DFT School 2020 Introduction

Gregor Schöner <u>gregor.schoener@ini.rub.de</u> dynamicfieldtheory.org

Ultimate goal

- It is a straight of the central nervous system fused with our body and embedded in structured environments generates behavior and thought...
- some of us seek ideas for how to build artificial cognitive systems that may perceive, act, and think on their own

Cognition

much of an organism's behavior can be understood in terms of relatively simple perception-action patterns...

- a simple-minded, but useful, perspective posits, that cognition is whatever comes between sensing and motor behavior..
 - the more invariant against changes of sensory input, against delay, against changes in effector configuration... the more cognitive
 - the more indeterminate the behavior from the proximal stimulus.. .the more cognitive

Cognition as computation

the "classical" approach to cognition ... emphasizes

- the capacity to generalize: abstraction/invariance... and systematicity/rules
- the capacity to generate unboundedly many different thoughts.. productivity/compositionality
- => cognition as symbol manipulation
- which entails symbol instantiation (the grounding problem)

Cognition as computation

which leads to the view of cognition as computation (information processing)

at the core of which is function evaluation

for example, in relational cognition: to-the-rightoff(target position, reference position) returns "true" or "false" or a probability

and the nesting/concatenation of such function calls

for example, in parsing language

Neural basis of cognition

- the connectionist view of neural function:
 - neurons as input-output threshold elements
 - that form (essentially feed-forward neural networks
- these neural networks may contain recurrent loops
 - but the functional significance of the networks typically still derives from the overall "output=function(input)" characterization

Neural basis of cognition

- so, although connectionism calls into question the hypothesis, that symbols are instantiated and manipulated
- connectionism still lends itself to a function evaluation perceptive on cognition
- (with the computational black boxes replaced by clouds of neural networks)

But: Cognition emerges in evolution and development from the sensorimotor domain

- for example, memory emerges in evolution from spatial navigation: knowing where you are and how to get somewhere
- decision making emerges from action selection: knowing what to do
- => cognition for action, behavior, survival

Sensorimotor cognition

the sensorimotor origin of cognition is evident in the structure of the brain

that has evolved in a graded way

with many subsystems highly invariant

- e.g. basal ganglia as the basis for action selection from lamprey to human over 500 million years (Grillner, Robertson, *Current Biology* 2016)
- => seek a neural account of cognition that is specific to our evolutionary repertoire of forms of cognition

Sensorimotor cognition

attention/gaze

- active perception/working memory
- action plans/decisions/ sequences
- goal orientation
- social interaction
- background knowledge
- learning from experience

Properties of sensorimotor cognition

graded state

continuous time

- continuous/intermittent link to the sensory and motor surfaces
- from which discrete events and categorical behavior emerge
- 🛋 closed loop
- => dynamics
- => need for stability

Embodiment hypothesis

- cognition inherits the properties of embodied cognition
- => dynamics rather than function evaluation

Embodiment hypothesis (radical form)

- all cognition has these dynamic properties...
- there is no boundary, beyond which these properties can be neglected...

Dynamics

what is "dynamics"... ?

Braitenberg's vehicle metaphor

vehicle=organism whose body moves its sensors and motor systems through its environment

The vehicles' behavior emerges from the attractor of a dynamical system

Input-output description of the feed-forward paths of the vehicle's nervous system

Input-output description of the vehicle's nervous system for body rotation

Model of the environment

feedforward nervous system

- + closed loop through environment
- => (behavioral) dynamics

Cybernetic reading of dynamics

the CNS reduces the deviation from the desired behavioral state to zero

- by its sensors measuring the "error"
- and the CNS sending a feedback control signal to its actuators to reduce the error

Cybernetic reading of dynamics

- the CNS reduces the deviation from the desired behavioral state to zero
- by its sensors measuring the "error"
- and the CNS sending a feedback control signal to its actuators to reduce the error

Cybernetic reading of dynamics

- depends critically on the closed loop: the body's movement changes the sensory information..
- this is a loop through the environment
- the state of the dynamics is the body's physical state in the environment

Limits of the cybernetic view of dynamics

presumes there is a single "goal" or set-point

- bimodal distribution
- => bistable (non-linar) dynamics
- => selection decision

Limits of the cybernetic view of dynamics

far reaching implications ...

- for the nature of the perceptual variables (not "error-signals")
- for the nature of the state variables (not "error-correcting-control-signals")
- => dynamics \neq cybernetics/control theory

Why is stability important for behavioral dynamics?

- because it is sufficient... stability brings about the behavior...
- because it is necessary... without stability no behavior (not the correct behavior)

Stability and loss of stability in movement coordination

stability of relative phase is constitutive of coordination

Ioss of stability (enhanced variance, relaxation time) leads to change of coordination pattern

[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

Stability and loss of stability in movement coordination

[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

Stability and loss of stability in movement coordination

stability is both necessary and sufficient for the emergence of coordination patterns

[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

What about "internal" loops?

internal to the nervous system ...

Internal loops

- internal loops are conceptually important to move beyond the framing of input/output function evaluation
- because they make it possible that neural activation arises or persists in the absence of input
 - examples: movement generation, working memory, sequences generation

Internal loops

recurrence in neural network terms

=> implies time

Internal loops => neural dynamics

- time is not discrete (and spiking is asynchronous)
- => dynamics of the neural activation state, u: neural dynamics
- the "-u" term, inherited from membrane dynamics, is the source of stability

 $\dot{u}(t) = -u(t) + \text{resting level} + \text{input}(t)$

Why is stability important in neural dynamics?

- because it is sufficient... as you will see..
- instabilities demarcate different cognitive functions... as you will see..

Why is stability important in neural dynamics?

more intuitively: stability is resistance to change under perturbation, change of conditions/inputs..

- e.g. resistance to distractor input... in a selection decision
- dense neural connectivity => in any given neural state, many connections provide "distractor input".. that must be resisted

Neural dynamics

as used in Dynamic Field Theory is a sub-set of general neural network theory (!)

in which additional principles / constraints are imposed

📕 stability

low-dimensionality

regular interaction functions

dynamic instabilities

active transients

and that is what this course is about