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DFT models

M neural process models of sensori-motor
behavior and cognition

M a spectrum of models that vary in how close
and realistic the link to the sensory and
motor surfaces is..

B => different interfaces to experimental
observation



DFT models that account for behavior

B by mapping states of the
model onto behavioral states/
measures

B example: RT

B map experimental conditions onto
sets of inputs and their time structure

B in experiment, measure time to
initiation of movement (reaction
time) and compare in model to time
for activation to reach a criterion
level

[Grieben et al. Attention, Perception &
Psychophysics (2020)]
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DFT models that account for behavior

B => | will lecture about that now



DFT models that account for behavior

B by linking DFT models to realistic sensor/motor
models

B example: relational cognition: video input =>
categorical decisions
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DFT models that account for behavior

M by linking DFT models to realistic sensor/motor
models

M => |ectures by Raul Grieben, Mathis Richter



DFT models that account
for neural data

B by mapping states of the
model onto neural
measures

4 deg/s

B example:

16 deg/s

B time courses of voltage-
sensitive dye imaging on visual
cortex

[Markounikau et a|’ PI_OS Comp BIOI (20'0)] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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DFT models that account
for neural data

B | touched upon this
briefly, will not expand

B => current work by John
Spencer; Aaron Buss and
others

>

ACTIVITY

< .III
‘ttooz:,,zo.
e

@

ACTIVITY

experiment

__ACTVITY

AN \\\\\ ‘
7 \\\\\\\\\\\\\ N
> 0."9‘\3\\\ \‘\\\\\\\\\ \'

= 2
L7 '00\\\\ \\"":
"!ll:,,;':i'aﬁz’

@

‘\
’l?lll IO
i ’fllm," i
e P — '0%‘~..
e
/lll',,,';"l'io,w\“‘\‘\‘x‘\‘}\\\&\\\%\\}‘{%," i
oS < Ill'," ""\?\\\‘{Q\\\\\\\\\\\\ -

RS

[Bastian, Riehle, Erlhagen, Schoner, 98]



DFT models that account for
behavioral competences

® by linking DFT models to
real sensors/motor systems

M example: online updating

B DFT model receives camera input
B and drives a robotic arm

B DFT model solved numerically on
computers in real time

B a real scenario emulates “online
updating” of movement

[Knips et al., Frontiers Neurorobotics (2017)]



DFT models that account for
behavioral competences

M by linking DFT models to
real sensors/motor systems

B => lecture by Jan Tekulve



DFT models that account for neural
processes and behavioral competences

® by implementing DFT models
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B DFT model on neuromorphic chip



DFT models that account for neural
processes and behavioral competences

® by implementing DFT models
directly on neuromorphic
hardware and link it to real
sensors/motor systems and

B => |ecture by Yulia
Sandamirskaya



Selection decisions

B multiple localized inputs...

one of which is selected
for the generation of a
supra-threshold peak

A

activation
field

>
dimension

activation
field

>
dimension

activation
field

>
dimension



Selection decisions

M selecting a new saccadic target location
every ~300 ms

[O’Reagan et al., 2000]



Selection decisions are stable in DFT

“winner takes all” DFT
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Experimental paradigm

T
%
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[after: Ottes et al., Vis.

Res. 25:825 (85)]
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Time course of selection decision

double target paradigm
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Neural dynamic account?

M so far we assumed that a single population of
activation variables has both the excitatory and the
inhibitory coupling required to make peaks

attractors

c(u)

>

activation field u(x)

local excitation: stabilizes

m peaks against decay

global inhibition: stabilizes
eaks against diffusion
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But: Dale’s law

M every neuron forms only one type of synapse on the
neurons it projects onto: either excitatory or
inhibitory

>

activation field u(x)

this is not
local excitation: stabilizes

/ actually possible!
m peaks against decay

global inhibition: stabilizes
eaks against diffusion

-

« input
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dimension, x



Instead: 2-layer neural fields

M inhibitory coupling is g Brcitatory ‘PQ'
mediated by inhibitory
interneurons that

Activation u (x)

M are excited by the excitatory layer

M and in turn inhibit the excitatory
layer

Activation u (x)
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Math of 2 layer Amari fields

T u(x, 1) = —ulx,t)+ h,+ s(x, 1)

+ Jkuu(x — xYo(u(x', 1))dx’ — J'kw(x — x"Yo(v(x', t))dx’
T v, ) = —v(, 1)+ h,+ [kma(u(x’, 1)dx'

with projection kernels
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Time course of selection decision

