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Sensors

M transform a physical
Intensity into a
neural activation

M intensity: light, sound,

displacement o
intensity

M neural activation: \ 4 A activation

membrane potential,
spike rate
* intensity

activation )




Activation

M activation as an abstraction,
defined relative to sigmoidal
threshold function

B low levels of activation are not
transmitted (to other neural systems, to
motor systems)

M high levels of activation are transmitted , g(u)

M threshold at zero (by definition)




Motors

M transform activation
into physical action

M ... muscles activation

* A movement

activation
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movement




Motors

M ... actually entails

closed loops..

descending
activation

® and is dynamic in

nature!
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Sensory surfaces

B many sensors...

B in the retina
B the cochlea
B the skin ...

® form an anatomical sensory surface...



Functional sensory surfaces

M vision
M visual space
B oriented contrasts in visual space

B movement direction in visual space

M audition

M pitch

B formants
M haptics

B texture ..



Neural representation of
functional sensory surfaces

M extract features
from the anatomical
sensory surfaces by
input-driven neural

networks A s B
1 +m— %07
(essentially feed- N
forward) WL-MH—— o
X ripem
> < 30
M as characterized by X -
tuning curves/ N -
receptive fields + W— N 5 m  w

[Hubel, Wiesel, 1962] s (orientation angle in degrees)



Neural representation of
functional sensory surfaces

4 activation
field
>
dimension
M leading to neural maps:
M space code/population
code 4 input from the

sensory surface / \

dimension




Neural fields

M the discrete sampling of
such neural maps by
individual neurons does
not matter

M => activation fields

N

. activation
field

>

dimension
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4+ input from the
sensory surface

dimension



Peaks of activation in perceptual
neural fields represent objects
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Motor surfaces

B the sets of muscles that actuate the degrees
of freedom of the body .. anatomical motor
surface



Functional motor surfaces

B the parameters describing movements... movement
direction, amplitude etc..= functional motor surface

B the (essentially) forward connectivity to the muscular

systems (synergies) implement functional motor
surfaces..
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M neural fie
functiona
through t

Neural fields

ds represent the
motor surface

neir connectivity

to the anatomical motor

surface

A activation
field, u(r)

motor
dimension, r

Adr/dt

>

A\ 4



Peaks of activation in motor neural
fields represent motor intentions

4 activation

movement
amplitude

movement
direction




Link to population code



Neural fields: Distributions of
population activation (DPA)

0O
M sensory: primary visual cortex Ly .y
B determine RF profile for each cell / |
4 RF-center
M superpose these weighted by the H\“H” |
Wb,

current neural firing rate

B => DPA defined over retinal space

[Jancke et al, J. Neurosci 1999]



DPA

current stimulus: range of retinal field
square of light sampled by neurons

[Jancke et al, J. Neurosci 1999]



DPA: time course of activation

two different time
stimulus
locations
30 - 40 ms 40 - 50 ms 50 - 60 ms - 70 ms 70 - 80 ms

[Jancke et al, J. Neurosci 1999]



DPA: interaction

‘ response to composite increasing distance between the two squares of light
stimuli

1 superposition of responses to each 0.4 Bl ]
component stimulus



activation level in the DPA

D PA: i nte racti on = the location of the left component stimulus

1.1 response to
composite stimuli
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motor DPA

B motor: primary motor
cortex

B determine tuning for

hand lands on target

:I“.°"e'f“e"t hand lifts off
irection
start button \
Complete Information
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B superpose these
weighted by the current
neural firing rate

B => DPA defined over
movement direction

[Bastian et al, Europ J. Neurosci 2003]

Distribution of population activation =
2 tuning curve * current firing rate
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B neurons
contribute their
entire tuning
curve ==
distributed
across field!

