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DFT models

neural process models of  sensori-motor 
behavior and cognition

a spectrum of models that vary in how close 
and realistic the link to the sensory and 
motor surfaces is.. 

=> different interfaces to experimental 
observation 



DFT models that account for behavior

Atten Percept Psychophys

below 8, explaining why the slope between set sizes 4 and 8
was steeper than for higher set sizes. Finally, that RTs were
overall shorter than in Experiment 1 likely reflects that the
visual cue in Experiment 2 could be processed before the
onset of the search array.

Comparison with the model

We simulated condition 2 of Experiment 2 by supplying
the model with a sequence of visual inputs according to
the presentation order in that condition. Model parameters
were identical to those for simulations of Experiment 1. The
resulting model RT means and fitted slopes are shown in
Fig. 18, along with those from the simulation of condition
3 of Experiment 1 (see Fig. 14). Performance in conditions
1 and 3 of Experiment 2 would be identical to conditions
1 and 3 in Experiment 1, so that we did not run these
simulations again and used the results from the previous
simulation.

For set sizes 8, 14, and 18, the difference of slopes
between the two conditions is consistent with the slope
difference observed in Experiment 2 (both near zero), thus
showing no inhibition effect. As concerns the model, this
results from the reset of SWM when a visual transient is
induced by the disappearance of the preview array. The
model also replicates the slightly steeper slopes over set
sizes 4, 6, and 8 seen in condition 3 of Experiment 2. It
does not, however, capture the slope of condition 2 for these
lower set sizes. This is due to the fact that, even though the
array is partly memorized, the model does not perform pure
in-memory search in the absence of a visual scene, because

Fig. 18 Mean reaction times for the different conditions as a function
of set size produced by the model in Experiment 2. Error bars indicate
±1 standard error of the mean. The results of condition 3 comes from
Fig. 14. For better comparability we used the same starting point of
measurement as in Experiment 1. As in Fig. 14, the overall magnitude
of model reaction times was scaled for comparison with human data

search mode in the model is triggered only in the presence
of a visual scene.

General discussion

We have presented an account of interactions between
visual working memory and visual search using a combined
approach of computational modeling and behavioral exper-
iments. Our first goal in this study was to provide a neural
process model of visual search that accounts for established
findings in this field (for reviews, see Carrasco (2011),
Wolfe and Horowitz 2017) but additionally incorporates a
mechanism for scene working memory. This allows us to
explore possible interactions between these two systems
in a biologically plausible model. The behavioral litera-
ture over the past two decades has clearly established that
working memory influences visual search in various ways,
but many details of their interactions are still controversial
(for reviews, see Hollingworth, 2012a, Donk, 2006; Olivers
et al., 2006).

The model we propose employs various mechanisms of
visual processing that have been established in previous
work, and brings them together into a fully integrated
neural-dynamic architecture implemented in the framework
of DFT. The feedforward path of the model is closely related
to the saliency map model (Itti & Koch, 2000), a standard
model of visual attention and visual search that realizes key
aspects of feature integration theory (Treisman & Gelade,
1980). We modeled color, orientation, and size as basic
visual features, since these have been shown to be effective
in guiding visual search (Wolfe & Horowitz, 2017).

Our model is consistent with key aspects of guided search
(Wolfe, 2007), in that it employs top-down guidance of
visual attention by a featural cue (see also Hamker 2005),
for an earlier neural-dynamic implementation of this mech-
anism). Since guidance depends on the metric differences
between target and distractors (Duncan & Humphrey, 1989;
Friedman-Hill & Wolfe, 1995; Wolfe, 1998), our model
proposes a simple normalization mechanism of neural acti-
vation, which is based on the number of cued features and
therefore scales naturally for higher feature conjunctions
(Nordfang & Wolfe, 2014). This mechanism also produces
the qualitative differences between single-feature and con-
junction search in the model.

A key feature of the DFT model is that it performs
a sequential processing of the visual scene, selecting
individual items through spatial attention (comparable to
the attentional bottleneck proposed in guided search). This
sequential process is realized as an integral part of the neural
dynamics, and emerges from transitions between different
stabilized states within the neural populations without any
algorithmic control structures outside of the neural model.

[Grieben et al.  Attention, Perception & 
Psychophysics (2020)]

by mapping states of the 
model onto behavioral states/
measures

example: RT 

map experimental conditions onto 
sets of inputs and their time structure 

in experiment, measure time to 
initiation of movement (reaction 
time) and compare in model to time 
for activation to reach a criterion 
level 



DFT models that account for behavior

=> I will lecture about that now



DFT models that account for behavior

[Richter et al. TopiCS(2017)]

by linking DFT models to realistic sensor/motor 
models 

example: relational cognition: video input => 
categorical decisions



DFT models that account for behavior
by linking DFT models to realistic sensor/motor 
models 

=> lectures by Raul Grieben, Mathis Richter



DFT models that account 
for neural data

Atten Percept Psychophys

below 8, explaining why the slope between set sizes 4 and 8
was steeper than for higher set sizes. Finally, that RTs were
overall shorter than in Experiment 1 likely reflects that the
visual cue in Experiment 2 could be processed before the
onset of the search array.

Comparison with the model

We simulated condition 2 of Experiment 2 by supplying
the model with a sequence of visual inputs according to
the presentation order in that condition. Model parameters
were identical to those for simulations of Experiment 1. The
resulting model RT means and fitted slopes are shown in
Fig. 18, along with those from the simulation of condition
3 of Experiment 1 (see Fig. 14). Performance in conditions
1 and 3 of Experiment 2 would be identical to conditions
1 and 3 in Experiment 1, so that we did not run these
simulations again and used the results from the previous
simulation.

For set sizes 8, 14, and 18, the difference of slopes
between the two conditions is consistent with the slope
difference observed in Experiment 2 (both near zero), thus
showing no inhibition effect. As concerns the model, this
results from the reset of SWM when a visual transient is
induced by the disappearance of the preview array. The
model also replicates the slightly steeper slopes over set
sizes 4, 6, and 8 seen in condition 3 of Experiment 2. It
does not, however, capture the slope of condition 2 for these
lower set sizes. This is due to the fact that, even though the
array is partly memorized, the model does not perform pure
in-memory search in the absence of a visual scene, because

Fig. 18 Mean reaction times for the different conditions as a function
of set size produced by the model in Experiment 2. Error bars indicate
±1 standard error of the mean. The results of condition 3 comes from
Fig. 14. For better comparability we used the same starting point of
measurement as in Experiment 1. As in Fig. 14, the overall magnitude
of model reaction times was scaled for comparison with human data

search mode in the model is triggered only in the presence
of a visual scene.

General discussion

We have presented an account of interactions between
visual working memory and visual search using a combined
approach of computational modeling and behavioral exper-
iments. Our first goal in this study was to provide a neural
process model of visual search that accounts for established
findings in this field (for reviews, see Carrasco (2011),
Wolfe and Horowitz 2017) but additionally incorporates a
mechanism for scene working memory. This allows us to
explore possible interactions between these two systems
in a biologically plausible model. The behavioral litera-
ture over the past two decades has clearly established that
working memory influences visual search in various ways,
but many details of their interactions are still controversial
(for reviews, see Hollingworth, 2012a, Donk, 2006; Olivers
et al., 2006).