M initially input-dominated
@ excitatory
M excitatory interaction arises kernel
as once the excitatory field

excitatory
goes through threshold layer
@

M inhibition arises only after
that has happened... when

inhibitory field exceeds inhibitory
layer

inhibitory
kernel

threshold => begin to see o
inhibitory interaction

[Wilimzig, Schneider, Schoner, Neural Networks 2006]
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Time course of selection decision

intermediate: dominated by excitatory interaction
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[Wilimzig, Schneider, Schoner, Neural Networks 2006]



=> early fusion, late selection

double target paradigm
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(2 layer fields afford oscillations

M ... will be important for movement generation

® and for sequence generation... )



Selection decisions in the
laboratory

B most experiments in cognition entail
selection decisions!

M in most of these paradigms an imperative
signal uniquely specifies the “correct”
response

B what is varied is e.g.

B the nature of the imperative stimulus
M the task set

M experience with the task



Task set

B examples: number or probability of choices,
perceptual quality of imperative stimulus, difficulty of
the match between imperative stimulus and learned

category ...

M the task set is known to the participant prior to the
presentation of the imperative signal

M by instruction
M by perceptual layout
M by learning

B => task set “preshapes” the underlying
representations (pre=before the selection decision)
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[Erlhagen, Schoner, Psych Rev 2002]



Reaction time (RT) paradigm

Imperative
signal=
go signal
response
tlme

RT

M




Reaction time task in DFT

activation u(x)

o

specific input + boost
in different conditions
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[Wilimzig, Schoner, 2006]



Hick’s law

31
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Metric effect:
experiment
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preshaped activation field

maixmal activation

same metrics, different probability

different metrics, same probability
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Behavioral evidence for graded/time-
continuous evolution of selection decisions

timed movement
initiation paradigm

imperative stimulus

\ 4

>

111 ,
T time

move on 4th to tone

‘(— imposed SR interval

[Ghez and colleagues, 1988 to 1990’s]
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Distribution of Peak Forces

Experimental results of Henig et al
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Number of trials

theoretical account for Henig et al.
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[Erlhagen, Schoner. 2002, Psychological Review 109, 545-572 (2002)]
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Binfer width of

preshape peaks in
field

[Ghez et al 1997]
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Number of trials
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Neural evidence for preshape

movement
direction

Distribution of population activation =
2 tuning curve * current firing rate

neurons

activation

180 240 300 360
l movement direction

movement direction
required in this trial

[after Bastian, Riehle, Schéner, submitted]
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B DPA reflects prior
information
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Working memory

M in decision making,

. A
graded influences are dimension
seen in the fast/early D —>
time course
selfd-
. excite
B working memory peak

probes the opposite
limit-case: graded A

influences are seen in dimension
the long run after 0 >
imperative input is L
removed peak




John Spencer’s “space ship” task
probing spatial working memory

2000 ms 10 sec delay Ready, Set, Go!

[Schutte, Spencer, JEP:HPP 2009]
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® DFT account of
repulsion:
inhibitory
interaction with
peak representing
landmark

Acftivation

Location (°)

[Simmering, Schutte, Spencer: Brain Research, 2007]



Working memory as sustained peaks

B implies metric drift of WM, which is a
marginally stable state (one direction in
which it is not asymptotically stable)

B => empirically real.. see extensive work

B Johnson, ). S., Simmering,V.R., & Buss,A.T. (2014). Beyond
slots and resources: Grounding cognitive concepts in

neural dynamics. Attention, Perception, and
Psychophysics, 76(6), 1630—1654.

B Simmering,V.R. (2016).Working Memory Capacity in
Context: Modeling Dynamic Processes of Behavior,

Memory and Development. Monographs of the Society
for Research in Child Development, 81(3), I-158.

B => talk by Sebastian Schneegans



Learning in DFT

B Learning is change of behavior based on
experience

B experience is driven by activation patterns

B behavior is generated by neural dynamics

M => Learning is change of the neural
dynamics driven by activation patterns



Learning: Hebb

activation, u | (x)

dimension, X
>

M projections among fields
(or from sensory input to  activation, us(y)
field) evolve according to
a dynamic Hebb rule

dimension, y
>

W, 7,0 = ) = Wy, ) + £ (6, 0) x sy, 1)

[Sandamirskaya, Frontiers Neurosci 2014]



Learning: Hebb

Mimportant in DFT for
projections from zero-
dimensional nodes to

fields
B => concepts

B => talks by Mathis
Richter, Daniel Sabinasz,
Jan Tekulve

activation

4 field, uy(y)

activation node, u |

O

dimension, y
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ing:

