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Ultimate goal

… ultimately, we all try to understand how 
the central nervous system fused with our 
body and embedded in structured 
environments generates behavior and 
thought… 

… some of us seek ideas for how to build 
artificial cognitive systems that may perceive, 
act, and think on their own 



Cognition
much of an organism’s behavior can be 
understood in terms of relatively simple 
perception-action patterns… 

a simple-minded, but useful, perspective 
posits, that cognition is whatever comes 
between sensing and motor behavior.. 

the more invariant against changes of sensory input, 
against delay, against changes in effector configuration… 
the more cognitive

the more indeterminate the behavior from the proximal 
stimulus.. .the more cognitive 



Cognition as computation

the “classical” approach to cognition … 
emphasizes 

the capacity to generalize: abstraction/invariance… and 
systematicity/rules

the capacity to generate unboundedly many different 
thoughts.. productivity/compositionality 

=> cognition as symbol manipulation

which entails symbol instantiation (the 
grounding problem) 



Cognition as computation

which leads to the view of cognition as 
computation (information processing)

at the core of which is function evaluation 

for example, in relational cognition: to-the-right-
off(target position, reference position) returns “true” or 
“false” or a probability 

and the nesting/concatenation of such 
function calls 

for example, in parsing language



Neural basis of cognition

the connectionist view of neural 
function: 

neurons as input-output threshold 
elements 

that form (essentially feed-forward neural 
networks

these neural networks may 
contain recurrent loops

but the functional significance of the 
networks typically still derives from the 
overall “output=function(input)” 
characterization 

output = g (∑ (inputs))

 Neural Dynamics 11

is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a 
set of changes in the input pattern do not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 
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FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3, are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.
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FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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Neural basis of cognition

so, although connectionism calls into question 
the hypothesis, that symbols are instantiated and 
manipulated

connectionism still lends itself to a function 
evaluation perceptive on cognition

(with the computational black boxes replaced by 
clouds of neural networks)



But: Cognition emerges in evolution 
and development from the 

sensorimotor domain

for example, memory emerges in evolution 
from spatial navigation: knowing where you 
are and how to get somewhere 

decision making emerges from action 
selection: knowing what to do

=> cognition for action, behavior, survival



Sensorimotor cognition

the sensorimotor origin of cognition is 
evident in the structure of the brain

that has evolved in a graded way

with many subsystems highly invariant 

e.g. basal ganglia as the basis for action selection from 
lamprey to human over 500 million years (Grillner, 
Robertson, Current Biology 2016)

=> seek a neural account of cognition that is 
specific to our evolutionary repertoire of 
forms of cognition 



attention/gaze

active perception/working 
memory

action plans/decisions/ 
sequences

goal orientation

social interaction 

background knowledge

learning from experience

Sensorimotor cognition



Properties of sensorimotor cognition

graded state 

continuous time 

continuous/intermittent link 
to the sensory and motor 
surfaces 

from which discrete events 
and categorical behavior 
emerge

closed loop

=> dynamics 

=> need for stability



Embodiment hypothesis

cognition inherits 
the properties of 
embodied cognition

=> dynamics rather 
than function 
evaluation



Embodiment hypothesis (radical form)

all cognition has 
these dynamic 
properties… 

there is no 
boundary, beyond 
which these 
properties can be 
neglected… 



Dynamics

what is “dynamics”… ? 



Braitenberg’s vehicle metaphor

source structured
environment

intensity

activation

wheel
motion

activation

sensory
system

body

nervous
system

motor
system

intensity

vehicle=organism whose body moves its sensors 
and motor systems through its environment



heading
direction

turning rate
of vehicle

attractor

The vehicles’ behavior emerges from 
the attractor of a dynamical system



source

intensity

activation

wheel
motion

activation

intensity

intensity

wheel
motion

Input-output description of 
the feed-forward paths of the 

vehicle’s nervous system 



intensity

wheel
motion

intensity

wheel
motion

differences in 
intensity
left-right

differences in 
turning rate 
left-right wheel

ωl = ω0 − cIl

ωr = ω0 − cIr

Δω = − cΔI

Input-output description of 
the vehicle’s nervous system 

for body rotation

output input



Model of the 
environment 

heading
direction

heading
direction

differences in 
intensity
left-right

intensity

heading
direction

heading
direction

differences in 
intensity
left-right

intensity

heading
direction

turning rate
of vehicle

differences in 
intensity
left-right

source

differences in 
turning rate 
left-right wheel



heading
direction

differences in 
intensity
left-right

differences in 
intensity
left-right

differences in 
turning rate 
left-right wheel

heading
direction

turning rate
of vehicle

source

Concatenate the 
model of the 
environment 

with the model 
of the nervous 

system

environment

nervous system

=> result



feedforward nervous system

+ closed loop through 
environment

=> (behavioral) dynamics

heading
direction

turning rate
of vehicle

attractor



Cybernetic reading of dynamics

the CNS reduces the 
deviation from the desired 
behavioral state to zero

by its sensors measuring 
the “error” 

and the CNS sending a 
feedback control signal to 
its actuators to reduce the 
error 

heading
direction

turning rate
of vehicle

attractor



Cybernetic reading of dynamics

the CNS reduces the 
deviation from the desired 
behavioral state to zero

by its sensors measuring 
the “error” 

and the CNS sending a 
feedback control signal to 
its actuators to reduce the 
error 

intensity

wheel
motion

intensity

wheel
motion

differences in 
intensity
left-right

differences in 
turning rate 
left-right wheel

Δω = − cΔI

control signal

error



Cybernetic reading of dynamics

… depends critically on 
the closed loop: the body’s 
movement changes the 
sensory information..  

