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Ultimate goal

M ... ultimately, we all try to understand how
the central nervous system fused with our
body and embedded in structured
environments generates behavior and
thought...

M ... some of us seek ideas for how to build
artificial cognitive systems that may perceive,
act, and think on their own



Cognition

B much of an organism’s behavior can be
understood in terms of relatively simple
perception-action patterns...

M a simple-minded, but useful, perspective
posits, that cognition is whatever comes
between sensing and motor behavior..

B the more invariant against changes of sensory input,
against delay, against changes in effector configuration...

the more cognitive

B the more indeterminate the behavior from the proximal
stimulus.. .the more cognitive



Cognition as computation

B the “classical” approach to cognition ...
emphasizes

B the capacity to generalize: abstraction/invariance... and
systematicity/rules

B the capacity to generate unboundedly many different
thoughts.. productivity/compositionality

B => cognition as symbol manipulation

® which entails symbol instantiation (the
grounding problem)



Cognition as computation

B which leads to the view of cognition as
computation (information processing)

M at the core of which is function evaluation

B for example, in relational cognition: to-the-right-
off(target position, reference position) returns “true” or
“false” or a probability

® and the nesting/concatenation of such
function calls

B for example, in parsing language



Neural basis of cognition
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Neural basis of cognition

M so, although connectionism calls into question
the hypothesis, that symbols are instantiated and
manipulated

M connectionism still lends itself to a function
evaluation perceptive on cognition

B (with the computational black boxes replaced by
clouds of neural networks)



But: Cognition emerges in evolution
and development from the
sensorimotor domain

B for example, memory emerges in evolution
from spatial navigation: knowing where you
are and how to get somewhere

M decision making emerges from action
selection: knowing what to do

B => cognition for action, behavior, survival



Sensorimotor coghition

M the sensorimotor origin of cognition is
evident in the structure of the brain

M that has evolved in a graded way
M with many subsystems highly invariant

M e.g. basal ganglia as the basis for action selection from
lamprey to human over 500 million years (Grillner,
Robertson, Current Biology 2016)

B => seek a neural account of cognition that is
specific to our evolutionary repertoire of
forms of cognition



Sensorimotor cognition

attention/gaze

active perception/working
memory

action plans/decisions/
sequences

goal orientation
social interaction
background knowledge

learning from experience




Properties of sensorimotor cognition

B graded state
B continuous time

B continuous/intermittent link
to the sensory and motor
surfaces

B from which discrete events
and categorical behavior
emerge

B closed loop
B => dynamics
B => need for stability




Embodiment hypothesis

B cognition inherits
the properties of
embodied cognition

B => dynamics rather
than function
evaluation




Embodiment hypothesis (radical form)

M all cognition has
these dynamic
properties...

M there is no
boundary, beyond
which these
properties can be
neglected...




Dynamics

® what is “dynamics”... ?



Braitenberg’s vehicle metaphor

B vehicle=organism whose body moves its sensors
and motor systems through its environment
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The vehicles’ behavior emerges from
the attractor of a dynamical system
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Input-output description of
the feed-forward paths of the

vehicle’s nervous system
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Input-output description of
the vehicle’s nervous system
for body rotation
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Aturning rate
of vehicle

>

heading
direction

® feedforward nervous system

attractor

B + closed loop through
environment <3

B => (behavioral) dynamics 7



Cybernetic reading of dynamics

M the CNS reduces the A coming e
deviation from the desired of vehicle
behavioral state to zero
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Cybernetic reading of dynamics
L

M the CNS reduces the
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behavioral state to zero

M by its sensors measuring
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Cybernetic reading of dynamics

M ... depends critically on |
, Aturnlng rate
the closed loop: the body’s of vehicle
movement changes the
sensory information..

7

heading
direction

attractor

M this is a loop through the
environment <3

B the state of the dynamics r
is the body’s physical state
in the environment



Limits of the cybernetic
view of dynamics

M presumes there is a single “goal” or set-point



B two sources
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Limits of the cybernetic
view of dynamics

B far reaching implications ...

B for the nature of the perceptual variables
(not “error-signals™)

B for the nature of the state variables (not
“error-correcting-control-signals”™)

B => dynamics # cybernetics/control theory



Why is stability important for
behavioral dynamics?

M because it is sufficient... stability brings
about the behavior...

M because it is necessary... without stability
no behavior (not the correct behavior)



Stability and loss of stability in
movement coordination
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Stability and loss of stability in
movement coordination
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Stability and loss of stability in
movement coordination

M => stability is both necessary and sufficient
for the emergence of coordination patterns

[Kelso, Scholz, Schoner, 86; Schoner, Kelso, 88]



What about “internal” loops?

v

M internal to the nervous system ...



Internal loops

M internal loops are conceptually
important to move beyond the
framing of input/output function
evaluation

B because they make it possible
that neural activation arises or
persists in the absence of input

B examples: movement generation,
working memory, sequences generation



Internal loops

input(t)

B ~ recurrence in neural network
terms output(t)

B => implies time

output(t+1)



Internal loops => neural dynamics

M time is not discrete (and
spiking is asynchronous)

O =>.dyn.am|cs of the neural L duldt
activation state, u: neural input
dynamics |
activated
M the “-u” term, inherited from \\ - >
membrane dynamics, is the 4 u
source of stability resting level \

u(t) = — u(t) + resting level 4 input(z)



Why is stability important in
neural dynamics!?

M because it is sufficient... as you will see..

M instabilities demarcate different cognitive
functions... as you will see..



Why is stability important in
neural dynamics!?

. activation

B more intuitively: stability is resistance ﬁ
to change under perturbation, change :
of conditions/inputs.. / dimension
M e.g. resistance to distractor input... in a selection source,  source,
decision ﬁ ﬁ
B dense neural connectivity => in any L\

given neural state, many connections
provide “distractor input”.. that must — ]
be resisted




Neural dynamics

M as used in Dynamic Field Theory is a sub-set of
general neural network theory (!)

® in which additional principles / constraints are
imposed

M stability

B low-dimensionality

B regular interaction functions
B dynamic instabilities

B active transients

M ... and that is what this course is about



