different directions relative to the initial condi-
tion and as “toppling” otherwise. The results are summarized
in Table 3. Either the outer or both the outer and the spinal
reflex loop were severed. Without any feedback, the number
of toppling trials is essentially zero at any time, except for a
transient state at the very beginning for a small number of tri-

2 Note that the final phase of the fall is not realistic as the heel would
lift off the floor at some point. This was not modeled.
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Table 3 Effects of severing the feedback loops

Condition % Of toppling trials after

1 s 2 s 3 s 4 s

Outer loop cut 16.5 85.3 98.4 99.9

Inner loop cut 0.1 0 0 0

The numbers give the relative amount of trials where the body had
started to “topple,” i.e., fall forward or backward as a whole, instead of
falling straight down by “folding” at the hip and knee joints

als. With spinal reflexes but no outer feedback loop, the 1st s
is still relatively stable, most movement patterns are folding.
As the time progresses, however, the folding patterns dis-
appear and the number of toppling trials approaches 100%.
These results highlight the functional role of the two neural
feedback loops. The faster spinal reflexes stabilize against
folding, the slower outer feedback loop stabilizes against top-
pling.

5 Discussion

We have developed a model that combines existing mod-
els of body biomechanics and muscle neurophysiology with
novel ideas of how principles of neural control integrate
these to generate movement behavior. The result is an
account for how, depending on sensory information, mus-
cle activation is generated in time, based on the idea of a
compliant spring whose operating point is moved around in
a throw-and-catch pattern (Lakie et al. 2003). The control law
generates motor commands that are coordinated across mul-
tiple degrees of freedom (Martin et al. 2009). The resulting
process model not only accounts quantitatively for experi-
mentally observed data but also explains the function of the
postulated mechanisms. A computational implementation of
the model can actually stabilize upright stance in a body
withmultiple degrees of freedom, realistic biomechanics and
musclemodels based on realistic models of available sensory
information.

5.1 The origin of the UCM structure

The random fluctuations of the ankle, knee and hip joints
during postural sway are not independent. The UCM anal-
ysis reveals that the point cloud of the data in joint space
is elongated in directions that leave important task vari-
ables invariant and condensed in directions that do affect
these variables. Removing the temporal correlation from the
joint trajectories strongly reduces this difference in vari-
ance between the UCM and the orthogonal components (see
Fig. 6). This implies that a large part of the difference in
variance across the two subspaces comes from coordination

across joints rather than from intrinsic differences in variance
across different subspaces. The trunk orientation is a special
case here, because any (non-random) differences V‖ and V⊥
for this task variable must be due to systematic covariation
between the joints (Verrel 2011).

How does the structure of variance in joint space arise?
One possibility would be that covariation is induced by the
biomechanical coupling of the limbs. Such coupling may
be characterized through the modes of oscillation that arise
in multi-segment pendula (Alexandrov et al. 2005). The two
modes differ in how easily they can be excited. Because sway
in the ankle strategy mode moves the whole body, it takes
larger amounts of force to overcome the larger inertia, while
sway in the hip strategy mode accelerates smaller portions of
the body mass and thus requires less force. Random fluctua-
tions from, e.g., noise in the motor system, are thus expected
to generate more sway in the hip mode than in the ankle
mode. Because hip mode sway moves the CoM less than
ankle model sway, this would result in more variance along
the UCM than orthogonal to it, as observed. The results of
our simulation study show, however, that the control hypothe-
ses based on co-contraction or purely local control result in
sway patterns with a covariance structure opposite of what
is experimentally observed in humans. The biomechanical
properties of the simulated body are, of course, the same for
all control hypotheses, so these alone cannot constitute the
defining factor for the shape of the variance structure.

The essential factor in generating the correct multi-joint
sway patterns appears to be the active coordination between
joints: the neural activation matrix R, the muscle distribution
matrix A, the inertia matrix M and the Jacobian matrices
Jp and Jo (Eqs. 23, 18 and 21). Surprisingly, the details
of the transformation from task to joint level, represented
by the Jacobian matrices, do not have a large effect on the
variance structure. Figure 5 shows that the ankle strategy
with multi-joint coordination, using the reduced Jacobian
J̃p, results in multi-joint sway patterns that are very similar
to both the distributed strategy, which uses the full Jacobian,
and the experimental data. This indicates that the essential
components for generating the correct sway patterns are the
coordination terms R, A and M on the joint level.

This finding is at odds with the optimal control approach
to motor control (Wolpert 1997; Todorov and Jordan 2002),
in that the optimality of the controller does not appear tomat-
ter much. One of the control hypotheses we examined, the
distributed strategy with multi-joint coordination, is optimal
in the sense that it generates the desired task feedback to sta-
bilize the body in space with the smallest possible changes
in joint angles. The joint space changes generated by the
ankle strategy with multi-joint coordination, in contrast, are
larger. The structure of the covariance generated by both pat-
terns is, however, very comparable. This result supports the
notion that it is overall more beneficial for biological systems
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to settle for “good-enough” solutions to a motor task, rather
than optimal, because the large required effort is usually not
worth the small additional gain (Loeb 2012).