The model we propose employs various mechanisms of
visual processing that have been established in previous
work, and brings them together into a fully integrated
neural-dynamic architecture implemented in the framework
of DFT. The feedforward path of the model is closely related
to the saliency map model (Itti & Koch, 2000), a standard
model of visual attention and visual search that realizes key
aspects of feature integration theory (Treisman & Gelade,
1980). We modeled color, orientation, and size as basic
visual features, since these have been shown to be effective
in guiding visual search (Wolfe & Horowitz, 2017).

Our model is consistent with key aspects of guided search
(Wolfe, 2007), in that it employs top-down guidance of
visual attention by a featural cue (see also Hamker 2005),
for an earlier neural-dynamic implementation of this mech-
anism). Since guidance depends on the metric differences
between target and distractors (Duncan & Humphrey, 1989;
Friedman-Hill & Wolfe, 1995; Wolfe, 1998), our model
proposes a simple normalization mechanism of neural acti-
vation, which is based on the number of cued features and
therefore scales naturally for higher feature conjunctions
(Nordfang & Wolfe, 2014). This mechanism also produces
the qualitative differences between single-feature and con-
junction search in the model.

A key feature of the DFT model is that it performs
a sequential processing of the visual scene, selecting
individual items through spatial attention (comparable to
the attentional bottleneck proposed in guided search). This
sequential process is realized as an integral part of the neural
dynamics, and emerges from transitions between different
stabilized states within the neural populations without any
algorithmic control structures outside of the neural model.

by mapping states of the 
model onto neural 
measures

example:

time courses of voltage-
sensitive dye imaging on visual 
cortex

[Markounikau et al, PLoS Comp Biol (2010)]the constant retino-cortical time delay in our model, the simulated
and measured signal onsets were aligned in all stimulus conditions.
Our model thus has the advantage of capturing the timing of VSD
signal onsets more accurately (see Figure 3).

Possible extensions of our NF model
The model responses to both the flashed bar and LM condition

fitted the observed VSD measurements. In contrast, for the single
flashed and the moving squares the model revealed a discrepancy
to the VSD data in the extent of lateral spread. One reason for this
effect is our simple Gaussian smoothing that we used as a model
for the retino-cortical processing. Increasing the kernel width ssu

resulted indeed in a wider activity spread, but the tested widths
were inappropriately large to match the common experimental

findings. As another straightforward solution, we increased the
widths of the coupling kernels wuu and wvu, however, the grid
search did not find models with an accurate fit for such wider
kernels.

For the flashed square, prolonged activity was observed
compared to the data. Importantly, tuning the gains guu, guv,
and gvu, the resting potentials hu and hv, and the steepness of the
transfer function bu and bv using evolutionary optimization
eliminated the discrepancy (see Figure 3).

Finally, the flashed and moving square stimuli evoked model
responses that were lower in amplitude than that measured. As
stated in ‘‘Relation to alternative large-scale model’’, using a
normalization method [25,30,44–47] in the retino-thalamic
processing step could be a suitable solution to adjust the

Figure 7. Model and VSD responses to moving squares with different speeds. Same conventions as in Figure 2. Stimulus speeds were: (A) 4,
(B) 8, (C) 16, and (D) 32 deg/s. At lower levels of activity the spread of activity was uniform across all conditions (greenish colors). In contrast, at high-
amplitudes (80% of maximal activation, red colors), the speed of propagation increased linearly with speeds: 0.004, 0.009, 0.02, 0.04 m/s. The
individual correlation coefficients computed between the simulated and measured responses were 0.83, 0.92, 0.82, 0.83 for the square moving at 4, 8,
16, and 32 deg/s, respectively.
doi:10.1371/journal.pcbi.1000919.g007

A DNF Model of Mesoscopic Cortical Activity

PLoS Computational Biology | www.ploscompbiol.org 11 September 2010 | Volume 6 | Issue 9 | e1000919



DFT models that account 
for neural data

I touched upon this 
briefly, will not expand 

=> current work by John 
Spencer, Aaron Buss and 
others 

an estimation procedure through which a distribu-
tion of activation over the movement parameter
‘direction’ can be constructed. (2) The notion of
preshaping of neural representations is employed to
search for specific use of prior information. By
extrapolating the estimation procedure for popula-
tion representations into periods in which incomplete
information about movement direction is available,
the preshaping of these representations can be
observed. (3) To detect experimentally such
preshaping, the amount and metric range of prior
information is varied by precueing either one, two
or three adjacent movement targets.

Materials and Methods

A monkey (Macaca mulatta) was trained to perform
pointing movements. It was cared for in the manner
described in the Guiding Principles in the Care and
Use of Animals of the American Physiological Society.
The animal sat in a primate chair in front of a vertical
panel on which seven touch sensitive light emitting
diodes (LED) were mounted, one in the center and
six equidistantly on a circle around the center. A trial
started when the center target was illuminated. The
animal had to touch the center target and wait for
the preparatory signal (PS), consisting of the illumi-
nation of one or several targets in green. After a
preparatory period (PP) of 1 s, one of the green
targets turned red, thus providing a response signal
(RS), which instructed the animal to release the center
button and to point at the specified target. Three
different types of prior information were presented:
(i) complete information in which a single target was
illuminated; (ii) partial information with two adjacent
targets illuminated; (iii) partial information with three
adjacent targets illuminated. Each of the three types
of prior information was presented in a separate block
of about 120 trials. Within each block, all possible
movement directions were presented randomly.

After training, the animal was prepared for
surgery. A circular recording chamber was placed
under halothane anesthesia (< 0.5% in air) over the
dorsal premotor cortex contralaterally to the task
performing arm. A T-bar was fixed on the skull 
in order to immobilize the animal’s head during 
the experimental session. A multi-electrode micro-
drive (Reitboeck device, Uwe Thomas Recording,
Marburg) was used to transdurally insert seven
independently driven micro-electrodes (impedance
1–4 M! at 1 kHz) into the motor cortex. Action
potentials of single neurons were recorded extracel-
lularly and isolated using a window discriminator.
Only neurons that changed significantly (one-factor
analysis of variance) their activity as a function of
movement direction during reaction time (time from
the occurrence of the RS until the initiation of move-
ment observed as the release of the center button),
or during movement time (time from the initiation
of movement until the hand touches the target) were
selected for the further analysis at the population
level. The activity of 40 of 56 neurons (71%) recorded
in the condition of complete information, 46 of 57
neurons (81%) recorded in the condition of partial
information with a precue of two targets, and 41 of
49 neurons (84%) recorded in the condition of partial
information with a precue of three targets reached
statistical significance.