Motor DPA

activation
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Neural dynamics



Neural dynamics of fields

M Peaks as stable states from intra-field interaction

M = |ocal excitation/global inhibition

w(x-x7

_/

A

activation field u(x)

local excitation: stabilizes

m peaks against decay

global inhibition: stabilizes
eaks against diffusion

“\SN .
7 \InPUt

>

dimension, x



OXFORD SERIES IN DEVELOPMENTAL COONITIVE NEUROSCIENCE

B dynamicfieldtheory.org Dynamic Thinking

A PRIMER ON DYNAMIC FIELD THEORY

Gregor Schoner, John P. Spencer, and the DFT Kesearch Group

OXTORD



http://dynamicfieldtheory.org
http://dynamicfieldtheory.org

=> simulation



Attractors and their instabilities

M input driven solution

reverse
(sub-thresho d) ldetection Tdetection
- . in ili - T
M self-stabilized solution instability instability

(peak, supra-threshold)

M selection / selection
instability

® working memory /

memory instability Noise is critical

M boost-driven detection near instabilities

instability



The mathematics of neural dynamics

B dynamical state variable: activation, u, as a real
number that reflects the (population) membrane

potential
A < \:Jl " // shocks
\ ~
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[from:Tresilian, 2012]
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The mathematics of neural dynamics

B u(t) evolves as a dynamical system, characterized by
a time scale, 7 & 10ms

tu(t) = — u(t) + h + input(z)

[from:Tresilian, 2012]
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The mathematics of neural dynamics

M spiking when membrane potential exceeds
threshold....

M spike train is transmitted to downstream neurons
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The mathematics of neural dynamics

M in neural dynamics, that mechanism is replaced by a
statistical (population) description: threshold
function

4 o(u)

[from:Tresilian, 2012] 0



The mathematics of neural dynamics

B that captures different firing rates in a small
population...
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Neural dynamics

B dynamical system: the present predicts the future

M given a initial level of activation, u(0), the activation,
u(t), at times t>0 is uniquely determined

A du/dt = f(u)

vector-field

—>->T<- <

resting \
ti(t) = — u(t) + h level




Neural dynamics

B fixed point = constant solution (stationary state)

M stable fixed point = attractor: nearby solutions
converge to the fixed point

tu(t) =—u(@®)+h

A du/dt = f(u)

vector-field

—

>R

1

resting
level

N




Neural dynamics

B attractors structure the
ensemble of solutions (for
all initial conditions) = flow

sting |

evel 7| T L——
. A du/dt = f(u)

vector-field

—>->T<- <

resting \
ti(t) = — u(t) + h level




Neuronal dynamics

M in neural dynamics, inputs are

contributions to the rate of A duldt
change input,
B positive: excitatory
B negative: inhibitory restizg hIs u
level, h
B => shifts the attractor
A input, s
B => activation tracks this shift ut)

due to stability K( )
g(u(t
/ time, t

i@ = — u(®) + h + s@©) o resting level, h




Neuronal dynamics

B what is transmitted is o(u(t))

M (labelled g(t) in the book and in
some figures)

B => neural dynamics as a low-

pass filter of time varying input
A input, s

B = input-driven solution u(t)

g(u(t))

[/ time, t
>

tu(t) = — u(t) + h + s(v) o resting level,h




=> simulation



Neuronal dynamics with self-excitation

v

M single activation variable with self-
excitation

B representing a small population with
excitatory coupling

tu(t) = —u(t) + h+ s(t) + ¢ o(u(r))



Neuronal dynamics A duldt

with self-excitation
\(‘ |
T u

resting level \

®m=> nponlinear dynamics! 4 du/dt

u
>
resting
level, h

tu(t) = —u(t) + h + s(t) + ¢ o(u(r))



Neuronal dynamics
with self-excitation

A du/dt
A input strength

®varying input

resting
level, h

tu(t) = —u(t) + h + s(t) + ¢ o(u(r))



Neuronal dynamics A dulde
with self-excitation

Mat intermediate A
stimulus strength:
bistable
B“on” vs “off”’ state time, t
_ u(t)<0

tu(t) = —u(t) + h + s(t) + ¢ o(u(r))