An interesting factor in this discussion is the presence of
highly individual movement patterns, as shown in Fig. 7.
This could mean that different individuals have settled on
good-enough movement strategies at some point, that are
then preserved over time without a strong drive for further
optimization. It is also possible, however, that these patterns
correspond to localminima in the cost landscape,where small
changes in any directions increase cost, discouraging change
and prohibiting further adaptation. It is even conceivable that
each of these patterns is actually optimal for the specific body
configuration of each individual. Deciding between these
possibilities would require fixing a cost function and opti-
mizing the parameters for different body types.

It is important to point out that although our results are at
odds with the formalism of optimal control, they do resonate
positively with the principle of minimal intervention, which
states that only deviations that interfere with the task at hand
should be corrected, and no effort should be spent to correct
deviations that do not affect the task (Todorov 2004). In our
model, deviations that do not affect the task variable would
generate no feedback on the body-in-space level and thus no
descending motor commands.

5.2 Control strategies

How do the control hypotheses explored here relate to those
discussed in the postural literature? The ankle and hip strate-
gies have been identified as two distinct modes of control
within a potential continuum of movement patterns. This
was based on the response to support surface translations
(Horak and Nashner 1986). Creath and colleagues found
that signatures of these two patterns are visible also in quiet
stance (Creath et al. 2005). Still, the quantitative predomi-
nance of the ankle strategy during quiet stance has justified
the approximation of a single-link inverted pendulum inmost
mathematical models and experimental designs.Winter gave
a formal justification for this approximation by pointing out
that the high degree of correlation between the difference of
thewhole-body center of pressure and theCoMand the accel-
eration of the CoM are predicted by the single-DoF inverted
pendulum model (Winter 1995).

While this argument is sound at the level of kinematics,
extending it to muscle forces is problematic. Due to the iner-
tial coupling between the different body segments, a muscle
contraction that generates torque at the ankle will also accel-
erate all other joints along the body (Zajac andGordon 1989).
To generate movement only at the ankle and keep the other
joints still, these interaction torques at the knee and hip have
to be canceled out by active forces from muscles spanning
these joints. Indeed, Horak and colleagues reported distinct

activation patterns of hamstrings and paraspinal muscles dur-
ing ankle strategy movements (Horak and Nashner 1986). A
recent detailed study revealed that as much as 70% of the
joint torques cancel out interaction torques from other joints
(Sasagawa et al. 2014). A more refined characterization of
the two strategies would thus distinguish between kinematic
and kinetic variants. For instance, a purely kinematic ankle
strategywould be one inwhich activemovement is generated
only at the ankle, while all torques generated around other
joints are strictly aimed at canceling out interaction torques.
In this light, the observation that 30% of hip torques can-
not be accounted for by interaction torques suggests either
imperfect control or a mixed strategy, in which muscles
acting on the hip and knee joints are actively recruited to
generate movement at these joints independent of the ankle
joint.

We have implemented such a kinematic version of the
ankle strategy that generates active movement at the ankle,
but applies coordinated torques at the knee and hip joints
to account for inertial interaction torques, and shown that
the patterns of multi-joint sway generated in simulations are
very similar to those in experimental data (see Sect. 4.2). The
kinetic ankle strategies, on the other hand, that feed sensor
information exclusively into ankle torque, while stabilizing
the other joints locally and lacking coordination, result in
strikingly different sway patterns (Fig. 5). This result sup-
ports the notion that active coordination between the different
joints plays an important role in structuring joint variance in
quiet, upright stance.

5.3 Standing upright

Wehave shown that a postural control systemwith two nested
feedback loops can account for the stability of multi-segment
upright posture. The inner loop stabilizes the muscle–joint
systems for each joint angle locally, up to a certain degree.
It is not strong enough to counteract the destabilizing effect
of gravity, especially at the ankle joint. The velocity of the
resulting falls is reduced, though, to a degree where the
slow outer feedback loop can act to stabilize the body in
space.

The outer feedback loop resists falling by generating
motor commands that drive the body backward when the
sensed body velocity is consistent with falling forward and,
conversely, generating motor commands that drive the body
forward when a backward fall is sensed. Failure of this outer
feedback loop leads to the whole body falling either forward
or backwards at the ankle, depending on the initial body
velocity or acceleration. Falls involving substantial move-
ment in all joints with the CoM moving mostly downwards
are prevented by the inner loop and not observed in simula-
tions when it is intact.
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6 Conclusion

In conclusion, three key ingredients of our model help under-
stand multi-segment postural control: (1) The inner feedback
loopof eachmuscle–joint systemenables eachdegree of free-
dom to counteract themechanical effect of gravitational load,
preventing collapse. (2) The outer feedback loop about body
in space stabilizes postural sway against falling. Accounting
for kinetics by weighing the forces at each joint according
to inertial coupling forces from all body segments acting on
each joint appears to be a critical factor for the success of con-
trol schemesC andD versus A and B. (3) The UCM structure
of variance reflects a kinematic control law in which devia-
tions in joint space thatmove the body in space are selectively
counteracted,while deviations not affecting the body in space
are not. The distribution of the control signal across joints by
the combined kinetic and kinematic control laws induces the
covariation among joints that is observed as the UCM struc-
ture of variance.
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