The construction of a population representation 
of movement direction is technically similar to the

A. Bastian et al.
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FIG. 1. The dynamic field model of movement preparation repre-
sents the movement parameter ‘direction’ ("), by an activation field,
u("). Peaks of activation represent the parameter value at which
they are localized. The field evolves continuously in time as governed
by a dynamic system:

#uu. (",t) = – u(",t) + !w(" – ") f (u(",t)) d"$
+v(t) + h(t) + S(",t)

#vv
.(t) = – v(t) + c!f(u(",t))d"

Sensory information associated with the preparatory signal, PS, and
the response signal, RS, is modelled as localized excitatory input,
S(",t) and global excitatory input, h(t). Interaction within the field
(local excitation, global inhibition, w(" – ")) stabilizes a single local-
ized peak of activation as the target state of the field. The activa-
tion induced by input stimulation is transiently suppressed again by
an inhibitory process, v(t). The figure shows the temporal evolution
of the activation field in two cases. (A) When the preparatory signal
specifies completely the movement direction (at target 3), the corre-
sponding input preshapes the field at the specified location. The
response signal drives this localized peak transiently to higher levels
of activation. (B) When, by contrast, the preparatory signal speci-
fies two neighboring targets (at targets 3 and 4) the field is more
broadly preshaped and its maximum is centered on the average of
the two precued movement directions. The response signal now
leads not only to an increase of activation, but also to a shift of the
peak location toward the specified target (target 3) and a sharpening
of the distribution.



methods used by Georgopoulos and colleagues9 to
construct the population code, although the goal
persued with this construction is different. Inquiries
into population code typically ask which movement
parameters are represented by populations of neurons
in motor cortex. Although movement direction is
clearly coded for in motor cortex, neural firing may
also depend on parameters such as movement extent,
arm configuration, or shoulder joint angle.10–12 We
simply conclude from the tuning of single neurons
to movement direction that motor cortical neurons
contribute to the represention of that parameter,
among the potentially many other representations
that they might contribute to. To inquire about
movement direction, we projected from this
potentially high-dimensional space onto the axis
representing movement direction, !. This can be 
done by constructing a population distribution of
activation defined over the space of movement direc-
tions. The distribution was built from basis functions,
which we chose as the tuning curves of each neuron.
By weighting (multiplying) the tuning curve with the
current firing rate, population representations were
constructed for the various experimental conditions
and at different points in time. Specifically, for each
of the three types of prior information (complete,
two-target, three-target), a population representation
was constructed for each value of the preparatory and
response signal, that is, for each possible direction.
The combination of targets presented as preparatory
and response signal is designated in the formula as
‘configuration’.

The mathematical definition reads

uconfiguration(!,t) = " tuningi(!)#firingrateconfiguration(i,t)
neurons i

where the index i indicates the individual neurons in
the population. The firing rate of neuron i in a partic-
ular configuration was obtained by averaging within
a time slice beginning at time t. Thus, the population
representation could be estimated as a function of
time. A normalization factor was introduced to
smooth the density at which the parameter ‘move-
ment direction’ was sampled by the preferred direc-
tions of the cells. The tuning curves were obtained
from neural firing rates averaged over the reaction
time interval. Note that computing the population
representation during the reaction time interval is
thus somewhat tautological, but extrapolating this
estimator into other periods is not.

Means were computed from the population
representation by treating it as a probability distrib-
ution and using circular statistics.13 The width of the
population representation was obtained by using the
concentration measure of circular statistics. Because
the population representation is unnormalized, the

concentration was calculated after the areas under 
the population distributions at different configura-
tions were all equaled by adding or subtracting
appropriate constants.

Population representations of movement direction
were computed on the basis of the recorded activity
of 40 neurons for the condition of complete infor-
mation and 22 neurons for each of the two condi-
tions of partial information.

Results
The temporal evolution of the population represen-
tation is shown for the condition of complete
information (Fig. 2A) and for the condition of two
target information (Fig. 2B). The following state-
ments hold true for all movement directions: (1)
Neuronal activation increased in response to the
preparatory signal and in response to the response
signal. After a first maximum of activity following

Representation of movement direction in motor cortex
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FIG. 2. The population representation of movement direction as
constructed from neural responses of a population of motor cortical
cells is shown when complete prior information (A, target 3 was
precued at PS and specified at RS) and two target prior information
(B, targets 3 and 4 were precued at PS and target 3 was specified
at RS) is provided. The time slices for the computation of the popu-
lation distribution are 100 ms. Note how the population distribution
is preshaped in response to the preparatory signal. Location and
width of activation reflect the range and contents of prior informa-
tion. If complete information is provided (A) the activation peak is
localized over the precued target during the preparatory period and
the distribution increases in activation and sharpens subsequent to
the RS. At two target prior information (B), the preshaped distribu-
tion is centered broadly on the precued range, whereas after presen-
tation of the RS its peak shifts towards the specified value while
sharpening.



[Bastian, Riehle, Erlhagen, Schöner, 98]

experiment theory



DFT models that account for 
behavioral competences 

by linking DFT models to 
real sensors/motor systems 

example: online updating   

DFT model receives camera input 

and drives a robotic arm 

DFT model solved numerically on 
computers in real time 

a real scenario emulates “online 
updating” of movement

[Knips et al., Frontiers Neurorobotics (2017)]



DFT models that account for 
behavioral competences 

by linking DFT models to 
real sensors/motor systems 

=> lecture by Jan Tekülve 



DFT models that account for neural 
processes and behavioral competences 

by implementing DFT models 
directly on neuromorphic 
hardware and link it to real 
sensors/motor systems and  

example: sequence generation 
on vehicle  

event based camera 

drives vehicle

DFT model on neuromorphic chip

Kreiser et al. Sequence Learning in a Neuromorphic Device

FIGURE 12 | Learning a sequence of cued locations with a robot. (Top, left) The output of the Dynamic vision Sensor (DVS) camera of the robot: events from rows of

the DVS over time. Regions with high activity correspond to horizontal positions of locations, cued with a laser pointer. (Top, right) Plastic synapses after learning.

Dark red dots are synapses with high weights (only synapses from ordinal populations to the content DNF are probed here). (Middle) Spiking activity of neurons on

the ROLLS chip during the robotic sequence learning experiment, in which sequence of three locations was learned (A-C-B) and reproduced by turning to center

respective location in the field of view of the robot’s DVS (the mapping from position in the camera’s FoV and angle of rotation was hard-coded here for simplicity).

(Bottom) Snapshots of the experiment from an overhead camera. See main text for details.

Frontiers in Neuroscience | www.frontiersin.org 13 November 2018 | Volume 12 | Article 717

[Kreiser et al., Frontiers Neuroscience (2018)]



DFT models that account for neural 
processes and behavioral competences 

by implementing DFT models 
directly on neuromorphic 
hardware and link it to real 
sensors/motor systems and  

=> lecture by Yulia 
Sandamirskaya



Selection decisions

multiple localized inputs… 
one of which is selected 
for the generation of a 
supra-threshold peak

input

activation
field

input

dimension

activation
field

input

activation
field

dimension

dimension



Selection decisions
selecting a new saccadic target location 
every ~300 ms

Analysis of the eye movement trace may allow us to understand why
changes are so hard to detect and what is the origin of the difference between
the Central and Marginal Interest cases.

Eye Movement Measures

Figure 2 shows a typical eye movement scanning pattern for a picture. It is seen
that even though the observer was looking at the picture for 48 sec, and search-
ing actively for possible changes that might occur anywhere in the picture, the
eye continued to follow a surprisingly stereotyped, repetitive, scanpath in
which large areas of the picture are never directly fixated. Similar observations
were made by Yarbus (1967) and other authors, who observed that many por-
tions of a picture are never directly fixated, and that the particular scanpath that
is used depends on what the observer is looking for in the picture.