this is a loop through the 
environment

the state of the dynamics 
is the body’s physical state 
in the environment 

heading
direction

turning rate
of vehicle

attractor



Limits of the cybernetic 
view of dynamics 

presumes there is a single “goal” or set-point 



two sources

bimodal distribution 

=> bistable (non-linar) 
dynamics 

=> selection decision

intensity

heading
direction

turning rate
of vehicle

source1 source2

source2source1

heading
direction



Limits of the cybernetic 
view of dynamics 

far reaching implications … 

for the nature of the perceptual variables 
(not “error-signals”)

for the nature of the state variables (not 
“error-correcting-control-signals”)

=> dynamics  cybernetics/control theory≠



Why is stability important for 
behavioral dynamics? 

because it is sufficient… stability brings 
about the behavior… 

because it is necessary… without stability 
no behavior  (not the correct behavior)



[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

Stability and loss of stability in 
movement coordination

stability of relative phase is 
constitutive of coordination

loss of stability (enhanced 
variance, relaxation time) 
leads to change of 
coordination pattern

Volume 118, number 6 PHYSICS LETTERS A 27 October 1986 

and 2.88 Hz at the pre-transition segment, $4. By $9 
(the end of the run) the frequency range was between 
2.99 and 4.04 Hz. 

Increases in fluctuations immediately before the 
transition appear to reflect an instability of the anti- 
phase coordinative pattern. However, the experi- 
mental and analysis procedure in the wrist experi- 
ment still leaves doubts about the evidence for critical 
fluctuations in two respects: (1) The point estimate 
of relative phase necessarily produces a relatively low 
number of data points within each segment for the 
temporal averages. (2) A possible non-stationarity 
in the data is introduced due to the lack of exact con- 
trol over the rate of frequency scaling. To alleviate 
these problems we performed more refined experi- 
ments on finger movements. In these the relative 
phase was measured continuously, i.e. at every 5 ms 
sample. In this case, each sample estimate was deter- 
mined on the basis of the individual phase of each 

finger's motion defined by (~R=Ian-I(J(R/XR) w h e r e  
XR is the position of the right index finger normal- 
ized to the cycle extrema and J(R is its normalized 
instantaneous velocity. Continuous relative phase is 
just ~R-OL at each sample. In fig. 3 it is possible to 
compare the continuous estimate of relative phase 
(fig. 3C) and the point estimate of relative phase (fig. 
3B) for a representative experimental run (fig. 3A). 

The slow component of phase fluctuations is 
apparent in both figs. 3B and 3C, though a finer fluc- 
tuational structure emerges from the continuous 
estimate. Because of the anharmonicities present in 
the individual finger movement trajectories, the con- 
tinuous relative phase also contains an oscillatory 
component. Due to the controlled, stepwise increase 
of cycling frequency explicit stationarity checks could 
be made by averaging over a 0.5 s window that was 
moved through the 4 seconds of data at each fre- 
quency. Stationarity was guaranteed less than 1 s after 
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Fig. 3, (A) Representative time series showing position over t ime of right (solid line) and left (dashed line ) finger abduction-adduction 
movements  as the control parameter F is systematically scaled every 4 s. (B) The corresponding point estimate of  relative phase, i.e. the 
phase of one finger's oscillatory peak relative to the other. (C) The continuous estimate of  relative phase measured every 5 ms (see text 
for details) of the same time series data. 
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stability of relative phase constitutive of 
coordination

=>loss of stability (enhanced variance, 
relaxation time) leads to change of 
coordination pattern

[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

Stability and loss of stability in 
movement coordination



[Kelso, Scholz, Schöner, 86; Schöner, Kelso, 88]

=> stability is both necessary and sufficient 
for the emergence of coordination patterns

Stability and loss of stability in 
movement coordination



What about “internal” loops?

internal to the nervous system … 



Internal loops

internal loops are conceptually 
important to move beyond the 
framing of input/output function 
evaluation

because they make it possible 
that neural activation arises or 
persists in the absence of input 

examples: movement generation, 
working memory, sequences generation



Internal loops

~ recurrence in neural network 
terms

=> implies time 

output(t)

input(t)

output(t+1) 



Internal loops => neural dynamics

time is not discrete (and 
spiking is asynchronous) 

=> dynamics of the neural 
activation state, u: neural 
dynamics

the “-u” term, inherited from 
membrane dynamics, is the 
source of stability

·u(t) = − u(t) + resting level + input(t)

du/dt

u
resti	
 �e�e�

i	ut

��ti��ted
st�te



Why is stability important in 
neural dynamics?

because it is sufficient… as you will see.. 

instabilities demarcate different cognitive 
functions… as you will see.. 



Why is stability important in 
neural dynamics?

more intuitively: stability is resistance 
to change under perturbation, change 
of conditions/inputs.. 

e.g. resistance to distractor input… in a selection 
decision

dense neural connectivity => in any 
given neural state, many connections 
provide “distractor input”.. that must 
be resisted

source1

dimension

activation

source2



Neural dynamics
as used in Dynamic Field Theory is a sub-set of 
general neural network theory (!)

in which additional principles / constraints are 
imposed

stability 

low-dimensionality 

regular interaction functions 

dynamic instabilities

active transients 

… and that is what this course is about 