Learn

tin NN

ias inpu

the order Hebb ~ the b

fied

B zero

-driven detection instability

in the boost

Bampl

dx'wx —x") g(u(x', 1) + Uyem

tu(x,t) = —ulx,t)+ h+ s(x, t) + J

U (X, 1) + g(u(x, 1))

Tmemumem(x ’ l ) _

memory
trace

\
AN
AN
AR
AR
W
AN
A
AN
ANV
RN
ML
TN
ATALARRRAR
AVVARIANONON
T

AR
AN
s é%%%%,,
L
AN
N
,,@

NN N
A

Y
L
L

W

is no supra-

f there
mem(X, 1) =0 threshold activation

Tmemu

i
ALY
MR
@@@@%%m%%%%%m%%%,a,
AR
AN
A
NN
//,
N
W
z;z%%
AN
AR

AN
A

MR
WY
;%z%%
A
N

W
TN

SN
\

\
A\
AN
A
/,%
0,,W

AN

AN
AN
,/@,/#

.

” dimensio

A
|
zg

\)
/@W

\

60

\

40

20

anywhere in the field




Learning: memory trace

M provides an account for the .
. . . AR , '
construction of priors... link | |
TR . . after 50 . after 100
to probabilistic thinking |

trials ;O trials

umem(x)
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[Erlhagen, Schoner, Psych Rev 2002]



Piaget’s A not B paradigm:“out-of-sight

-- out of mind”

A trial

B trial

A not B error




Toyless variant of A not B task

[Smith, Thelen et al.: Psychological Review (1999)]



Toyless variant of A not B task reveals
that A not B is essentially a decision

task!
K | A trial K B trial
O O
be &
B . ‘ A B ‘ ‘
 delay A B  delay A B
ee oo oo o0

[Smith, Thelen et al.: Psychological Review (1999)]



activation field

A location

B location

task  specific preshape
input input mput

2=

[Thelen, et al., BBS (2001)]

[Dinveva, Schoner, Dev. Science 2007]



Instabilities ‘@

input-driven
detection

activation l 6 ‘

® detection: forming and initiating a field

A B
movement goal movement
g /\ direction
. . . U\’
B selection: making sensori-motor —/
decisions  memory
trace movement
. P direc'fion
® (learning: memory trace) T '
A B

® boost-driven detection: initiating
the action

® memory instability: old infants
sustain during the delay, young
infants do not



Instabilities

® detection: forming and initiating a
movement goal

® selection: making sensori-motor
decisions field

activation boost-induced
detection

® (learning: memory trace)

® boost-driven detection: initiating
the aCtion movement parameter

® memory instability: old infants
sustain during the delay, young
infants do not



Instabilities

® detection: forming and initiating a

movement goal

® selection: making sensori-motor

decisions

field \
A B after
yo u ng delay
1 memory
trace movement
direction
SN >
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A B
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® (learning: memory trace)

® boost-driven detection: initiating

the action

® memory instability: old infants
sustain during the delay, young
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DFT of infant perseverative reac

activation field
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DFT of infant perseverative reaching

activation field

perseverative
errors

i
ﬂ';"{?;{"" '"h',',‘
| I

| T
I
'I‘|' ) l‘ll.‘ | |’I‘.’

Al A2 A3 A4 A5 A6 Bl tingg/trials

[Dinveva, Schoner, Dev. Science 2007]



DFT of infant perseverative reaching
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[Dinveva, Schoner, Dev. Science 2007]



DFT of infant perseverative reaching

Mthat is because
reaches to B on A
trials leave memory
trace at B

spontaneous

rr n B!
error correct o

A

‘B2

- B

i

[Dinveva, Schoner, Dev. Science 2007]



DFT is a neural process model

mthat makes the decisions in each individual trial, by amplifying
small differences into a macroscopic stable state

®mand that’s how decisions leave traces, have consequences
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[Wilimzig, Schoner, 2006]



Decisions have consequences

M a spontaneous error doubles probability to make the
spontaneous error again

spontaneous errors

1 —— infanlts « irllfants, repeéted
-m= DFT = - DFT, repeated
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[Dineva, Schoner: Connection Science 2018]



Conclusion

B DFT models of behavior by mapping
experimental conditions/measures onto
neural states...

B even though this interface is limited, it
provides process accounts for sensorimotor
cognition

B | will expand this interface when talking
about “embodied DFT” next...