Could this be the reason why some changes are not noticed? Could it be that
those cases when the change is missed correspond to cases where the scanpath
happens not to include the change location? This hypothesis might explain the
difference between the MI and CI changes: Thus, it might be that MI locations,
being less “interesting” to observers, tend to be less likely to be included in the
scanpath than CI locations.

198 O’REGAN ET AL.

FIG. 2. Typical scanpath while a subject searched for changes. The original picture was in colour. The
change that occurred in this picture was a vertical displacement of the railing in the background to the
level of the man’ s eyes. In this record, the change was detected at the moment that the observer blinked
for the fourth time. The positions of the eye when the blinks occurred are shown as white circles. The
last, “effective” blink, marked “E”, occurred when the eye was in the region of the bar.

[O’Reagan et al., 2000]



Selection decisions are stable in DFT

“winner takes all” DFT



input

input

saccadic 
end-point

targets

targets

saccadic 
end-point

activation field

activation fieldactivation
field

[after Kopecz, Schöner: Biol Cybern 73:49 (95)]

bistable

initial 
fixation

visual
targets

[after: Ottes et al., Vis. Res. 25:825 (85)]

Experimental paradigm



Time course of selection decision
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Figure 16 Wilimzig Schneider Schöner

[Wilimzig, Schneider, Schöner, Neural Networks 2006]



Neural dynamic account? 

so far we assumed that a single population of 
activation variables has both the excitatory and the 
inhibitory coupling required to make peaks 
attractors 

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

S(u)

u



But: Dale’s law

every neuron forms only one type of synapse on the 
neurons it projects onto: either excitatory or 
inhibitory 

dimension, x

local excitation: stabilizes
peaks against decay

global inhibition: stabilizes 
peaks against diffusion

input

activation field u(x)

S(u)

u

this is not 
actually possible!



Instead: 2-layer neural fields

inhibitory coupling is 
mediated by inhibitory 
interneurons that 

are excited by the excitatory layer

and in turn inhibit the excitatory 
layer 

 Dynamic Field Theory and Its Links to Neurophyisology 83

excitatory ones have started firing. The delayed 
onset of inhibition means that an external stimu-
lus may produce an initial overshoot of excitation, 
which then decreases as it is balanced by rising inhi-
bition. This gives rise to a phasic-tonic response 
behavior in the excitatory neurons (although it is 
not the only cause of this pattern).

In the DF model, this connectivity and the 
resulting effects on the activation time course 
can be replicated by introducing separate layers 
for the excitatory and inhibitory subpopulations 
(Figure  3.13; see Box 3.5 for the formal descrip-
tion). The basic structure for the two-layer field is 
as follows:  The two layers, excitatory and inhibi-
tory, are defined over the same feature space and are 
both governed by differential equations similar to 
those used in one-layer DFs. In the version consid-
ered here, only the excitatory layer receives direct 
external input. Excitatory interactions are imple-
mented through connections of the excitatory layer 
onto itself, described by an interaction kernel (e.g., 
a Gaussian function). In addition, the excitatory 
layer also projects to and excites the inhibitory 
layer. These projections are topological; that is, a 
projection from any point along the feature space 
on the excitatory layer acts most strongly onto the 
same point in feature space on the inhibitory layer. 
The inhibitory layer, in turn, projects back to the 
excitatory layer in an inhibitory fashion (that is, it 
creates a negative input in that layer’s field equa-
tion). Within the inhibitory layer, there are typi-
cally no lateral interactions.

The projections between the two layers can be 
described by interaction kernels, just like the lateral 

interactions. Note that the effective spread of inhi-
bition is determined by properties of both the pro-
jection from the excitatory to the inhibitory layer 
and of the reverse projection. Let us assume, for 
instance, that all three projections in the two-layer 
field (from excitatory to excitatory, excitatory 
to inhibitory, and inhibitory to excitatory) are 
described by Gaussian kernels of the same width. 
Then the effective range of inhibition in the excit-
atory layer will be wider than the range of lateral 
excitation, because the inhibition is spread by two 
kernels instead of just one. In practice, the two-layer 
field is sometimes set up in such a way that the pro-
jection from the excitatory to the inhibitory field is 
purely local (point-to-point, without an interaction 
kernel). The kernel for the reverse projection is then 
made wider to produce the overall pattern of local 
excitation and surround inhibition. This is a simpli-
fication done to reduce the computational load and 
the number of parameters. It is not meant to ref lect 
any neurophysiological property of the inhibitory 
neurons or the neural connectivity pattern.

The two-layer field shows a delayed onset 
of inhibition according to the same mechanism 
described earlier for the biological neural system. 
In particular, if an external input is applied to the 
system, it drives the activation in the excitatory 
layer, while the inhibitory layer initially remains 
unchanged. When the activation of the excitatory 
layer reaches the threshold of the output function, 
the interactions start to come into effect. The lat-
eral interactions within the excitatory layer drive 
activation further up locally, and at the same time 
the activation of the inhibitory layer is increased. 
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FIGURE  3.13: Architecture of two-layer field. The excitatory layer (top) projects onto itself and onto the inhibitory 
layer (bottom; green arrows). The inhibitory layer projects back onto the excitatory layer (red arrow). All projections are 
spread out and smoothed by Gaussian interaction kernels.
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Math of 2 layer Amari fields

with projection kernels

τu
·u(x, t) = − u(x, t) + hu + s(x, t)

+∫ kuu(x − x′ )σ(u(x′ , t))dx′ − ∫ kuv(x − x′ )σ(v(x′ , t))dx′ 

τv
·v(x, t) = − v(x, t) + hv + ∫ kvuσ(u(x′ , t))dx′ 

kab(x − x′ ) = cab exp (−
(x − x′ )2

2σ2
ab ) {a, b} ∈ {u, v}



Time course of selection decision

initially input-dominated

excitatory interaction arises 
as once the excitatory field 
goes through threshold

inhibition arises only after 
that has happened… when 
inhibitory field exceeds 
threshold => begin to see 
inhibitory interaction

_ +

+

excitatory
layer

inhibitory
layer

inhibitory
kernel

excitatory
kernel

[Wilimzig, Schneider, Schöner, Neural Networks 2006]



Time course of selection decision

early: input driven

intermediate: dominated by excitatory interaction

late: inhibitory interaction drives 
selection

[Wilimzig, Schneider, Schöner, Neural Networks 2006]



=> early fusion, late selection

-10

0

10 (A)

double target paradigm

100 200 300 400 500 600 700

-10

0

10 (B)

target distractor paradigm

   
   

   
   

   
   

   
   

 d
ire

ct
io

n 
of

 s
ac

ca
de

�
F

 [d
eg

]

          latency
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[Wilimzig, Schneider, Schöner, Neural Networks 2006]



(2 layer fields afford oscillations

… will be important for movement generation

and for sequence generation… )



Selection decisions in the 
laboratory

most experiments in cognition entail 
selection decisions! 

in most of these paradigms an imperative 
signal uniquely specifies the “correct” 
response 

what is varied is e.g. 

