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Research Context

Autonomous skills discovery in an open-ended learning fashion

Inspired by lifelong learning.

Instead of specifying what the robot has to learn, this one
autonomously decide what’s interesting to explore and learn.

How ?

Intrinsic Motivation [Oudeyer et al., 2007], Deep Reinforcement
Learning [de La Bourdonnaye et al., 2018], Goals-based skills
Learning [Mannella et al., 2018] ...
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Research Context
Advantages :
I No specification of the task learned by design (reward

functions).
I Can lead to the emergence of behaviors, thus demonstrating

developmental stages (learning to touch before grasping).

Disadvantages :
I Not always brain inspired (role of memory and attention,

interactions between cognitive processes).
I Complex architectures often acting as ”black box” models.

Goal :

Stepping down the level of modelization (Developmental Stages →
Neuroscience) by identifying and modelling cognitive process that
could lead to Open-Ended Learning Skills.

DFT
Not used to explain and reproduce behavioral datas
[Schöner et al., 2016]. More about proposing neural mechanisms
as a basis for open-ended learning and skill discovery in robotics.
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Learning Sensorimotor Contingencies with DFT

Sensorimotor contingencies via Developmental Robotics

First stage of infant’s development : motor babbling (primary
circular reaction hypothesis) [Piaget and Cook, 1952].
Enactivism [Degenaar and O’Regan, 2017] :

I Cognition arises from the dynamic interaction with the
environment.

I Embodiment by linking perception and motor experience
together.

I Homeostasis : self-regulation (circular causality of the
sensorimotor experience).

The approach

Model motor babbling behavior by associating actions with the
sensori outcomes. Two step process by exploration and
exploitation of sensorimotor contingencies.
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Learning Sensorimotor Contingencies with DFT

How to represent Sensorimotor Contingencies and produce a
sequence of actions ?
[Houbre et al., 2020a]
Setting up the experiment inspired by the baby mobile experiment
[Watanabe and Taga, 2006].
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Exploration

Motor babbling

Generate an action from neural fields. Implementation of an
Inhibition of return [Posner et al., 1985] to avoid generating the
same action. Fields divided along states (horizontally) and actions
(vertically).

STATES

ACTIONS

Record the visual outcomes as a peak within a memory trace.
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Exploration
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Exploitation

Follow high activation until reaching a stabilized sequence of
actions.
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Experiment
GummiArm [Stoelen et al., 2016]

Upper arm roll motor angle [-1;1] spanned over Neural Field [0;100]
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Results

Visual neural activation per experiment

Average visual activation in time 10 / 22



Coding

https://github.com/rouzinho

Wiki of the experiment :
https://github.com/rouzinho/DynamicExploration/wiki

EXAMPLES : SlowBoost
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Influence from the inhibition-of-return mechanism

Investigate the influence of the strength of the IOR
[Houbre et al., 2020b]

Figure: Left - Memory Trace actions for an exploratory behavior with a
strong I-O-R. Right - Exploratory behavior with a weak I-O-R.
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Influence from the inhibition-of-return mechanism

Results

Figure: Left - average visual neural activation for a weak I-O-R (10
experiments). Right - Visual neural activation for a strong I-O-R.
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Influence from the inhibition-of-return mechanism

Results

Figure: Left - Elapsed time before reaching a stable sequence of action
during the exploitation of 10 explorations with a weak IOR as well as the
exploitation of 10 exploration with a strong IOR. Right - Motor
distribution during exploration and exploitation for both exploratory
behavior.
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Autonomous switch between exploration/exploitation

Switch mechanism inspired by recent neuroscience research
[Humphries et al., 2012]. The role of basal ganglia for the
modulation of the exploration/exploitation stages.
Under certain condition, the increase of dopamine decreases the
exploration of new actions :

I A moderate and regulate level of dopamine reduce the
exploratory behavior.

I The role of dopamine as a reinforcing signal.
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Architecture
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Condition of Exploitation

I When a state has never been visited and no reward action was
performed, there is no peak of activation within CoE.

I If a state was visited only a few times but a high reward
action was performed, a peak emerges from CoE and trigger
the exploitation.

I A state visited multiple times with no meaningful action
produced will activate the CoE node. 17 / 22



Results

Figure: Average results for 10 experiments. Left : the average visual
neural activation over time of 10 experiments is represented by a linear
regression. The curve shows an increase of visual activation when the
model begins to exploit the sensorimotor contingencies. Right : the sum
of the activation nodes bExplore and bExploit (respectively when
Exploring and Exploiting) over time for the 10 experiments.
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Future Work

Toward the learning of higher-order goals. Formation of
multimodal goals by a gain modulation. Inspired by
[Schneegans and Schöner, 2012] and [Mahé et al., 2015]
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Future Work
How to detect novel goals ? The three layers architecture
[Johnson et al., 2009]

Figure: The three layers architecture, that can act as a novelty detector.
Figure taken from [Schöner et al., 2016]
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Future Work

Code
Because of current situation : iCub Simulator

Plugins also available to control the iCub end-effector (left or right
arm) from a 2D or 3D Neural Field.
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Thank You !
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