Neuronal dynamics
with self-excitation durde

stimulus
®increasing input strength Stre”gthT
=> detection instability

®m=> the detection A

put strength
decision is stabilized N

resting
level, h

tu(t) = —u(t) + h + s(t) + ¢ o(u(r))

N

A fixed point

unstable
stimulus
N strength
stable

A du/dt




Neuronal dynamics
with self-excitation poudde -y Tedpot

stable

stimulus
strength
unstable

stimulus
strength

Bmdecreasing input

strength => reverse A du/dt
detection instability A input screngeh
\\/

resting
level, h

tu(t) = —u(t) + h + s(t) + ¢ o(u(r))




Neuronal dynamics
with self-excitation

Bthe detection and its
reverse == create
discrete events from
time-continuous changes

u(t)
A

reverse

detection P

instability -

l 4"'4&‘4‘
:/ time, t
A

detection
instability

tu(t) = —u(t) + h + s(t) + ¢ o(u(r))



=> simulation



Neuronal dynamics with competition

M two activation variables ¢ ¢

with reciprocal inhibitory
coupling

B representing two small
populations that are
inhibitorily coupled

i, (1) = — u; (D) + h + 5,(0) — o (uy(0))
Ti,(1) = — u(£) + I + 5,(1) — o (u; (1))



Neuronal dynamics with competition

B Coupling: the rate of change ¢ ¢
of one activation variable
depends on the level of
activation of the other
activation variable

l coupling
T (1) = —uy(t) + h + 51(t) — o(u,(?))
TUy(1) = — uy(1) + h + 5,(t) — o(u(2))



Neuronal dynamics with competition

h'IS|
B to visualize, assume that T

. inhibition
U, has been activated by h+s,,.c.2\y\fmmtu2

input to a positive level

B => it inhibits i,

211, (1) = — uy (1) + h + 5,() = o(u,(0))
Ti5(1) = — (1) + h + $,(£) — 6(uy (1))

uj

U2



Neuronal dynamics with competition

.Wh)’ WOUId l/tz be POSitive A du/dt
before u,?

® more input to u, (better

“match’”) => faster increase . T \{nhibmon Ul
S1-C|2 from uy
M input advantage <=> time A duy/dt
advantage <=> competitive A
advantage
I "2
h+s,

211, (1) = — uy (1) + h + 5,() = o(u,(0))
Ti5(1) = — (1) + h + $,(£) — 6(uy (1))



resting state

Neuronal dynamics with competition

vector-field in the
absence of input

u?z

N

A du/dt = f(u)

o

vector-field

!

f

¢
resting
level

resting state

Cvy



Neuronal dynamics with competition

vector-field (without

interaction) when both
neurons receive input
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Neuronal dynamics with competition

M only activated neurons
participate in interaction!




Neuronal dynamics with competition

M vector-field of mutual inhibition

site | inhibits site 2 site 2 inhibits site | interaction combined
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Neuronal dynamics with competition

vector-field with strong
mutual inhibition:
bistable

input interaction total

u?z
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Neuronal dynamics with competition

before input is presented after input is presented
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u?

Neuronal dynamics with competition

stronger input to u; => attractor with positive u; stronger,
attractor with positive u, weaker => closer to instability

input
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Neuronal dynamics with competition

Edecision made at detection instability!

before input is presented after input is presented
9\
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resting state



=> simulation



The neural dynamics of fields

M ... the same underlying math

B coupling amoung continuously many
activation variables

B |ocal excitatory coupling (“self-excitation”)

M global inhibitory coupling (“mutual inhibition™)

tu(x,t) = —ulx,t)+ h+ s(x, 1) + de’w(x —x") o(u(x', 1))

A

w(x-x')/\

/ o




field vs. activation variables

ALII AU2

mutual

(selt 7 inhibition | self
excitation excitation