the nature of the imperative stimulus 

the task set

experience with the task 



Task set
examples: number or probability of choices, 
perceptual quality of imperative stimulus, difficulty of 
the match between imperative stimulus and learned 
category … 

the task set is known to the participant prior to the 
presentation of the imperative signal

by instruction

by perceptual layout

by learning 

=> task set “preshapes” the underlying 
representations (pre=before the selection decision)



Task set as “preshape”

movem
en

t 

pa
ram

ete
r

time

activation

1.0

task
input

movement parameter 

0.0
preshaped
field

-0.4 0.0

preshaped
field

specific input
arrives

specific input

[Erlhagen, Schöner, Psych Rev 2002]



Reaction time (RT) paradigm

time

imperative 
signal=
go signal

response

RT

task set



Reaction time task in DFT

[Wilimzig, Schöner, 2006]
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Hick’s law

RT increases with the 
number of choices
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[Erlhagen, Schöner, Psych Rev 2002]



Metric effect

predict faster response 
times for metrically close 
than for metrically far 
choices
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[from Schöner, Kopecz, Erlhagen, 1997]

faster

slower

[Erlhagen, Schöner, Psych Rev 2002]



Metric effect: 
experiment

[McDowell, Jeka, Schöner ]
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Behavioral evidence for graded/time- 
continuous evolution of selection decisions

time
move on 4th to tone

imperative stimulus

imposed SR interval

timed movement 
initiation paradigm

[Ghez and colleagues, 1988 to 1990’s]



[Favilla et al. 1989]



[Favilla et al. 1989]
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[Erlhagen, Schöner. 2002, Psychological Review 109, 545–572 (2002)] 
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place with minimal changes in the hand paths. Table 1
shows the means and standard errors of curvature and
linearity indices (see Materials and methods) across sub-
jects (n = 5) for predictable targets and for each time in-
terval for unpredictable targets. Small increases in curva-
ture of 1°–2° and reductions in linearity occur among
movements initiated between 80 and 200 ms after target
presentation. However, all values are well within the
range of normal values for linearity in reaching move-
ments (e.g. Atkeson and Hollerbach 1985; Georgopoulos
1988a, b; Georgopoulos and Massey 1988; Gordon et al.
1994b). Moreover, as can be noted among the hand paths
illustrated in Fig. 5, change in direction associated with
curvature did not appreciably reduce the directional error
at the end point. Similarly, the improvement in accuracy
was not achieved through variations in movement time.

Those data will, however, be considered in greater detail
below when the systematic effects of target separation on
movement time are described (see Fig. 10).

Threshold target separation
for discrete directional specification

Figure 7 shows the distributions of initial movement di-
rections in one subject at five target separations and
smoothed for clarity. Data from the same three succes-
sive S-R time interval bins used in earlier figures are
shown in different line types. For the 30° degree target
separation, at S-R intervals ≤ 80 ms (dotted line and his-
togram to show effect of smoothing) initial directions are
distributed unimodally around the midpoint of the range

224

Fig. 7 Experiment 2. Distribu-
tions of movement directions at
the time of peak acceleration in
one subject for five target sepa-
rations. In each plot, distribu-
tions were fitted with a smooth
line using a cosine function
(Chambers et al. 1983). The ar-
rows on the x-axis point to the
required direction for each tar-
get separation. In the top plot,
the actual histogram for re-
sponses with S-R intervals
≤ 80 ms is displayed to demon-
strate the relationship of the fit-
ted line to the actual distribu-
tion. On the right side of each
plot, the actual target locations
are displayed for reference &/fig.c:

[Ghez et al 1997]

infer width of 
preshape peaks in 
field
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Neural evidence for preshape

[Bastian, Riehle, Schöner: Europ J Neurosci 18: 2047 (2003)]
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DPA reflects prior 
information 
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John Spencer’s “space ship” task 
probing spatial working memory
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1977; Compte et al., 2000, for neural network models that use
similar dynamics).

Considered together, the layers in Figure 3 capture the real-time
processes that underlie performance on a single spatial recall trial.
At the start of the trial, the only activation in the perceptual field
is at the location associated with the perceived reference axis (see
highlighted reference input in Figure 3a). This is a weak input and
is not strong enough to generate a self-sustaining peak in the
SWM field, though it does create an activation peak in the
perceptual field (PFobj). Note that this input to the model is
assumed to be generated by relatively low-level neural pro-
cesses that extract symmetry using the visible edges of the task
space (for evidence that symmetry axes are perceived as weak
lines, see Li & Westheimer, 1997). We have not included the
visible edges in simulations of the model because they are quite
far from the target locations probed in our experiments. Given
that neural interactions in the DFT depend on metric separation,
these additional inputs far from the targets would have negli-
gible consequences.

The next event in the simulation in Figure 3a is the target
presentation. This event creates a strong peak in PFobj (see target
input in Figure 3a) which drives up activation at associated sites in
the SWM field (SWMobj). When the target turns off, the target
activation in PFobj dies out, but the target-related peak of activation
remains active in SWMobj. In addition, activation from the refer-
ence axis continues to influence PFobj because the reference axis is
supported by readily available perceptual cues (see peak in PFobj

during the delay).
Central to the DFT account of geometric biases is how the

reference-related perceptual input affects neurons in the working
memory field during the delay. Figure 3c shows a time slice of the
SWMobj field at the end of the delay. As can be seen in the figure,
the working memory peak has slightly lower activation on the left
side. This lower activation is due to the strong inhibition around
midline created by the reference-related peak in PFobj (see high-

lighted reference input in Figures 3a & 3c). The greater inhibition
on the left side of the peak in SWM effectively “pushes” the peak
away from midline during the delay, that is, the maximal activity
in SWM at the end of the trial is shifted to the right of the actual
target location (for additional behavioral signatures of these inhib-
itory interactions, see Simmering et al., 2006). Note that working
memory peaks are not always dominated by inhibition as in Figure
3c. For instance, if the working memory peak were positioned very
close to or aligned with midline (location 0), it would be either
attracted toward or stabilized by the excitatory reference input.
This hints at how the DFT accounts for developmental changes in
geometric biases.

A simulation of the model with “child” parameters is shown in
Figure 3b. This simulation is the same as the adult simulation in
Figure 3a, except the interaction among neurons within each field
and the projections between the fields have been scaled according
to the spatial precision hypothesis: the neural interactions within
the SWMobj and PFobj fields are weaker (relative to the adult
parameters), the widths of the projections between the fields are
broader, and the excitatory and inhibitory projections are
weaker (for a more detailed discussion see below). As can be
seen in Figure 3b, these changes in interaction result in a
broader peak in the SWMobj field. Additionally, the reference
input is broader and weaker to reflect young children’s diffi-
culty with reference frame calibration, that is, their ability to
stably align and realign egocentric and allocentric reference
frames (see Spencer et al., 2007). The result of these changes is
that neural interactions in PFobj are not strong enough to build
a reference-related peak during the delay. Consequently,
SWMobj is only influenced by the broad excitatory input from
detection of midline in the task space and the SWMobj peak
drifts toward the reference axis instead of away from the axis.

The simulations in Figure 3 demonstrate that the spatial preci-
sion hypothesis and the DFT can capture the general pattern of
geometric biases in early development and later development, but

Figure 4. Apparatus used for spaceship task. Inset shows sample target locations relative to the starting point.
Targets are projected onto the table from beneath and responses are recorded using an Optotrak movement
analysis system. Note that the lights in the room are turned on for the photograph. During the experiment the
lights were dimmed, and the table appeared black.
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a source of excitatory input, S n 0, then the resulting stable 

state of the activation dynamics 

!d,(><t)?dt = p,(><t) + h + S(>) 

is ,(>) = h + S(>), the level at which positive and negative 

rates of change balance so that d,?dt = 0. Note that ! is a 

parameter that fixes the time scale of the activation field.  

When the rate of change of activation at a field site, >, 

depends not only on the activation level, ,(><t)< and current 

inputs, S(>), but also on the activation levels, ,(>A< t), at 

other field sites, >A, then the activation dynamics are 

interactive. Locally excitatory interaction is described by a 

kernel, 5(>->A), such that 

!d,(><t)?dt = p,(><t) + h + S(><t) + ! d>A5(>p

>A)!(,(>A<t)) 

Only sufficiently activated sites, >A, contribute to interaction. 

This is expressed by passing activation level through a 

sigmoidal function: 

!(,) = 1/(1 + exp(p",)) 

Such threshold functions are necessarily non-linear and are 

the basis for the bi-stability that structures the activation 

dynamics. Because cortical neurons never project both 

excitatorily and inhibitorily onto targets, the inhibitory 

lateral interaction must be mediated through an ensemble of 

interneurons. A generic formulation (Amari & Arbib, 1977) 

is to introduce a second, inhibitory activation field, v(><t), 

which receives input from the excitatory activation field, 

,(><t), and in turn inhibits that field: 

!, d,(><t)?dt = p,(><t) + h, + S(><t) + ! d>A5(>p

>A)!(,(>A<t)) pc ! d>A5i(>p>A)!(v(>A<t)) 

!v dv(><t)?dt = pv(><t) + hv + ! d>A5(>p>A)!(,(>A<t)) 

Stabilizing the contents of working memory via 

spatial categories. The set of equations above describes a 

neurally-plausible bi-stable network for SWM. Although 

sustained activation peaks in this network are stably in the 

“on” state, they are inherently unstable with respect to the 

metric information they represent. One manifestation of this 

metric instability is the “drift” of sustained peaks under the 

influence of noisy inputs that are common in the nervous 

system (Compte et al., 2000). Peak drift can also be induced 

by small, localized input gradients into the excitatory layer 

of the field which attract sustained peaks if they are 

positioned sufficiently close to the gradient (Amari & Arbib, 

1977). Conversely, small localized inputs into the inhibitory 

layer cause peaks to drift away from the input gradient.  

How might such gradients arise? A specific mechanism 

is through long-term memory traces of activation patterns. 

Whenever and wherever above threshold activation is 

present in WM, traces of activation can be slowly built up. 

This can be modeled through a simple linear activation 

dynamics of an additional set of fields—the LTM fields—

which receive inputs from the corresponding layers of WM. 

Conversely, LTM traces feed back as excitatory inputs into 

the corresponding layers of WM: 

!traced,trace?dt = p,trace + !(,); 

!tracedvtrace?dt = pvtrace + !(v); 

!,d,?dt = s + c,<trace,trace + noise 

!vd,?dt = s + cv<tracevtrace + noise 

A LTM trace of the excitatory layer will generate a 

small source of input that stabilizes WM peaks near the 

locations at which peaks have been activated earlier. Such 

excitatory memory traces form the neural substrate of 

spatial categories. Conversely, LTM traces of the inhibitory 

layer will generate a source of input that repels memory 

items from field sites that have been activated earlier. Such 

traces provide long-term discriminative information, 

amplifying activation differences based on past experiences. 

If excitatory memory traces are the substrate from which 

spatial categories are built, then inhibitory memory traces 

maximize the differences between categories.  

Spdating and re-establishing reference frames. To 

this point, we have described a neural mechanism for SWM 

and spatial categories but have remained vague on the 
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    Figure 1. The DNFT.           Figure 2. Simulations of data from Spencer & Hund (2003) 

2182

[Spencer, 
Schöner, 
2006]

repulsion from mid-line



DFT account of 
repulsion: 
inhibitory 
interaction with 
peak representing 
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Working memory as sustained peaks

implies metric drift of WM, which is a 
marginally stable state (one direction in 
which it is not asymptotically stable) 

=> empirically real..  see extensive work 

Johnson, J. S., Simmering, V. R., & Buss, A. T. (2014). Beyond 
slots and resources: Grounding cognitive concepts in 
neural dynamics. Attention, Perception, and 
Psychophysics, 76(6), 1630–1654.

Simmering, V. R. (2016). Working Memory Capacity in 
Context: Modeling Dynamic Processes of Behavior, 
Memory and Development. Monographs of the Society 
for Research in Child Development, 81(3), 1–158.

=> talk by Sebastian Schneegans 



Learning in DFT

Learning is change of behavior based on 
experience 

experience is driven by activation patterns 

behavior is generated by neural dynamics

=> Learning is change of the neural 
dynamics driven by activation patterns



Learning: Hebb

projections among fields 
(or from sensory input to 
field) evolve according to 
a dynamic Hebb rule

dimension, x

activation, u1(x)

dimension, y

activation, u2(y)

Sandamirskaya DNFs and cognitive neuromorphic architectures

which the agent aims to achieve through contact with the envi-
ronment. For instance, “locate a red object” is a typical perceptual
intention, “turn 30 degrees to the left” is an example of a motor
intention. x is a perceptual or motor variable, which characterizes
the particular intention; S1(x, t) is an external input which acti-
vates the intention. This input may be sensory (condition of initi-
ation) or motivational (task input) (Sandamirskaya et al., 2011).
uCoS(y, t) is the condition-of-satisfaction DNF, which receives a
localized input from the intention DNF through a neuronal map-
ping W(x, y) (as introduced in Section 2.3). This input makes
the CoS DNF sensitive to a particular part of the sensory input,
S2(y, t), which is characteristic for the termination conditions of
the intended perceptual or motor act. The mapping W(x, y) may
be learned (Luciw et al., 2013). When the CoS DNF is activated,
it inhibits the intention DNF by shifting its resting level below the
threshold of the forgetting instability.

The DNF structure of an elementary behavior (EB) further
stabilizes the behavioral state of the neural system. Thus, the
intentional state of the system is kept active as long as needed to
achieve the behavioral goal. The CoS autonomously detects that
the intended action is successfully accomplished and inhibits the
intention of the EB. Extinction of the previously stabilized inten-
tion gives way to the next EB to be activated. With this dynamics,
the exact duration of an upcoming action does not need to be
represented in advance (and action durations may vary to a large
degree in real-world environments). The intentional state will
be kept active until the CoS signals that the motor action has
reached its goal. This neural-dynamic mechanism of intention-
ality enables autonomous activation and deactivation of different
modalities of a larger neuronal architecture.

Since the intention and the CoS are interconnected DNFs,
their WTA implementation may be achieved as described in
Section 2.3.

2.6. LEARNING IN DFT
The following learning mechanisms are available in the DFT
framework.

2.6.1. Memory trace of previous activity
The most basic learning mechanism in DFT is the memory trace
formation, also called preshape. The memory trace changes the
subsequent dynamics of a DNF and thus is considered an ele-
mentary form of learning. In neural terms, the memory trace
amounts to local increase in excitability of neurons, which may
be counterbalanced with homeostatic processes.

Formally, the preshape is an additional layer over the same
dimensions as the associated DNF. The preshape layer receives
input from the DNF, which is integrated into the preshape
dynamics as an attractor that is approached with a time-constant
τl/λbuild, Equation (11). This build-up constant is slower than the
time-constant of the DNF dynamics. When there is no activity in
the DNF, the preshape decays with an even slower time-constant,
τl/λdecay in Equation (11).

τlṖ(x, t) = λbuild

(
− P(x, t) + f

(
u(x, t)

))
f
(
u(x, t)

)

−λdecayP(x, t)
(

1 − f
(
u(x, t)

))
. (11)

Here, P(x, t) is the strength of the memory trace at site x of the
DNF with activity u(x, t) and output f

(
u(x, t)

)
, λbuild and λdecay

are the rates of build-up and decay of the memory trace. The
build-up of the memory trace is active on sites with a high pos-
itive output f

(
u(x, t)

)
, the decay is active on the sites with a low

output. The memory trace P(x, t) is an additive input to the DNF
dynamics.

The memory trace formation can be used to account for one-
shot learning of object categories (Faubel and Schöner, 2009),
representation of visual scenes (Zibner et al., 2011), or action
sequences (Sandamirskaya and Schoner, 2010b).

In a neuromorphic WTA implementation, the memory trace,
or preshape, may be interpreted as the strength of synaptic
connections from the DNF (or WTA), u(x, t), to a “memory”
population. This “memory” population activates the preshape
by transmitting its activation through the learned synaptic con-
nections, P(x, t). Learning of the synaptic connections amounts
to attractor dynamics [as in the first parenthesis of Equation
(11)], in which the pattern of synaptic connections approaches
the pattern of the DNF’s (WTA’s) output. This learning dynamics
may also be implemented as a simple Hebbian rule: the synap-
tic weights which connect active sites of the DNF (WTA) with
the memory population are strengthened. Another possible inter-
pretation of the preshape as a change in the resting levels of
individual nodes in the DNF (WTA) is harder to implement in
neuromorphic WTA networks.

2.6.2. Learning mappings and associations
When the memory trace dynamics is defined within a structure
with a higher dimensionality than the involved DNFs, the pre-
shape dynamics leads to learning of mappings and associations.
The dynamics of an associating map is similar to the memory
trace dynamics, Equation (12).

τẆ(x, y, t) = ε(t)
(

− W(x, y, t) + f (u1(x, t)) × f (u2(y, t))
)
. (12)

The weights function, W(x, y, t), which couples the DNFs u1(x, t)
and u2(y, t) in Equation (12), as well as in Equations (4, 5),
has an attractor at the intersection between positive outputs of
the DNFs u1 and u2. The intersection is computed as a sum
between the output of u1, expanded along the dimensions of the
u2, and the output of the u2, expanded in the dimensions of the
u1, augmented with a sigmoidal threshold function (this neural-
dynamic operation is denoted by the × symbol). The shunting
term ε(t) limits learning to time intervals when a reward-
ing situation is perceived, as exemplified in the architecture in
Section 3.

This learning mechanism is equivalent to a (reward-gated)
Hebbian learning rule: the cites of the DNFs u1 and u2 become
coupled more strongly if they happen to be active simulta-
neously when learning is facilitated by the (rewarding) sig-
nal ε(t). Through the DNF dynamics, which builds localized
activity peaks in the functionally relevant states, the learning
dynamics has the properties of the adaptive resonance net-
works (ART, Carpenter et al., 1991), which emphasize the
need for localization of the learning processes in time and in
space.

www.frontiersin.org January 2014 | Volume 7 | Article 276 | 7

[Sandamirskaya, Frontiers Neurosci 2014]



important in DFT for 
projections from zero-
dimensional nodes to 
fields

=> concepts 

=> talks by Mathis 
Richter, Daniel Sabinasz, 
Jan Tekülve 

activation node, u1

dimension, y

activation 
field, u2(y)

Learning: Hebb



Learning: memory trace

τ ·u(x, t) = − u(x, t) + h + s(x, t) + ∫ dx′ w(x − x′ ) g(u(x′ , t)) + umem

τmem
·umem(x, t) = − umem(x, t) + g(u(x, t))

τmem
·umem(x, t) = 0

if there is no supra-
threshold activation 
anywhere in the field
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amplified in the boost-driven detection instability 



Learning: memory trace

provides an account for the 
construction of priors… link 
to probabilistic thinking

example: Hyman law from the 
frequency of choices

choice (top panel in both columns of Figure 11). Thus, when the
more probable choice is specified, the distribution of movement
parameter values remains in place but sharpens in time. When the
less probable choice is specified, the initial pattern of activation is
centered on the wrong location. Specific input leads to growth of
activation at the correct location, although that growth is slowed by
inhibition from the preactivated site. The histograms are initially
biased toward the more probable choice.
One aspect of these simulations can be compared with experi-

ments reported in Favilla, Gordon, Hening, and Ghez (1990).
Participants emitted isometric force pulses of two different ampli-
tudes. Using the timed response initiation technique, the experi-
menters imposed a single stimulus–response interval of about 112
ms, clearly shorter than typical reaction times. The two amplitudes
occurred with different probability in some conditions and with
equal probability in other conditions. A clear bias of the performed
amplitude toward the more probable amplitude value was observed
in the conditions with unequal probability.
Other aspects of the simulations are open to test. First, the

default distribution is asymmetrical. This should be observable in
the timed movement initiation paradigm at small stimulus–
response intervals, in particular, if the less probable choices are
specified. Second, comparable precision is reached earlier when
more probable targets are selected than when less probable targets

are selected. Third, when the less probable target is specified, the
parameter distribution evolves more slowly with gradual decay of
bias toward the more probable target. Fourth, at sufficiently large
metrical separation of the two choices, the temporal evolution of
the parameter distribution goes through a bimodal regime when the
less probable target is specified. Fifth, the more different the
probabilities of the two choices, the more pronounced the bias
effect and the more different the time courses of specification for
the more and less probable target.

Reaction Time Paradigm

In reaction time paradigms, participants are asked to initiate
movement as early as possible subsequent to a go signal that may
also convey information about which movement must be per-
formed. The urgency of the response is counteracted by a require-
ment to be precise (the well-known speed–accuracy trade-off ).
Because the time of movement initiation is thus determined by the
extent to which a correct movement has been prepared, rather than
by an external timing signal, we conceive of this paradigm as one
in which the time of movement initiation depends on the pattern of

Figure 10. The dynamics of the preshape field is illustrated in a paradigm
in which two target parameter values occur with different probabilities. In
(a) the distribution of activation in the memory field, umem(x), is shown at
two points in time, after 50 trials (solid line) and after 100 trials (dashed
line). The arrows indicate the two possible parameter values. In (b) the
amount of activation in the memory field at the two target locations
(marked by an asterisk for target x1 and a plus sign for target x2) is tracked
over a sequence of trials. The activation at the end of each stimulation
period, !T, is shown. During the first 50 trials, target x1 occurred more
frequently by a factor of about 3:1 (based on a pseudorandom series).
During the second 50 trials, the probability ratio was inverted. Activation
in the memory field relaxes from the initial zero activation state to a pattern
in which target value x1 is favored. After the switch, the activity pattern
adjusts within a few trials to the new target statistics (compare activity at
x1 and x2 after Trial 70).

Figure 11. A task environment in which two targets occur with different
probabilities is simulated. (a) The left-most (less probable) target is se-
lected. (b) The right-most (more probable) target is selected. Histograms
are shown for times t " 0, 70, 90, 120, 150, and 300 ms (from top to
bottom). The preshape underlying the initial distribution is illustrated in
Figure 18b on top. In both columns, the two possible movement parameter
values are marked by arrows and dashed lines, the longer arrow indicating
which value was specified at time t " 0. The input strengths were adjusted
as follows: The input strength for the specific input, gspec, was 1.2, and the
input strength for the task input, gtask, was 0.6 and 0.2 for the more and less
probable target, respectively.

554 ERLHAGEN AND SCHÖNER

[Erlhagen, Schöner, Psych Rev 2002]



Piaget’s A not B paradigm: “out-of-sight 
-- out of mind” 

A trial

delay

A B

A B
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A B

B trial
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Toyless variant of A not B task

toy to be hidden [24]. Directing attention to an in-view
object (A) heightens activation at the location and, in the
experiment, infants reach to that continually in-view
object. Subsequently, when the experimenter directs
attention to a different nearby in-view object (B), infants
watch, but then reach back to the original object (A).

Experimenters have also made the error vanish by
making the reaches on the B trials different in some way
from the A trial reaches. In the model, these differences
decrease the influence of the A trial memories on the
activations in the field. One experiment achieved this by

shifting the posture of the infant [24]. An infant who sat
during the A trials would then be stood up, as shown in
Fig. 3, to watch the hiding event at B, during the delay and
during the search. This posture shift causes even 8- and
10-month-old infants to search correctly, just like
12-month-olds. In another experiment, we changed the
similarity of reaches on A and B trials by putting on and
taking off wrist weights [25]. Infants who reached with
‘heavy’ arms onA trials but ‘light’ ones on B trials (and vice
versa) did not make the error, again performing as if they
were 2–3 months older. These results suggest that the
relevant memories are in the language of the body and
close to the sensory surface. In addition, they underscore
the highly decentralized nature of error: the relevant
causes include the covers on the table, the hiding event,
the delay, the past activity of the infant and the feel of the
body of the infant.

This multicausality demands a rethinking of what is
meant by knowledge and development. Do 10-month-
old infants know something different when they make
the error compared with when they do not? The answer
is ‘yes’ if we conceptualize knowledge and knowing as
emergent, that is, made at a precise moment from
multiple components in relation to the task and to the
immediately preceding activity of the system. What do
12-month-olds know that 10-month-olds do not? There
can be no single cause, no single mechanism and no
one knowledge structure that distinguishes 10-month-
olds from 12-month-olds because there are many
causes that make the error appear and disappear.
Instead, both 10-and 12-month-olds can be regarded as
complex systems that self-organize in the task. How-
ever, just as trial dynamics are nested in task
dynamics, so are task dynamics nested in develop-
mental dynamics.

Developmental dynamics
The A-not-B error has been important to developmental
theory because it is tightly linked to a few months in
infancy. However, the neural field model suggests that the
dynamics that create the error in infants are basic
processes involved in goal-directed actions at all ages.
Indeed, by changing the task, researchers can make
perseverative errors come and go in older children and
adults, just as in infants. Recently, Spencer and colleagues

Fig. 2. (a) The time evolution of activation in the planning field on the first A trial.
The activation rises as the object is hidden and, owing to self-organizing properties
in the field, is sustained during the delay. (b) The time evolution of activation in
the planning field on the first B trial. There is heightened activation at A before the
hiding event, owing to memory for prior reaches. As the object is hidden at B, acti-
vation rises at B, but as this transient event ends, owing to the memory properties
of the field, activation at A declines and that at B rises.
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Fig. 3. An infant sitting for an A trial (left) and standing for a B trial (right). This
change in posture causes younger infants to search as 12-month-old infants do
(see text for details).
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[Smith, Thelen et al.: Psychological Review (1999)]



Toyless variant of A not B task reveals 
that A not B is essentially a decision 

task!

A trial

delay

A B

A B

A B

A B

B trial

delay

[Smith, Thelen et al.: Psychological Review (1999)]
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[Dinveva, Schöner, Dev. Science 2007]
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Instabilities

detection: forming and initiating a 
movement goal

selection: making sensori-motor 
decisions

(learning: memory trace)

boost-driven detection: initiating 
the action

memory instability: old infants 
sustain during the delay, young 
infants do not
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detection: forming and initiating a 
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DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]

memory trace



DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]

perseverative
errors



in spotaneous errors, 
activation arises at B 
on an A trial

which leads to 
correct reaching on 
B trial

spontaneous
error correct on B!

DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



that is because 
reaches to B on A 
trials leave memory 
trace at B

spontaneous
error correct on B!

DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



DFT is a neural process model

that makes the decisions in each individual trial, by amplifying 
small differences into a macroscopic stable state

and that’s how decisions leave traces, have consequences



Decisions have consequences

66 E. DINEVA AND G. SCHÖNER
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Figure 7. Estimates from experiment (solid lines) and DFT simulations (broken lines) of the rate of spon-
taneous errors across A-trials (black lines). The grey lines show the conditional probability that a reach
again goes to B on a given A-trial given that the first spontaneous reach to B has just occurred on the
previous trial.
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Figure 8. Estimates from infant experiments (solid line) and DFT simulations (broken line) for the
probability to make exactly n spontaneous errors as a function of n.

According to this hypothesis, the overall rate of spontaneous errors reflects the distribu-
tion of the side bias across babies and is, therefore, constant across A trials. This hypothesis
predicts that the conditional probability of repeating a spontaneous error after a previous
error should be high (close to one in the limit case of completely deterministic decisions).
In fact, this limit case predicts that babies with a bias to B should repeat spontaneous errors
across the entire A-trials phase of the paradigm.

This prediction is tested in Figure 8 showing the probability that an infant/simulation
makes exactly n spontaneous errors as a function of n (Equation (3)). The deterministic
account predicts that this probability should have a U-shape: Some infants should system-
atically make no spontaneous errors, while the biased babies should make a large number
of spontaneous errors. Intermediate numbers of spontaneous errors should not be fre-
quent, as these reflect stochastic decision making. The data clearly refute this hypothesis.
The monotonic decrease of the probability of n spontaneous errors with the number n is
consistent with a stochastic contribution to sensorimotor decision making.

[Dineva, Schöner: Connection Science 2018]

a spontaneous error doubles probability to make the 
spontaneous error again



Conclusion

DFT models of behavior by mapping 
experimental conditions/measures onto 
neural states… 

even though this interface is limited, it 
provides process accounts for sensorimotor 
cognition 

I will expand this interface when talking 
about “embodied DFT” next…


